La mer

昭和 50 年 2 月

日仏海洋学会

La Société franco-japonaise
d’océanographie
Tokyo, Japon
日仏海洋学会

編集委員会

委員長 今村 亜（東京水産大学）
委員 磯野信平（東京大学） 井上 実（東京水産大学） 森田光美（東京水産大学） 永田 正（東京水産大学） 西村 実（東京大学） 大柴武郎（昭和図書大学） 杉浦吉雄（気象研究所） 藤木和雄東京水産大学） 瀬野隆三（理化学研究所） 篠永政英（鹿児島大学） 中野 寛（東京水産大学） 渡辺 慎一 山路 勇（東京水産大学）

投稿規定

1. 報文の投稿者は本会会員に限る。
2. 報文は簡潔にわかりやすく書き、図表を含めて印刷ページで12ページ以内を原則とする。原稿（正1通、副1通）は、〒101東京都千代田区神田駿河台2-3 日仏学会館 日仏海洋学会編集委員会宛に送ること。
3. 編集委員会は、事情により原稿の字数の加除訂正を行うことがある。
4. 論文（欧文、和文とも）には必ず約200字の英文（または仏文）のAbstract（Résumé）をつけること。欧文論文には英文（又は仏文）のAbstract（Résumé）のほかに必ず約500字の和文の要旨をつけること。
5. 図及び表は必要なもののみに限る。図はそのまま版下になるように縮尺を考慮して鮮明に黒インクで書き、論文の図及び表には必ず英文（又は仏文）の説明をつけること。
6. 初校は原則として著者が行う。
7. 報文には1編につき50部の別刷を無料で著者に送付する。これ以上の部数に対しては、実費（送料を含む）を著者が負担する。

Rédacteur en chef
Comité de rédaction

Yutaka IMAMURA (Tokyo University of Fisheries)
Michihei HOSHINO (Tokai University) Makoto INOUE (Tokyo University of Fisheries) Yoshimi MORITA (Tokyo University of Fisheries) Tadashi NAGATA (Tokyo University of Fisheries) Minoru NISHIMURA (Tokai University) Gohachiro OSHIBA (Showa College of Pharmaceutical Sciences) Yoshio SUGIURA (Meteorological Research Institute) Kazumori TAKAGI (Tokyo University of Fisheries) Kenzo TAKANO (Institute of Physical and Chemical Research) Masahide TOMINAGA (Kagoshima University) Yutaka UNO (Tokyo University of Fisheries) Seiichi WATANABE Isamu YAMAZI (Tokyo University of Fisheries)

RECOMMANDATIONS À L’USAGE DES AUTEURS

1. Les auteurs doivent être des Membres de la Société franco-japonaise d’océanographie.
3. Le Comité de rédaction se réserve le droit d’apporter, le cas échéant, des modifications mineures aux manuscrits ainsi que de demander aux auteurs de les corriger.
4. Des résumés en langue japonaise ou langue française sont obligatoires.
7. Un tirage à part des articles en cinquante exemplaires est offert gratuitement aux auteurs. Ceux qui en désirent un plus grand nombre peuvent les faire établir à leurs frais.
定置網に入った魚群の居残り率*
井 上 喜 洋**

The Remaining of Fish Entered a Set Net
Yoshihiro INOUE

Abstract: From the fact that doubling the interval at which set nets are lifted does not
double the catch, we can assume that some amount of fish entered the bag net of a set net
would escape from the net. The percentage of the remaining fish in the net has not been
known yet.

In the present paper, the author tried to estimate the percentage by the statistical analysis,
comparing the catches of daily lefts to the catches of two-day lefts, which meant the interval
was two days. The comparison of catches made in 58 data of cases where the catch of
two-day left was sandwiched between the catch of daily lefts which operated at the one day
before or after the day of two-day left, and the following results were obtained.
1) The fishes having a tendency to remain in the net are horse mackerel Trachurus japonicus,
baracuda Sphyraena schlegeli, squid Ommastrephes sloanei pacificus, file-fish Stephano
cirrhifer, mackerel Pneumatophorus japonicus pacificus and gurnard Chelidonichthys kumu,
and the fishes which are liable to escape from the net are sardine Sardina fuscomaculata and
grunt Parapristipoma trilineatum and Opogonatus fasciatus.
2) Though the percentage of fish remaining in the net is depending on the species and
fishing day, the average of all kinds of species is about 60%.
3) The net has two bags at the western and eastern sides, and the amount of fish entered
the bags is different by the situation of bags and fish species. Horse mackerel, O. fasciatus
and file-fish are liable to enter the western side, and squid and barracuda the eastern side.
Mackerel, sardine, gurnard and grunt does not show any particular tendency.

1. 序 論
定置網漁業では、時化・急激・公休日などのた
め揚網できない日がある。このような日に入網し
t魚群が翌日揚網されるまでどの程度の割合で残
っているかは、定置網の箇所を通過した魚群の網
内行動と共に、定置網の漁獲性に関連し、従来
から論議されてきた。

本報告は、このような休業日に入網した魚群の居
残り率について、小田原市内の揚網で操業されている
中層定置網の漁獲資料を用い、統計的解析を
行ったものである。

2. 資料と解析方法
小田原市市内の前川揚網で実施されている中層
定置網は、Fig.1 に示すように、東西の2箇所に
前網を持ち、前網を中心にほぼ左右対称な構造で
ある。

資料として、この網の昭和46年から昭和48年
（夏網であるため、5月から12月まで）にかけての
3か年の東西漁獲別・日別漁獲資料を用い、休
業日が1日の場合について検討した。休業日に入
網した魚群が翌日まで残って蓄積されれば（居残
り率100％）休業日の翌日の漁獲量は2日分ある
ことになるので、解析は休業日の翌日の漁獲量 B2
と、対象日としてその前後の日、すなわち休業日

(1)

* 1975年1月6日受験
** 神奈川県水産試験場相模湾支所、小田原市早川1-8-1、Sagamiwan Branch, Kanagawa Prefecture
Fisheries Experimental Station, Hayakawa, Odawara-shi, 250 Japan
の前日の漁獲量 B_1 及び休業日の翌々日の漁獲量 B_3 を選び、この 3 者を比較して有意差が認められる場合を、居残りがあったものとして取扱うこととした。また、魚群に於ける魚群の入群状況の違いについても検討することとした。

そこで、過去の漁獲資料から休業日をはさんで、前後 2 日ずつ検索しているグループを 1 ブロックとして選び（休業日の前々日が休業日の場合は除く）、分散分析による要因の影響を把握を試みた。漁獲量に影響を与える要因としては、変数因子として漁獲量の日間変動（ブロック間変動）A、母数因子として居残りの有無 B、及び東西袋網の違い C の 3 因子を考慮した（Table 1）。なお、分析に用いた値は漁獲量が一般に非正規型である、要因効果を検出しにくいため、漁獲量 (N) に 1 を加えた値の対数 log(N+1) の値を用いた。\[1\]

Table 3. The estimated ratio of fish remaining in the set net.

<table>
<thead>
<tr>
<th></th>
<th>Point estimation</th>
<th>Confidence interval (95 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total catch</td>
<td>B_2/B_1 2.0</td>
<td>$1.6 \sim 2.6 \sim 1.3 \sim 2.0$</td>
</tr>
<tr>
<td>Horse mackerel</td>
<td>B_2/B_1 1.7</td>
<td>$1.1 \sim 2.5 \sim 1.1 \sim 2.4$</td>
</tr>
<tr>
<td>Barracuda</td>
<td>B_2/B_1 1.9</td>
<td>$1.2 \sim 2.8 \sim 1.1 \sim 2.4$</td>
</tr>
<tr>
<td>Squid</td>
<td>B_2/B_1 1.5</td>
<td>$1.1 \sim 2.0 \sim 1.1 \sim 2.0$</td>
</tr>
<tr>
<td>File-fish</td>
<td>B_2/B_1 1.5</td>
<td>$1.2 \sim 1.9 \sim 1.2 \sim 1.9$</td>
</tr>
<tr>
<td>Mackerel</td>
<td>B_2/B_1 4.1</td>
<td>$2.4 \sim 6.9 \sim 1.4 \sim 4.1$</td>
</tr>
<tr>
<td>Grunt</td>
<td>B_2/B_1 1.3</td>
<td>$1.3 \sim 2.4 \sim 0.9 \sim 1.8$</td>
</tr>
</tbody>
</table>

"マン、インディ、イカ、カワハガ、ホウボウの 9 魚種について分散分析を行った結果を Table 2 に示す。この中で、居残りの認められるものについては、水準間の差、つまり休業日の翌日の漁獲量 B_3 と前後の日の漁獲量 B_1, B_2 との差から居残り率の推定値（漁獲量に対数値を用いたので、差は比率になる）を求め Table 3 に示す。

以上の分散分析及び推定値より、その結果はおおよそ次のように要約される。

1. 居残り

総漁獲量及びアジ、サバ、カマス、イサ、カワハガ、サバ、ホウボウの 6 魚種には居残りが認められたが、イワシ、イサや、インディには認められなかった。しかし、居残りの認められるものうちで、総漁獲量及びアジ、カマス、ホウボウは交互作用 A×B があるので、日が変わると居残りに異なる結果を生ずることがある。また、イカ、カワハガ、サバでは交互作用 B×C があるので、東西の袋網でその居残りに違いを生ずることがある。

2. 居残り率

対象日の選びかた、つまり休業日の前日 B_1 と比較する場合と、後日 B_2 と比較する場合で、その推定値に差が見られるので、対象日間の漁獲量 B_1, B_2 に有意差があるかどうか検定を行った。その結果、総漁獲量とサバについて 5 % で有意差

(2)
Table 2. Analysis of variance

<table>
<thead>
<tr>
<th></th>
<th>Total catch</th>
<th>Horse mackerel</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.v.</td>
<td>s.s.</td>
<td>d.f.</td>
</tr>
<tr>
<td>A</td>
<td>22.1</td>
<td>39</td>
</tr>
<tr>
<td>B</td>
<td>3.9</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A × B</td>
<td>7.43</td>
<td>78</td>
</tr>
<tr>
<td>A × C</td>
<td>3.59</td>
<td>39</td>
</tr>
<tr>
<td>B × C</td>
<td>0.08</td>
<td>2</td>
</tr>
<tr>
<td>e</td>
<td>4.13</td>
<td>78</td>
</tr>
<tr>
<td>T</td>
<td>41.3</td>
<td>237</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Barracuda</th>
<th>Grunt</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.v.</td>
<td>s.s.</td>
<td>d.f.</td>
</tr>
<tr>
<td>A</td>
<td>68.2</td>
<td>32</td>
</tr>
<tr>
<td>B</td>
<td>2.66</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>4.43</td>
<td>1</td>
</tr>
<tr>
<td>A × B</td>
<td>16.4</td>
<td>64</td>
</tr>
<tr>
<td>A × C</td>
<td>9.33</td>
<td>32</td>
</tr>
<tr>
<td>B × C</td>
<td>0.20</td>
<td>2</td>
</tr>
<tr>
<td>e</td>
<td>6.68</td>
<td>64</td>
</tr>
<tr>
<td>T</td>
<td>108</td>
<td>197</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sardine</th>
<th>Oplophorus fasciatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.v.</td>
<td>s.s.</td>
<td>d.f.</td>
</tr>
<tr>
<td>A</td>
<td>41.2</td>
<td>29</td>
</tr>
<tr>
<td>B</td>
<td>0.56</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0.80</td>
<td>1</td>
</tr>
<tr>
<td>A × B</td>
<td>39.1</td>
<td>38</td>
</tr>
<tr>
<td>A × C</td>
<td>3.07</td>
<td>29</td>
</tr>
<tr>
<td>B × C</td>
<td>0.600</td>
<td>2</td>
</tr>
<tr>
<td>e</td>
<td>21.0</td>
<td>38</td>
</tr>
<tr>
<td>T</td>
<td>123</td>
<td>179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Squid</th>
<th>File-fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.v.</td>
<td>s.s.</td>
<td>d.f.</td>
</tr>
<tr>
<td>A</td>
<td>11.8</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>1.00</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1.40</td>
<td>1</td>
</tr>
<tr>
<td>B × C</td>
<td>0.84</td>
<td>2</td>
</tr>
<tr>
<td>A × B</td>
<td>4.84</td>
<td>50</td>
</tr>
<tr>
<td>A × C</td>
<td>3.53</td>
<td>25</td>
</tr>
<tr>
<td>e</td>
<td>6.39</td>
<td>50</td>
</tr>
<tr>
<td>T</td>
<td>29.8</td>
<td>155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mackerel</th>
<th>Gurnard</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.v.</td>
<td>s.s.</td>
<td>d.f.</td>
</tr>
<tr>
<td>A</td>
<td>35.1</td>
<td>24</td>
</tr>
<tr>
<td>B</td>
<td>9.42</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0.470</td>
<td>1</td>
</tr>
<tr>
<td>A × B</td>
<td>14.8</td>
<td>24</td>
</tr>
<tr>
<td>B × C</td>
<td>2.69</td>
<td>2</td>
</tr>
<tr>
<td>A × C</td>
<td>17.7</td>
<td>48</td>
</tr>
<tr>
<td>e</td>
<td>14.5</td>
<td>48</td>
</tr>
<tr>
<td>T</td>
<td>94.7</td>
<td>149</td>
</tr>
</tbody>
</table>

Note: s.v.: source of variation, d.f.: degree of freedom, F₀: variance ratio, F_{0'}: variance ratio in case of pooling, T: total, s.s.: sum of squares, m.s.: mean square, e: error, *: significant (5%), **: highly significant (1%)}
が認められたが、他の魚種には有意差は認められなかった。

すなわち、対象魚間で差の認められない魚種は、ジン、カワハギ、ホウボウで約6割、カマスで約8割の居残り率となる。しかし、総漁獲量は前日との比較で10割、後日との比較で6割、また、サバではそれぞれ4倍及び2.5倍の居残り率を示す。

3. 袋飼による魚群の上昇状況の違い

総漁獲量では東西の袋飼への上昇状況に差はなく、魚種別に見ると違いがある。

すなわち、サバ、ジン、カマス、イカ、カワハギの5魚種は袋飼により上昇状況が異なる。しかし、他の魚種、サバ、イワシ、ホウボウ、イサキでは違いが認められない。

入網状況の異なる魚種について、どちらの網により多く入ったかを調べると、西袋飼へのジャブ、インダイ、カワハギ、東袋飼へのカマス、イカがそれぞれ多く入網している。しかし、インダイ、イカ以外の魚種では交互作用A×Cがあるので、日により入網する袋飼が異なることがある。

4. 考察

得られた結果及び解析方法について二、三の考察を試みた。

魚群の網内行動に関しては魚種により差があり、鈴木（1971）は対網行動から、網壁に対する接近型の魚種と非接近型の魚種に分類し、接近型の魚種、ブリ、クマノイ、イサキ、ヒラメなどは入網しやすいが出網しにくい。これにより、両方、非接近型の魚種、アシ、サバ、カマス、カッコイなどに入網しにくいが出網しにくい。また、柴田（1968）は冬期と夏期の季節差があることから、回遊魚には繁殖段階の影響が大きいが、根付魚、底魚及び遠方の時期の回遊魚では繁殖段階があるとしている。一方、石倉（1970）は対網網内での放流結果から居残り率を求め、イシダイで80％（中層網）、アシで72％（夏期の下層網）の値を得ている。今後魚の結果をこれらの結果と比較すると、居残りの魚種及び居残り率に関しては多少の違いはあるが、およそ一致している。しか

し、今回の結果では、居残りの認められる魚種でも交互作用があり、日の違い、袋飼の違いにより、その居残りが変わることがある。すなわち、魚群の居残りは一因だけでなく、二因および複数の要因に支配されていると考えられるので、更に魚群の行動、習性などについて詳細な分析をしていく必要がある。

解釈方法に関しては、比較対象日に休業日、あるいは、その翌日と同じように魚群が入網する日を選ばなければならない。今回の場合は、定置網の漁獲が木村（1972）ほかの報告及び日別漁獲資料からみると、漁のある日の漁獲及び漁群の無い日の漁獲によって構成されているため、休業日に一番遠い日を選ぶと良いと考えたが、前日のある日を選ぶと明確には決められなかったので、3者漁獲個を比較することにした。結果からみると、大部分の魚種で、対象魚種の差が認められず、どちらの日を対象日に選んでも良いことになる。しかし、一部のものについて対象日間差があり、得られた結果が実際の現象に合うかどうか、今後更に検討する必要がある。

謝辞

本文の御校閲を頂いた東京水産大学井上実助教授、並びに資料の解析に御指導頂いた東海区水産研究所擴建司博士に感謝を表します。

文献

1) 飯高秀之助（1968）：カニ、エビ、及びセイゴに対する魚飼の効果について。189，29-33。
2) 河谷 覚司（1968）：漁獲試験による北浅浅め鰤類漁具の漁獲特性の比較。東海水産研究所、55，115-126。
3) 鈴木 誠（1971）：定置網に対する魚類の行動と漁具の機能に関する基礎的研究。東海大研究報告，57(2)，95-171。
4) 柴田勇夫（1969）：相模湾における大型定置網漁況一I、休業がある日の漁獲または休日漁況における影響について。神奈川水試相模湾水文報告，1，39-42。
5) 平元泰雄（1970）：定置網内の漁獲状況及び居残り率について。詳説，43，14-21。
6) 木倉 孝（1972）：相模湾漁業ポイント管理によるアマジ、神奈川水試相模湾水文報告，4，55-72。
7) 神奈川県漁業研究会、神奈川県水産試験場相模湾水文報告（1974）：相模湾定置網漁獲資料調査、昭昭
The Diffusion Coefficients of Radionuclides in the Sediment

Noburu Takematsu** and Motoaki Kishino**

Abstract: The diffusion coefficients of ruthenium and cerium in a sediment are determined by Duursma’s method. Assuming a constant inflow and a constant source, the vertical distributions of radionuclides in the sediment are also calculated with their diffusion coefficients in the sediment and the deposition rate of the sediment as parameters. Comparing the calculated vertical distributions of radionuclides with those in situ, their diffusion coefficients in the sediments are estimated.

The diffusion coefficients estimated by graphical comparison are larger than those obtained by Duursma’s method. This difference is considered to be partly due to the difference between the diffusion coefficient of chloride ion in situ and that in the laboratory.

In the Duursma’s method, the diffusion coefficients of colloidal elements in seawater are much smaller than those of ionic elements while in the method to estimate the diffusion coefficients graphically from the vertical distributions of radionuclides, the diffusion coefficients of colloidal elements are comparable to or larger than those of ionic elements. This discrepancy implies that the distribution factors of colloidal elements in seawater do not necessarily represent the intensity of the interaction between sediment particles and colloidal elements when the colloidal elements diffuse through interstitial water.

1. Introduction
The diffusion of metal elements in the sediment has been drawing attention in relation to the dating of the sediment by radioactive nuclides and to the behavior of minor elements in the sediment, especially manganese (Ku, 1965; Lynn and Bonatti, 1965; Li et al., 1969; Michard, 1971).

Recently, Duursma and co-workers discussed theoretical models for metal ion diffusion in the sediment and developed the method to determine experimentally the diffusion coefficients of metal elements (Duursma and Hoede, 1967; Duursma and Bosch, 1970; Duursma and Eisma, 1973).

In the present study, the diffusion coefficients of ruthenium and cerium in a sediment are determined according to Duursma and Bosch (1970). The in situ diffusion coefficients of some radioactive elements in the sediments are also estimated from their vertical distributions in sediments. The causes of the discrepancy of these results are discussed.

2. Diffusion coefficients of radioactive elements in the sediment determined by Duursma’s method
According to Duursma and Bosch (1970), the diffusion coefficient of a metal element in a sediment can be calculated from the diffusion coefficient of chloride ion and the distribution factor of the element between the interstitial water and the sediment particles. The relation can be written as:

\[D_{\text{metal}} = \frac{D_{\text{chloride}}}{1 + K_{\text{metal}}} \]

where \(D_{\text{metal}} \) and \(D_{\text{chloride}} \) are the diffusion coefficients of a metal element and chloride ion in a sediment, respectively, and \(K_{\text{metal}} \) is the distribution factor of the metal element.

In the present study, the diffusion coefficient of chloride ion in a sediment is determined by instantaneous source technique. The sediment used was taken at the depth of about 8 m,
in a sediment determined by instantaneous source technique.

The diffusion coefficients of ruthenium and cerium are measured by suspension technique. The chemical forms of 103Ru and 144Ce are nitrosyl ruthenium nitrate complexes and cerium chloride, respectively. The mean distribution factor of ruthenium is 5×10^4 and that of cerium is 5×10^4. The mean distribution factor of ruthenium averaged over 28 various marine sediments was reported to be 3×10^4 ranging from 6×10^4 to 3×10^4 and that of cerium 7×10^4 ranging from 1×10^4 to 7×10^4 (DUURSMA and EIISMA, 1973). On the other hand, JEFFERIES (1968) reported that in situ distribution factors of ruthenium were 4×10^4 for surface sand and 1.4×10^4 for surface silt. He also reported that the concentration of 144Ce in seawater was below the limit of detection. Hence, in situ distribution factor of cerium will be much larger than that of ruthenium.

Equation (1) allows to estimate the diffusion coefficients of ruthenium and cerium in the sediment to be 1×10^{-8} to 1×10^{-11} cm2/sec and 5×10^{-11} to 5×10^{-14} cm2/sec, respectively.

3. In situ diffusion coefficients of radioactive elements in the sediment estimated graphically from their vertical distributions in the sediment

The time rate of change of the concentration of a radioactive element in the sediment is equal to the sum of three terms representing diffusion, deposition and compaction, and radioactive decay:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial z^2} - \frac{\partial C}{\partial z} - \lambda C \quad (2)$$

where C is the concentration of a radioactive element, t is time, z is depth in the sediment measured positively downward from the sediment-water interface, D is the diffusion coefficient of the radioactive element, ω is the deposition and compaction rate of the sediment, and λ is the radioactive decay constant. In the steady state, the solution is given by:

$$C = C_0 \exp \left(- \frac{\omega - \sqrt{\omega^2 + 4 D \lambda}}{2 D} z \right) \quad (3)$$

when the concentration at the sediment-water interface is constant (C_0).

The vertical distributions of 90Sr, 92Zr, 92Nb, 103Ru, 137Cs, 144Ce and 239Pu are calculated in various combinations of the deposition rate ω of the sediment and the diffusion coefficient D of these elements in the sediment. The half-lives of 90Sr, 92Zr, 92Nb, 103Ru, 137Cs, 144Ce and 239Pu are 27.7y, 65d, 35d, 1.0y, 30d, 285d and 24360y, respectively.

In the case of a constant inflow, the solution
The Diffusion Coefficients of Radionuclides in the Sediment

The solution is given by:

\[C(x, t) = \frac{q}{(4\pi D_t)^{1/2}} \exp\left\{ -\frac{4z \sqrt{t}}{4D_t} \right\} dt \]

where \(q \) is the amount of release per unit time. This equation is computed numerically with a time step of half a day for each radioactive element.

In the following figures, the relative concentration to the surface, \(C(x, t)/C(0, t) \) is shown. In the case of the radionuclides whose half-lives are shorter than one year, at least to the depth of 10 cm, diffusion reaches to the steady state in 10 years even in the diffusion coefficient of \(1 \times 10^{-2} \text{cm}^2/\text{sec} \) (Fig. 2). In the nuclides of longer half-lives, diffusion is far from the steady state (Fig. 3). This figure suggests that not only the diffusion coefficient but also the deposition rate of the sediment can be estimated comparing the calculated vertical distribution of a radionuclide with that observed if the period of diffusion is known. The diffusion of \(^{90}\text{Sr}\) in 10 years, to the depth of 15 cm is the same as that of \(^{137}\text{Cs}\) on account of nearly equal half-lives. Also, the diffusion of \(^{239}\text{Pu}\) in 10 years
is almost the same as that of 137Cs because the difference of radioactive decay in 10 years between 239Pu and 137Cs is within 20%. Therefore, the order of the diffusion coefficients of 89Sr, 137Cs and 239Pu can be estimated fairly precisely when the period of diffusion is within 10 years, even if the deposition rate of the sediment is not known.

The vertical distribution of 144Ce in a sediment is observed (Fig. 4). The core was taken on May 20th in 1974, at the depth of about 8 m by a striker type core sampler, about 1 km off Tokai-mura. The measurement of 144Ce is carried out according to SHIZUKI and SETO (1970). Because the supply of 144Ce from fallout is not constant and/or the surface sediment is disturbed by the turbulence of overlying water, the distribution shows considerable irregularity. But the concentration of 144Ce seems to decrease exponentially with depth. The irregularity of this profile does not allow to estimate the diffusion coefficient.

Fortunately, the vertical distribution of various radionuclides in the sediments in the Irish Sea were reported (TEMPLETON and PRESTON, 1966, JEFFERIES, 1968). These radioactive elements were discharged from the fuel reprocessing plant which had been operating since 1952 and the discharge of radioactive effluent was fairly constant although the relative concentrations of radionuclides changed in mid 1964 with the operation of new chemical plant. TEMPLETON and PRESTON (1966) reported that the ratios of concentrations of Pu, 137Cs, 89Sr and 106Ru in the top 2" to the bottom 3" of the sea cores were 0.17, 0.08, 0.02 and 0.017, respectively and that the penetration was in the order: Pu > 137Cs > 89Sr > 106Ru. These ratios are written in the log concentration-depth curves

Fig. 3. The calculated vertical distribution of 137Cs from a constant inflow when the time elapsed is 10 years.
Fig. 4. The vertical distribution of 144Ce in a core taken at the depth of about 8 m, about 1 km off Tokai-mura.

Fig. 6. The concentration ratios of 137Cs and 87Sr in the top 2" to the bottom 3" from TEMPLETON and PRESTON (1966) plotted on the calculated log concentration-depth relationship of the diffusion from a constant inflow.

Fig. 5. The vertical distributions of 199Ru in cores by TEMPLETON and PRESTON (1966) plotted on the calculated log concentration-depth relationship in the steady state.

Fig. 7. The concentration ratios of Pu (TEMPLETON and PRESTON, 1966) plotted on the calculated log concentration-depth relationship of the diffusion from a constant inflow.

(9)
Fig. 8. The vertical distributions of 90Zr/91Nb in cores by JEFFERIES (1968) plotted on the calculated log concentration-depth relationship in the steady state.

Fig. 9. The vertical distributions of 106Ru in cores by JEFFERIES (1968) plotted on the calculated log concentration-depth relationship in the steady state.

Fig. 10. The vertical distributions of 144Ce in cores by JEFFERIES (1968) plotted on the calculated log concentration-depth relationship in the steady state.

Fig. 11. The vertical distributions of 137Cs in cores by JEFFERIES (1968) plotted on the calculated log concentration-depth relationship of the diffusion from a constant inflow and the time elapsed is 15 years.
of diffusion when the time elapsed is 10 years and 15 years (Figs. 5, 6 and 7). The ratio for 100Ru, 0.017 was discarded because this value does not fit any curves of diffusion. Instead, the profiles of 109Ru reported in their paper are used to estimate the diffusion coefficient of 109Ru. Comparing the ratio (0.08) of the concentrations of 137Cs in the top 2' to the bottom 3' with the calculated log concentration-depth curves of 137Cs (Fig. 3), it is found that the deposition rate of the sediment is lower than 1 cm/year. So, the diffusion coefficient of 109Ru is estimated to be about 5×10^{-9} cm2/sec (Fig. 5). The ratio of 137Cs seems to fit the gradient of the curve with the diffusion coefficient of 1×10^{-8} cm2/sec and the deposition rate of 0.1 cm/year (Fig. 6). The diffusion coefficient of 90Sr is smaller than that of 137Cs but larger than 5×10^{-9} cm2/sec (Fig. 6). That of Pu is larger than 1×10^{-8} cm2/sec and smaller than 5×10^{-9} cm2/sec although some uncertainties are involved because all the plutonium nuclides are assumed to be 239Pu (Fig. 7). Therefore, the order of their diffusion coefficients becomes $\text{Pu} > ^{137}$Cs $> ^{90}$Sr.

The cores of JEFFERIES (1968) were taken from the Ravenglass estuary in the Irish Sea at the first and second quarters of 1967. Therefore, the period of diffusion is about 15 years. The data of upper 4 cm of the sediments are ignored on account of the change in the discharge rate and the plotted concentrations are relative ones because only the vertical gradients of the distributions are essential to the estimation. From the 137Cs profile (Fig. 11), the deposition rate will be the order of magnitude of mm/year. So, the diffusion coefficient of 90Zr/90Nb is estimated to be about 5×10^{-7} cm2/sec considering the shorter half-life of 90Nb (Fig. 8). The diffusion coefficients of 144Ce and 198Ru are estimated to be about 1×10^{-7} cm2/sec (Figs. 9 and 10). The diffusion coefficient of 137Cs is about 1×10^{-7} cm2/sec (Fig. 11). Their diffusion coefficients in the Jefferies' cores are in the order: 90Zr/90Nb $> ^{144}$Ce $\approx ^{198}$Ru $> ^{137}$Cs.

4. Results and discussion

The distribution factors of radionuclides determined experimentally and observed in situ, and their diffusion coefficients obtained by Duursma's method and estimated graphically from their vertical distribution in the sediment are summarized in Table 1. The diffusion coefficients estimated graphically are much larger than those obtained by Duursma's method, especially in 106Ru, 90Zr/90Nb and 144Ce, and those estimated from Jefferies' cores are about a figure larger than those from Templeton and Preston's cores. There is also discrepancy between the order of the diffusion coefficients of radionuclides estimated graphically and that obtained by Duursma's method.

It is considered that the diffusion coefficient of Cl$^-$ in the laboratory differs from that in situ. In the laboratory, the diffusion coefficient of Cl$^-$ is measured under the condition that the water is at rest and the temperature is constant. In situ, overlying water is turbulent even in the deep bottom water and the temperature of the water varies, especially in the coastal area, and the interstitial water may be disturbed by density current. Therefore, the diffusion coefficient of Cl$^-$ measured in the laboratory will be the minimum one. The difference between the diffusion coefficients of radionuclides estimated graphically and that calculated by Duursma's method must be partly due to the difference between the diffusion coefficient of Cl$^-$ in situ and that in the laboratory.

In the Duursma's method, the diffusion coefficients of 106Ru, 90Zr/90Nb and 144Ce are much smaller than those of 90Sr and 137Cs, while the diffusion coefficients of the former are comparable to or larger than those of the latter in the method to estimate diffusion coefficients graphically from their vertical distributions. Cesium and strontium are present as ions in seawater and sorbed on the sediments by ion-exchange, while zirconium and cesium are mainly present in their hydrolyzed states (DUURSMA and ETISMA, 1973). The ions may diffuse into the interior of the sediment particles but hydrolyzed colloids may not. There is also a possibility that the hydrolyzed elements in seawater precipitate as colloids with suspended matter on the very surface layer of the sediment and diffuse as their hydrolyzed ions through interstitial water. But the main cause
Table 1. The distribution factors of radionuclides determined experimentally and observed \textit{in situ}, and their diffusion coefficients obtained by Duursma’s method and estimated by the present graphical method.

<table>
<thead>
<tr>
<th></th>
<th>90Sr</th>
<th>137Cs</th>
<th>106Ru</th>
<th>92Zr/98Nb</th>
<th>144Ce</th>
<th>Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean distribution factor experimentally determined</td>
<td>8 x 103</td>
<td>6 x 103</td>
<td>3 x 103</td>
<td>7 x 103</td>
<td>7 x 104</td>
<td>---</td>
</tr>
<tr>
<td>DUURSMA and EISMA (1973)</td>
<td>1 x 103</td>
<td>7 x 103</td>
<td>2 x 104</td>
<td>4 x 104</td>
<td>5 x 104</td>
<td>---</td>
</tr>
<tr>
<td>thin-layer technique (28)</td>
<td>3 x 103</td>
<td>2 x 103</td>
<td>3 x 103</td>
<td>4 x 104</td>
<td>2 x 103</td>
<td>---</td>
</tr>
<tr>
<td>sedimentation technique (13)</td>
<td>---</td>
<td>5 x 103</td>
<td>---</td>
<td>5 x 103</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>suspension technique (6)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Present work</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Distribution factor observed \textit{in situ}</td>
<td>---</td>
<td>6 x 103</td>
<td>4 x 103</td>
<td>5 x 103</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>surface sand</td>
<td>---</td>
<td>8 x 103</td>
<td>1.4 x 104</td>
<td>1.5 x 104</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>surface silt</td>
<td>---</td>
<td>6 x 103</td>
<td>4 x 103</td>
<td>5 x 103</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DIFFUSION COEFFICIENT ESTIMATED</td>
<td>8 x 10$^{-9}$</td>
<td>9 x 10$^{-11}$</td>
<td>5 x 10$^{-10}$</td>
<td>8 x 10$^{-11}$</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DUURSMA and EISMA (1973)</td>
<td>8 x 10$^{-9}$</td>
<td>9 x 10$^{-11}$</td>
<td>5 x 10$^{-10}$</td>
<td>8 x 10$^{-11}$</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1 x 10$^{-3}$</td>
<td>7 x 10$^{-11}$</td>
<td>8 x 10$^{-11}$</td>
<td>1 x 10$^{-11}$</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Present work</td>
<td>1 x 10$^{-3}$</td>
<td>5 x 10$^{-11}$</td>
<td>1 x 10$^{-11}$</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Templeton and Preston’s cores</td>
<td><1 x 10$^{-4}$</td>
<td>1 x 10$^{-4}$</td>
<td>5 x 10$^{-4}$</td>
<td>---</td>
<td>---</td>
<td>>1 x 10$^{-8}$</td>
</tr>
<tr>
<td>Jefferies’ cores</td>
<td>---</td>
<td>1 x 10$^{-7}$</td>
<td>1 x 10$^{-7}$</td>
<td>5 x 10$^{-7}$</td>
<td>1 x 10$^{-7}$</td>
<td>---</td>
</tr>
</tbody>
</table>

of the discrepancy can be found in the distribution factors of the hydrolyzed elements. The distribution factors of the hydrolyzed elements will depend upon not only sorption but also additional precipitation with the presence of the sediment particles although the precipitation of the colloidal elements in the absence of the sediment is taken into consideration. In other words, the distribution factors of colloidal elements in seawater do not necessarily represent the intensity of the interaction between sediment particles and colloidal elements when the colloidal elements diffuse through interstitial water.

In the method to estimate the diffusion coefficients of radionuclides from their vertical distributions in the sediments, a question is whether the application of a constant inflow to this case is suitable or not. Actually, the concentrations of radionuclides in the overlying water increase slowly in the initial stage of the discharge and some times later reach the steady state. Equation (2) is solved by ENDOH (Private communication, 1974) under the condition that the concentration, $C(z, t)$ at time t and depth z is as follows:

\[
\begin{align*}
C(0, t) &= C_0, \ (t > 0) \\
C(\infty, t) &= 0 \\
C(z, 0) &= 0, \ (z > 0)
\end{align*}
\]

The solution is given by:
The Diffusion Coefficients of Radionuclides in the Sediment

Fig. 12. The comparison of the diffusion of 90Sr and 137Cs between from a constant inflow and from a constant source when the time elapsed is 10 years.

$$C(z, t) = \frac{2C_0}{\sqrt{\pi}} \exp \left(\frac{\omega z}{2D} \right) \times \int_0^\infty \exp \left(-\omega x - \frac{\varepsilon x^2}{x^2} \right) dx \tag{5}$$

where $\varepsilon = \frac{\omega^2}{4D}$.

This integration is made numerically by FACOM 230-75 computer of The Institute of Physical and Chemical Research.

In radionuclides whose half-lives are shorter than one year, the log concentration-depth curves of a constant source are the same as those of a constant inflow but in radionuclides which have longer half-lives, there are some differences (Fig. 12) although the differences are not so large to change the diffusion coefficients estimated with a constant inflow.

The cores analyzed were taken from the estuary and the shallow water. More interesting information with regard to the diffusion coefficients of metal elements in the sediment will be obtained if this method is applied to the cores taken in the deeper part of the Irish Sea.

Acknowledgments

We wish to acknowledge the many helpful discussions with our colleagues, in particular, Dr. M. ENDOH.

We would like to thank Dr. S. UNOKI of The Institute of Physical and Chemical Research for a critical reading of the manuscript.

References

海底堆積物中における放射性核種の拡散

竹松 伸 岸野 元 彰

要旨：DUURSMA の方法によって、海底堆積物中におけるルテニウムとセリウムの拡散係数を求めた。一方、拡散係数と海底堆積物の堆積速度を変数として、constant source 及び constant inflow を仮定して、放射性核種の堆積物中における鉛直分布を計算した。計算した放射性核種の鉛直分布と実験の海底堆積物中における放射性核種の鉛直分布を比較して、堆積物中における放射性核種の拡散係数を推定した。

その結果、推定された放射性核種の拡散係数は、すべての核種において、DUURSMA の方法で求めた拡散係数より大きかった。この不一致は、主に、現場と実験室における堆積物中の塩素イオンの拡散係数の差に起因していると考えられる。また、DUURSMA の方法で求めた拡散係数の場合には、海水中でコロイド状で存在する元素の拡散係数よりイオン状で存在する元素の拡散係数の方が大きいが、堆積物中の放射性核種の鉛直分布から推定した拡散係数の場合には、両者はほぼ等しいかむろしき差であった。これは、海水中においてコロイド状で存在する元素の分布係数がコロイド状の元素が海水水中を拡散する際の堆積物とこれらの元素との相互作用の強さを必ずしも表わしていないことを示唆している。
房総半島南西沖海底から採取された
一柱状堆積物中の粘土鉱物と石膏*

青木三郎**

Clay Minerals and Gypsum in a Sediment Core off Southwest of Boso Peninsula, Chiba Prefecture

Saburo AOKI

Abstract: Clay minerals and gypsum in a sediment core of 251 cm long taken off Boso peninsula, Chiba Prefecture were observed by X-ray diffraction method. Of the clay minerals examined, montmorillonite is the most dominant constituent in sedimentary layers except some parts of the core. Illite or chlorite is the next dominantly constituent after montmorillonite. Kaolinite is contained in all parts of the core, though it is less abundant than other three clay minerals. It is suggested that the clay mineral composition of the core has not been noticeably influenced by diagenetic effect.

Megascopically observable crystals of gypsum with blade-like of 2 to 3 mm in diameter occur in only the clay part of the core. The gypsum crystal may have been formed in situ on submarine by contamination of sulhide erupted from volcano.

1. はじめに

海底堆積物中には肉眼的にほとんど鑑定不可能な微細な数種の粘土鉱物が含まれている。海底堆積物中の粘土鉱物のほとんどが陸地から運搬されてきた碎屑源であるが、一部海底火山ガラスや底層生物の堆積物が機械的に変質してできているわゆる自生粘土鉱物が所的に濃縮しているところもある。これら海底堆積物中の粘土鉱物の研究が盛んになりはじめたのは、X線回折装置が導入された1950年代に入ってからである。今日では、X線回折装置と共に赤外分光計、示差熱分解装置、電子顕微鏡などの諸機器を併用した多くの研究成果が内外の研究者により報告されている。

海底堆積物中の石膏に関する報告も少なくない。特に、乾燥地域の浅海堆積物中から産する例が知られている（ベルシャ湾など）。深海堆積物中からも石膏の結晶の存在を報告した例もあるが、海底で生成したかあるいは試料保存中にできたのか明らかでない。

小論では一柱の柱状堆積物（251 cm）を研究試料として、その中に含まれている粘土鉱物の定性と定量分析を、また試料の泥質部分に晶出していた石膏をX線により分析したものでその結果について報告する。

小論をまとめるにあたり日頃から御指導を頂いております東京教育大学の須藤俊男教授、東洋大学の生沼邦雄教授に感謝申し上げます。東京水産大学の松本秀次郎教授、同海藻丸の高須航海士には試料の供与と採取時のデータを見せて頂きましました。ここに記して謝意を申し上げます。

2. 試料と研究方法

柱状堆積物は、1964年4月14日、東京水産大学の練習・研究船海藻丸の第23次航海の折、房総半
島南西沖の水深 780 m の海底からピストンコアサンプラーによって採取されたものである。採取地点を Fig. 1 に示す。本柱状堆積物は採取時点から、既に 10 年余り経過しており現状、状態にありながら、研究上差し支えないと判断した。

堆積物の特徴を簡単に記載すると、試料頂部から、40 cm 付近までは黄灰色のシルトないし粘土質で、40 cm から 120 cm 付近までは淡いオリーブ色の粘土である。この粘土の部分に石膏が晶出し、120 cm 付近から最下部まで、堆積物はやや粗粒となり、淡いオリーブ色の極微細な粒状である。この部分には石膏の結晶は認められない。また、この層には多数の小さな貝殻破片が含まれていた。

研究に供した試料は試料頂部から 30 cm 間隔に、5 cm の厚さに切り取り、最下部 251 cm までを 10 個分取、粘土鉱物分析用とした。また、粘土部分に晶出していた石膏はビンセットにより採集し分析用とした。粘土鉱物分析用の試料、ビーカ内で蒸留水により洗脱された後、11 シリンダーの中に移し替え、通常の沈殿法により 2 μm 以下の粘土成分を回収した。

回収した粘土鉱物は、生沼、小林 (1961) の方法に従い、スライドガラス上の一定面積にはば等量を塗布し自然乾燥させた。

また、別のスライドガラス上には、6N 硫酸溶液で 30 分間 95°C で加熱処理した試料、エチレングリコールで処理した試料、及び 1N 硫酸アンモニウム溶液で 10 分間 95°C で加熱処理した試料を同様な手段で塗布し風乾した。

更に、薬品処理を行わなかった試料の一部を 150°C、300°C、450°C 及び 600°C で 1 時間加熱処理をした。これら未処理及び各種処理試料を一定条件下で X 線回折法により分析した。X 線回折条件は次の通りである。Cu，Ka，電圧 30 kV，電流 15 mA，発散スリット 1°・1°，受光スリット 0.4 mm，走査速度 2°/min（定性），1°/min（定量），チャート速度 2 cm/min である。

3. 分析結果と考察
1. 粘土鉱物

すべての試料から得た X 線回折パターンを検討した結果、次の粘土鉱物の存在が認められた。代表的な X 線回折パターンを Fig. 2-a 及び 2-b に示す。各粘土鉱物の定湯基準は次の通りである。

モンモリロナイト : エチレングリコール処理試料における 17 乙 回折線の存在。

クロライト : 600°C 加熱処理試料における 14 乙 回折線の存在。

イライト : 未処理及び各種処理試料における 10 乙 回折線の存在。

カオリナイト : 塩酸処理試料における 7 乙 回折線の存在。

なお、同様に行なった Mg パーキサイトの有無の判定基準 (WALKER, 1949) となる硝酸アンモニウム処理試料の X 線回折パターンを検討した結果、Mg パーキサイトは存在しないと判断した。量的な検討を行なかったが、非粘土鉱物として石英、長石、方解石の存在がすべての試料中で認められた。

以上の如く、すべての試料に粘土鉱物としてモンモリロナイト、クロライト、イライト及びカオリナイトが含まれていることが明らかとなった。試料中の粘土鉱物の相対量を求めるために、各粘土鉱物の X 線回折線のピークの高さを関数を掛ける方法 (SUDE et al., 1961; OINUMA, 1968) を使用した。定量結果を Fig. 3 に示す。

モンモリロナイトの相対量は、30~35 cm、120 ～125 cm の部分を除いたすべての試料で最も優勢である。モンモリロナイトが卓越し、クロライト
Fig. 2-a. X-ray diffraction patterns of untreated and treated specimens.
UT: untreated, EG: ethylene glycol.
1. top-5 cm, 2. 30-35 cm, 3. 60-65 cm, 4. 90-95 cm, 5. 120-125 cm, 6. 150-155 cm, 7. 180-185 cm, 8. 210-215 cm, 9. 240-245 cm, 10. 250-251 cm.

Fig. 2-b. X-ray diffraction patterns after various treatments.
1. untreated, 2. heated at 150°C, 3. heated at 300°C, 4. heated at 450°C, 5. heated at 600°C, 6. treated with hydrochloric acid, 7. treated with ammonium nitrate.

Fig. 3. Clay mineral composition of a sediment core examined in this study.
Fig. 4. X-ray diffraction patterns of gypsum examined in this study.

アメリカ、ネバダ州のClayton Playaに産する石膏 (MOLOLA and GLOVER, 1965) に酷似している。

試料はメノウ乳頭内で粉碎後、スライドガラス上に塗布し乾燥した。

Fig. 4には、室温から600℃まで加熱処理した試料のX線回折パターンが示されている。
150℃の加熱試料はhemihydrateの回折パターンを、450℃の加熱試料ではanhydriteのパターンを示している。

浅海堆積物中で石膏が晶出しているという報告は多いが、本試料の加く半深海堆積物から肉眼的に観察できる大きさの石膏が晶出しているという報告は珍しいのではないかと思われる。一方、深海堆積物中でも石膏の晶出が観察されているが、海底で生成したか試料保存中に空気にふれたsulfide oxidationにより晶出したのか判然としない（ARRHENIUS, 1963）。

藤井, 安田 (1972) は、日本海に面する美保湾及び湾外の堆積物をX線分析によって調べ、石膏が堆積物中に普通的に含まれていると報告している。また、島（私信）は日本海から得た柱状堆積物中に、石膏晶出しているのを電子顕微鏡によっ
て観察している。しかし、これら堆積物中の石膏も海底でできたか、試料保存中に晶出したか判然
であるため明らかではない。

ARRHENIUS (1963) は、石膏は有機物含有量の多い試料中に晶出していることを指摘しているが、これは石膏の晶出が、有機物の多少に左右されるEhと関係していることによるのである。すなわち、石膏は酸化性の環境下ではしばしば晶出するが、還元性環境下では還元性のバクテリアで還元されて分解するからである（MÜLLER, 1967）。

本柱状堆積物の如く、試料全体に石膏が晶出しているならともかく、粘土質の部分だけに晶出し、しかも数mmの大きさにまで成長していることを考えると、脱水状態にあったといえ、同様の条件で用いられた海底堆積物試料中には、石膏の結晶化が認められなかったことから、本柱状堆積物中での石膏が陸上で結晶化したとは考え難い。

本試料中の石膏の成分に関する一つの考えは、火山活動による硫化物の浸入により生成したとするものである。試料採取地点が活火山島、大島に近接していることを考えれば、その可能性はある。しかし、瓜々、火山島または海底火山の近くで採取した深海堆積物中で石膏が晶出しているという報告は、筆者自身の知る限りではないことを考えるとき、更に多数の堆積物について検討する必要があると思われる。

文献
4) OINUMA, K. (1968): Method of quantitative

Biological Features of the Trends Shown in the Monthly Catches by the Spiny Lobster Fishery in Uchiura Bay, Chiba Prefecture*

Kazunori Takagi**, Ken'ya Mizuguchi** and Atsushi Ohno**

Abstract: The Japanese spiny lobster fishery in Uchiura Bay, Chiba Prefecture, is analyzed from long-term statistical data, official and personal. The monthly catches, in total as well as per unit of effort, are found to follow particular trends within the yearly fishing season. These trends show a reverse-J-shape pattern. Their mathematical representation and biological meanings are discussed from the viewpoint of fishery biology.

Uchiura Bay is located on the Pacific coast of Chiba Prefecture, and is known for its remarkable production of Japanese spiny lobster, Panulirus japonicus (v. Siebold). Spiny lobster production in Uchiura Bay is confined to the catches made by the Kominato Fisheries Cooperative Association, and their spiny lobster fishery does not extend beyond the waters of the bay. The fishing gear they use is the bottom net usually used in the Japanese spiny lobster fishery.

Topographically speaking, Uchiura Bay is an inlet facing south about one km in width at its mouth and of the same dimension in length. At the mouth of the bay there is a submarine valley of more than 20 m in depth.

The present study forms part of the spiny lobster fishery biology program which has been conducted since 1951 by the Laboratory of Fishery Biology, Tokyo University of Fisheries. It was supported in part by a Grant-in-aid for Scientific Research (Agriculture) from the Japanese Ministry of Education for the year 1974, which is very much appreciated herewith.

The present authors are indebted to Mr. Juan J. Walford for his help in preparing their English manuscript. Their thanks are also due to the Kominato Fisheries Cooperative Association, Amatsu-Kominato, Chiba, which has generously made available the fishery statistics referred to herein and continuously aided the project in various ways.

1. Material and methods

The catch statistics, monthly as well as daily, for Uchiura Bay for 1951–1974 have been received from the Kominato Fisheries Cooperative Association, while the monthly statistics for Chiba Prefecture as a whole for 1953–1972 are quoted from published official statistics sources, detailed data of which will be shown hereafter. As stated above, for Uchiura Bay, the spiny lobster fishery production is based entirely on the Kominato statistics.

In Chiba Prefecture, the months of June and July are designated the closed season for the spiny lobster fishery in order to protect their breeding season, and therefore, it is convenient to regard the fishing season as the period from August of one year to May of the next year.

2. Results

The monthly catch fluctuations during the fishing season as defined above show rather strong trends of a certain type. Based on the monthly total catch statistics for Uchiura Bay, the fluctuations for the past 24 years, January 1951

* Received January 16, 1975

This paper is a part of the amalgamated reports read at the IIIrd International Colloquium on the Exploitation of the Oceans, Bordeaux, October 2, 1974, by the senior author, and at the Autumnal meeting for 1974 of the Japanese Society of Scientific Fisheries, Kyoto, November 24, 1974, by the present authors.

** Tokyo University of Fisheries, Konan, Minato-ku, Tokyo, 108 Japan
May 1974, can be summarized on average as having an annual pattern of the so-called reverse-J-shape (Fig. 1, A; open circles): the largest catches come first in August, the beginning of the season; after this the catches decrease rapidly to the minimum in February to March of the next year; finally, there are some indications of catches increasing again in April to May, just before the close of fishing.

The spiny lobster production for Chiba as a whole shows similar trends. The monthly catch statistics for Chiba covering a total of 13 years are available from official sources*, for 1952–1961 (except 1954) and 1969–1972. Based on this data, average monthly catches also show the reverse-J-shape pattern from August to May (Fig. 1, A; closed circles). In this case, further landings in June and July were usual and of not negligible size in the 1950s, and the reverse-J has a tail which represents these landings.

It is interesting to note that the total monthly catches in Uchiura Bay show a close relationship to the monthly catches per boat in this area (Fig. 1, B). Based on recent statistics of total monthly catches and monthly accumulated totals of boats for daily fishing, and disregarding differences in fishing efficiencies represented by boat size, amount of fishing gear employed and so on, the coefficient of correlation is calculated at 0.94, significant at the level of 99%, for the interrelationship in question for the period from January 1971 to May 1974.

3. Discussions

1. Mathematical representation

As pointed out above, it is very probable
that the reverse-J-shape pattern in total monthly catches in Uchiura Bay fluctuates in accordance with the monthly catches per unit of effort, represented here by catch per boat.

Fig. 2. Regression diagram between monthly catch per boat (in kg; ordinate) and cumulative monthly catch (in tons; abscissa) of the Japanese spiny lobster in Uchiura Bay within the fishing season (except May) for 1972-1973. Dots, calculated value; bold line, regression line fitted to dots; slim lines, range of confidence at the level of 95%.

In this connection, it is interesting to see that the trends appear to conform to Leslie’s regression, especially when the last up-trend is disregarded. Taking the three consecutive fishing seasons, 1971–1974, then, the points \((K, C)\) show “no evidence of curvature (DELURY, 1954),” or they are more or less in a straight line (Fig. 2). Their regression is proved to be significant. A quasi-Leslie’s regression can be formulated as follows:

\[
y = 3.289 - 0.361x, \text{ for the season 1971–1972,}
\]

\[
y = 4.989 - 0.525x, \text{ for the season 1972–1973,}
\]

\[
y = 2.302 - 0.474x, \text{ for the season 1973–1974,}
\]

where \(x\) is the accumulated catch during consecutive intervals \((K_i)\); \(y\) the catch per unit of effort \((C_i)\).

Even if the points \((K_i, C_i)\) are in a straight line, it is apparent that the Leslie idea is not applicable to these regressions, because the usual assumptions (cf. DELURY, 1954; SEBER, 1973: 296) are not yet completely applicable in this case. This is the reason why the regression is here called a quasi-Leslie’s regression.

2. Significances of the trends in fishery biology

1) Availability* As the monthly catches and the catches per unit of effort are closely related, it is possible for us to consider whether over a given period the spiny lobster population in this area is decreased as a result of fishing.

If the trends in question reflect the population density, and if the catches per unit of effort reflect the population size, the increase in the size of the catch or the population to its maximum must come as a result of a fresh supply of the stock of catchable size to the fishery mostly during the closed spring season, while the rapid decrease must be due to the fishing activity on the one hand, as well as to the retention of a supply of stock till the following spring on the other hand.

As far as the Uchiura Bay population is concerned, then, the supply of stock to the fishery would seem to depend on recruitment of stock, or stock immigration (inshore migration) in spring from outside through the mouth of the bay. This may be vertical immigration, but it has not yet been substantiated for the Japanese spiny lobster. In this connection, a homing migration has been proved in the case of Panulirus argus (CREASER and TRAVIS, 1950), and P. longipes cygnus (CHITTLEBOROUGH, 1974). After the supposed immigration is over, there comes a decrease in catches, but there is no substantial emigration (offshore migration) of the stock in the bay to the outside during the summer, which is the animal’s most active season for breeding horizontal migration. Of the numbers of marked lobsters released in summer in Uchiura Bay (TAKAGI, 1972), the percentage of recoveries outside the bay ranges from 0.10.3%, and is 1.5% overall, while the percentage of total recoveries, including those within the bay as well, ranges from 0.38.9%, and is 13.5% overall.

In autumn, it is probable that a further reason

* The terms “availability” and “accessibility” are used here as defined by JONES (1974).
for the decrease in catches is vertical emigration, as referred to by BAINBRIDGE (1961: 430).

2) Accessibility Another possibility may be considered in relation to the trends in question. It is the problem of whether the catch per unit of effort is directly affected by the population density, or not. In the spiny lobster fishery, as has been pointed out by several workers, it is most probable that the former is independent of the latter, and is related to the activity of the animal. In the case of the Japanese spiny lobster fishery, which uses bottom-nets, the catch per unit of effort has been found to depend to a certain degree on the feeding activity.

This is proved first by the diurnal bimodality revealed in experimental catches (Kubo, 1962) and secondly by the occurrence of a similar pattern in their feeding rhythm in general (Kubo and Masuda, 1964). These experiments, carried out always during the spring and summer seasons (May to September), conclude that feeding activity is a major factor affecting catches of the spiny lobster using bottom nets.

In this connection, it is apparent that the feeding activity of the animal decreases from summer to autumn, because this activity is "linearly related to temperature" (Seber, 1973: 305), through a certain range of temperatures.

It may be worth noting here that the Pacific coast of Chiba Prefecture is close to the northern limit of the Japanese spiny lobster population. This may have some bearing on the decreasing pattern of the trends in question.

In brief, the catch per unit of effort may be regarded as a population size indicator at least in the initial phase of the trends, but the diminished activity of the animal must be taken into account when considering a later phase. The rapid decrease in the monthly catches, however, is not fully explained just by the decrease in the activity of the animal caused by the thermal factor. The other possible factors affecting the trends may be those which affect the local population density, namely fishing activity and migration, as already discussed in the preceding lines.

4. Summary and conclusions
1. The local monthly catches in Uchiura Bay, Chiba Prefecture, show a reverse-J-shape pattern within the fishing season, from August of one year to May of the next year. A similar trend may be recognized in total catches for Chiba Prefecture as a whole.

2. This trend in Uchiura Bay is closely related to the monthly catches per unit of effort, represented in this case by catch per boat. The trend can be characterized by quoting Leslie's regression theory for initial population size.

3. A rough sketch of the trends may be given as follows: the increase in catches in the period from spring to summer may be due to the immigration of stock from the outside through the mouth of the bay; the rapid fall in catches in the period from summer to autumn may be due to the effect of fishing activity on the stock and, possibly, to autumnal emigration; and the smallest catches in winter to the inactivity of the animal principally as a result of colder water temperatures.

4. Further investigations of these problems are planned in order to gain information as yet far beyond our access.

References
千葉県内浦湾産イセエビの月別漁獲量にみられる変動傾向の漁業生物学的特徴

高木和徳 水口憲哉 大野淳

要旨: 千葉県内浦湾産イセエビの漁獲量について入手しうる長期統計を調べた。それによると、月別漁獲量は漁期ごとに総量と単位漁獲努力当たり量とのいずれにも共通した特定の変動傾向を示す。これを逆J字型変動と呼んだ。この傾向の数理的な表現方法について、またその生物学的な意味づけについて漁業生物学的な検討を試み、今後の問題点を明らかにして、将来の課題とした。
寄稿

海洋学の体系

星野通平

System of Oceanography

Michihei Hoshino

Abstract: Oceanography is one of the systems of natural sciences, which takes seawater as a target of study. The lack of understanding of the system of oceanography causes confusion in making its curriculums as well as various contradiction in a structure of the academic society on oceanography. We must establish peculiar laws of oceanography in the study of seawater.

1. 科学の分野の分類

科学とは、「事物の構造や性質や法則を探究する人間の理論的認識活動、及びその産物としての体系的理論的知識をいう」（森，古民，1971）。

このうち，人間と人間とのかかわり合いに関する諸課題をテーマとする社会科学と，自然を利用した人間の生活の発展に役立たせることからはじまった自然科学の違いは，今日ではかなり明らかになっている。しかし，地理学と呼ばれる分野などで，今日でも，人文地理学，自然地理学などと異なった区分があって，ある大学では地理学教室は理学部に属し，ある大学では文学部に属するといった具合である。今日，海洋学（Oceanography）が自然科学の中心に入るものであることは，自明のことのように思われている。

自然科学の分類については，古くからさまざまなに論じられてきた。自然科学の分類にあたって，区分法としては，教育的（カリキュラム的）観点と，科学的観点と，あるいは，観測技術上の類似性といった，さまざまな立場があるが，本来の区分法は，自然がもっているさまざまな単位（階層性）である。

宇宙からはじまって，大海洋系・大気系・地球といった巨大なものから，分子・原子・粒子といったものに至るまで，いわゆる無機的な自然は，それぞれが一つならかの歴史を使って，それぞれの単位で，独特の性質と歴史をもっている。つまり，自然科学の各分野は，独特の性質と歴史をもつ自然のそれぞれの単位体の，構造や性質や運動法則を探究し，得られた知識を体系化するわけである。従って，自然科学の分類とは，自然の単位をどのように捕えるか，といった点に根本問題がある。

2. 海洋学の体系問題と海洋学派の現状

最近の海洋開発ブームにのって，その基礎となる“海洋学”を拓興しようという風潮もまた若干の高まりをみせている。そのような風潮の一つとして，国立大学に海洋学関係の学科を新設しようという動きがある。海洋学科の新設が決定されたとき，まず問題になるのはカリキュラムのどのように編成するか，ということであろう。

筆者が勤務する東海大学海洋学部では，創立後10年あまりを経た今日でも，カリキュラム編成の悩みは全面的には解消されていない。この悩みと
混済は学部の名称に表象されている。英語で学部の名称は、College of Marine Science and Technology であった。今は、Faculty of Oceanography である。つまり、現在の学部の名称からすれば、この学部は海洋学一学部である。しかし、学部の構成は、海洋工学・海洋土木学・海洋資源・海洋科学・水産・船舶工学・航海工学などの諸学科からなっていて、海洋に関係のある科学、技術の学科の集まった学部であり、海洋一学部と位置付ける。

東大の海洋研究所は、Ocean Research Institute である。16 講座の大部分は自然科学的ものであるが、若干のものは水産学や海洋生物学についての技術的側面をもったものとして在っている。このことは、水産や海洋学を学ぶ学生が、海洋に関する実務に絶対的な関心を持たなければならないことを示している。したがって、海洋研究所の拡充が考慮されるとき、海洋開発技術の基礎の研究分野（工学・医学など）の講座を設けても決して不思議なことではない。この点、ソ連科学アカデミーの海洋研究所は、Institute of Oceanology であり、所長などの公式発言にもみられるように、この研究所では、原則として技術的分野の研究は除外している。しかし、海洋研究所を構成している研究室の内容が、動物研究所、地質研究所、あるいは、地球物理研究所などと、どのように違うかということになると、その差異はほとんど認められない、というのが実情であろう。去年の夏、筆者らが参加した海洋研究所所属のメンデレフ号のオホーツク海調査にあたっては、地球物理研究所や地質研究所の所属が多数参加している、といった具合である。

海洋に関連する学会組織の上に、さまざまな混雑がみられる。例えば、国際的な学会組織（ICUS）でいうと、海洋学は、国際海洋学地球物理学連合（IUGG）の一門科（IAPSO）に組み込まれている。この組織における海洋学には生物学も化学も含まれていない。生物学まで含んだ海洋学は、ICUS に付属された海洋学特别委員会（SCOR）として別なる組織になっている。1970 年、東京で開かれた IAPSO と SCOR との合同の総会のとき、国際海洋科学連合（IUMS）という組織をつくろうという、ついに働きかけがあった。しかし、伝統を守るヨーロッパの国々などの反対があって、新しい組織の樹立は成功しなかった。

海洋学会という組織をもっている国は、日本や韓国などごく限られていて、欧米の国々では、“海洋学”を構成するそれぞれの分野の話題は、動物学会や地質学会などの、既存の学会で討論されるわけである。このようなこととは、我が国でも問題になっている。例えば、研究連絡委員会の組織でみると、地球物理学研究連絡委員会に海洋科学も入っている。別に、海洋学特別研究連絡委員会（第 9 期から海洋学研究連絡委員会）が設けられている。といった具合である。また、我が国の海洋学会の状況をみると、海洋物理学が学会の主流になっている。年会講演会をみてても、地質学に関連したものは例年数件を数えるにすぎず、討論もまた凋落である。

3. 海洋学の体系

上述のような混雑には理由がある。つまり、海洋学の体系が確立していないことが、このような混雑の重要な理由の一つになっている、と思われる。

海洋学、及び、それに関連のある諸科学の対象は、地球の表層からはじまって、海水圏を中心として大気圏に至る自然である。第 2 次大戦以降、地球の成因に関する考え方は、それ以前と全く違ってしまった。約 30 年間から分れば地球は形成された、という従来の考えは全く姿を消し、地球は、宇宙塵が集まって形成されたものである、というのが現在の地球成因説である。

新しい地球成因説は、海水や大気の起源についても、古い考え方に全面的にかかわってしまった。かつては、蒸気水蒸気を含んだ大気が、地球の冷却とともに雨水になって地表に降り注ぎ、それが地球の凹凸に蓄えられて海水となった、といわれていた。今では、大気も海水、地球の歴史の非常に古い時代に、地球の内部からしぐれだされたも
のである、と考えられている（RUBEY, 1964)。地球は、地殻・マントル・核の三層構造になっていて、このような多層構造をいうときには、同様的な水圏・気圏も併せて考慮すべきである。そして、地殻——大陸地殻と大洋底地殻は別個のものとして取り扱うべきである——水圏の構成物質は、その生い立ち、成長、運動法則について、それぞれ独自の内容をもっていて、気圏と水圏が入れ替わり、水圏と地殻が取り替わったりすることは、到底考えられないことである。これより、それぞれ独自の自己発展の道を歩んでいるものとみられる。

このような対象の相違を的確に定義し、地殻の科学としての地質学、気圏の科学としての気象学の相続性が生れたわけであり、水圏の科学としての海洋学が確立されなければならない、と考える次第である。水圏の科学のなかには、陸水学も含まれるということからすれば、海洋学は海水の科学である。つまり、海洋学は海水の性質と運動法則を明らかにし、海水の歴史を明らかにする学問分野である、と定義することができるよう。

現在、海洋学のなかに生物学や地質学の対象を持ち込んでいるが、これらは、気象の要素と同時に、海洋学の本質的な内容ではなく、海水の性質と運動を条件づける外部要素である。これら外部条件は、海水の性質と運動を不必要に複雑化している。海水の自体の内部要素とは、つまり、海水自体を海水の性質と運動を初期のベースにとらえ、海水を材料とする海洋学理論と、たんなる位置移動に関する運動理論（吹送流理論）といった仮説に過ぎず、海水自体の自己運動としての海流理論は生えてこないのではなかろうか。筆者はかつて、高校地学の教科書の編集に携わったことがある。この場合、海洋学の基本的なカテゴリーの一つである海洋についての解説には、いつもすっきりしないものがあったことを覚えている。そして最後には、こととなかれた立場から、吹送流・倾斜流などの、いわれている限りの説を、海流成因説として並べておくのであった。

現在、IDOE 計画の一環として、NORPAX・GEOSECS などの国際協同観測が行われている。これらの計画は、世界的食糧生産を支配する地球上の気候に、大きな影響を与える海流を調べることが、主な目的の一つになっている。そして、これらの計画の最終目的は海流の予報におかれている。海流の予報に関しては、かつて述べたこともあれば（星野、1961）、太陽の黒点とか、気圏の波列や加速したことがある。海水自体のなかに運動の原因を見いだすべきかぎり、予報は不可能であろう。太陽の熱にしたところで、気圏にしたところで、海水自体の性質をかえる外部の条件にすぎない、と考えられるからである。

ここで、海水の科学という場合、海水とはなにかという疑問に答えなければならない。1974年の本学会研究発表会で、筆者が本題の発表を行った際に、海水とは海水に入った水の内部にがある水だけをいうのであって、サンプリングした海水は海水ではないのではなく、という質問を受けた。このことは科学の方法論に関することであり、詳しいことは省略するが、一言でいえば全体と部分といったことであり、全体は部分の解析によっての明かかにすることがことができ、部分は全体の一部としてみるかぎり意味がある、ということであろう。つまり、いかなる試水も海水であり、この正確な分析にあたっては、海水の全体像を明らかにする科学的手掛りを与えられない、ということである。なお、海洋学と陸水学、つまり、海水と陸水との間は無限に接近することが予想されるにしても、両者の間には、なお、飛躍的な相違を認めることができるであろう。このことは、海水と陸水の生いの生きたこれと密接な関連をもっている。

4. 古海洋学
現在、SCOR の working group の一つに、古海洋学WGというものがある。古海洋学（Palaeooceanography）とは、海水の歴史科学である、ということができる。歴史科学とは、過去の材料を直接対象に取って、まず、過去の材料——正確には、過去の材料に記録されている現象——を（現在科学の法則に準拠して、類推的に）記載分類

(27)
し、次に、それらの資料（現象）を系統的に統合することによって、もの発展過程の法則性を探究する科学である”と、定義されている（井尻、1949）。同氏は、現在科学と歴史科学の違いを、次のように指摘している。

1. 現在科学においては、同一研究材料を繰り返して入手することが可能であるが、歴史科学においては、過去の材料が唯一無二であるが、同一研究材料を再度入手することが不可能な場合が多いこと。

2. 現在科学においては、現象の変化、または法則の展開を直接的に、しかも連続的に研究することが可能であるが、歴史科学においては、過去の記録（資料）は常に不完全であり、かつ、断片的であるために、現象の変化、または法則の展開を直接的に連続的に把握することが不可能であること。

3. 現在科学においては、対象（資料）を直接的に運動の状態において研究することが可能であるが、歴史科学においては、直接的には対象が常に静止の状態で把握されること。

4. 現在科学においては、現象の変化、または法則の展開が行われる時空の単位が短小であるために、これを長年時空の運動を延長して研究が行われる場合が多いに進行し、歴史科学においては、現象の変化、または法則の展開が行われる時空の単位が長大であるために、これを短小時空の運動に還元して研究が行われるのが常則であること。

5. 現在科学においては、多くの実験が可能であるに反して、歴史科学においては、いわゆる実験が不可能であることが常則であること。

6. 現在科学においては、現象の変化、または法則の展開を未来の方向に発展させ、その後結果（結果物）を求めることによって、その本質、または法則の展開が行われるに反し、歴史科学においては、過去の現象、または過去に展開された法則の終結物——すなわち、過去の現象、または法則を記録して示す資料——から逆進して、その後結果物を生んだ本質、または法則（発展過程）の探究が行われること。
の現象と海水の対流問題、すなわち、海流の起源の問題は、古海洋学の第一級のテーマであろう、と考える次第である。

このように、古海洋学の本来の姿は、海水そのものの運動や組成に関する山史法則を樹立することにある。つまり、古海洋学は古海流、古潮汐、古塩分などを、化石や堆積物、あるいは地形などをさまざまな手掛かりをもとにして明らかにしていく、自然科学の一分野である。

古生物学が、その歴史的の義に、生物学教室ではなく地質学教室で取り扱われるように、古海洋学は、地球物理学教室の一講座としてではなく、地質学教室で取り扱われるに違いない。この場合、古生物学を勉強するためには、学問の基礎としての生物学と、歴史性を身に付けるための層序学を修得しなければならないように、古海洋学を学ぼうとするものは、現在科学としての海洋学（海水学）と、歴史性を身に付けるための層序学の基礎を修得しなければならないであろう。

文 献
1) 森 宏一、古在由重（1971）：哲学辞典。青木書店、東京、567 pp.
3) 星野道平（1961）： 海流についての2、3の疑問。 地球科学。No. 55, 29-33.
4) 井尻正二（1949）： 古 生 物 学 論。平凡社、東京、311 pp.
5) リンドベルグ、G. U.（1972）： 第四紀における大規模な海面変化（論文）。Nauka, 548 pp.（翻訳出版 準備中）
6) 西村三郎（1974）： 日本海の成立。築地書館、東京、227 pp.
Compte rendu

Facteurs limitants de l'élevage des anguilles en France. Techniques japonaises correspondantes et “adaptabilité”

Joël QUÉRELLOU**

Abstract: The trials of eel culture in France have, up to now, produced only poor result. The author examines the Japanese techniques dealing with the limiting factors encountered by the French eel research workers. In general these techniques require too much manpower to be easily applicable to French eel culture, especially in relation to grading and harvesting. A new method of grading based on eel behavior is proposed, but no manpower-free solution can be foreseen for harvest operations.

1. Facteurs limitants des élevages en France

Les facteurs limitants de la production sont de plusieurs ordres dans le cadre français: socio-économiques, biologiques et techniques. (Anonyme, 1973)

1. Socio-économiques

En 1974, le marché européen de l’anguille, constitué essentiellement par l’Italie, l’Allemagne et les Pays-Bas, permettait d’envisager un prix de vente maximum de 10 à 12 F/kg, pour un produit dont le poids individuel varie de 200 à 500 g.

Le coût de production en France des élevages fonctionnant actuellement est de l’ordre de 9 à 10 F/kg et ne laisse guère de marge qui puisse inciter les éventuels exploitants—ou futurs—à s’engager plus avant dans la voie des élevages.

2. Biologiques

Jusqu’à présent l’élevage des civelles, c’est à dire des jeunes anguilles pêchées lors de leur migration anadrome dans les estuaires de décembre à avril, est mal maîtrisé et ne peut être considéré comme opérationnel. De nombreux facteurs contribuent à réduire les performances de cet élevage dont les plus importants peuvent être levés avec un minimum d’expérience.

L’élevage des civelles n’étant pas encore au point, les éleveurs d’anguilles doivent empoisonner leurs bassins avec des anguillettes de la taille d’un crayon, pêchées dans le milieu naturel. Or le plus souvent, ces populations sont hétérogènes en qualité et en potentialités de croissance. Leurs faiblesaptitudes à un développement rapide en bassin, sur alimentation artificielle, entraîne un médiocre rendement des élevages et a contribué à l’échec de certains d’entre eux, dont les Salins du Midi.

Les élevages ne pourront se développer que lorsque la maîtrise du grossissement des civelles sera acquise.

Par ailleurs, l’anguille est un animal qui se situe globalement dans les chaînes alimentaires, au même niveau que l’homme et qui de surcroît est relativement exigent en protéines de bonne qualité. Le contexte général en 1973 ne semble guère propice à une extension des exploitations.

3. Techniques

• Liés aux problèmes économiques, les goulots d’étranglement techniques sont ceux relatifs aux tris successifs qu’il est nécessaire de pratiquer régulièrement entre les différentes tailles d’anguilles dans les bassins, de manière à obtenir des lots homogènes. En France, il n’existe pas de machine qui donne entière satisfaction dans ce domaine, et il est peu probable, pour des raisons de coût de main d’œuvre, que des tris manuels soient effectués systématiquement.

• Un autre facteur considéré comme limitant
Facteurs limitants de l'élevage des anguilles en France

jusqu'à présent — est la qualité des aliments artificiels existant sur le marché. En fait, il s'agit bien plus d'une limitation de l'efficacité due à l'utilisation de l'aliment, tant par sa préparation que par les potentialités de croissance des animaux auxquels il s'adresse, qui est en cause, et non une déficience de la composition de l'aliment lui-même.

- Les difficultés de la pêche en bassin qui se sont présentées restent essentiellement d'un manque de pratique au début des élevages, mais ils ne constituent pas un obstacle insurmontable.

2. L'exploitation japonaise

C'est dans ce contexte de facteurs limitants qu'ont été entreprises les observations des élevages japonais, avec pour but essentiel l'analyse, au niveau de chaque facteur limitant (sauf évidement ceux concernant le marché), des solutions apportées par les japonais et leur degré de transposabilité aux modèles français.

Il ne faut toutefois pas adopter une attitude trop critique et considérer que les solutions apportées dans le cadre japonais puissent nécessairement s'appliquer au contexte français. Au contraire, à la lumière des expériences antérieures, la position opposée nous semblerait plus saine: mettre au point en France, dans chaque situation particulière, des techniques appropriées au contexte socio-économique spécifique et local. Ces considérations ne signifient pas que les solutions japonaises ne puissent contenir aucun élément susceptible d'être repris, reconsidéré et retenu dans la mise au point des techniques d'élevage européennes.

Avant d'examiner les solutions techniques japonaises, il convient donc de définir le cadre japonais de l'anguiliculture et son évolution au cours des dernières années.

1. Organisation de l'anguiliculture japonaise

Cette organisation a déjà fait l'objet d'une publication antérieure et, seules les modifications intervenues depuis lors seront ici évoquées (QUÉRELLOC, 1974). Le schéma classique des deux types d'exploitations, les premières effectuant la croissance des civelles jusqu'aux anguillettes et vendant ce matériel aux seconds qui pratiquent le grossissement depuis la taille

unguillette jusqu'au stade commercial, a tendance à disparaitre. Ce schéma avait pour cause — et conséquence — la séparation géographique des aires de culture de Hamanako et Yoshida, la seconde étant presque totalement tributaire de la première pour son approvisionnement en anguillettes d'élevages.

Néanmoins ces dernières années ont vu le marché de la civelle se durcir et le prix du matériel japonais a atteint de tels sommets (au marché parallèle des civelles pêchées frauduleusement), que les coûts des anguillottes proposées par les exploitations de type 1 étaient au-delà des possibilités d'achat des secondes. En conséquence, toutes les exploitations se sont progressivement mises à développer leurs propres élevages de civelles. Cette évolution n'est pas particulière à la préfecture de Shizuoka et s'applique aussi aux exploitations méridionales du Shikoku, du Kyushu et d'Okinawa, par ailleurs en plein développement.

Selon les disponibilités en civelles japonaises de l'espèce Anguilla japonica, les éleveurs ajustent la capacité de production de leurs élevages par des importations de matériel étranger, français principalement. D'une année à l'autre, la structure des élevages varie considérablement, ainsi que celle du marché des civelles.

De 1970 à 1973 inclus, le marché des civelles japonaises a été extrêmement difficile et déficitaire et les importations de civelles françaises ont atteint leur maximum en 1972-1973 avec 217 t (d'après les Services Commerciaux de l'Ambassade de France au Japon). Depuis les campagnes 1973-1974 et 1974-1975 (en cours), les prises japonaises retrouvent un niveau satisfaisant et, si les importations de civelles françaises se poursuivent, elles n'ont d'autre but que de maintenir en place des circuits de commercialisation qu'il sera éventuellement nécessaire de réutiliser à l'avenir. Dans ce même esprit, les expériences et les recherches sur Anguilla anguilla se poursuivent au sein des laboratoires préfectoraux et privés, et divers résultats intéressants ont déjà été obtenus.

2. Élevage des civelles

1) Généralités

Au cours des dernières années, les élevages
de civelles françaises et japonaises ont été menés parallèlement et plusieurs conclusions s’imposent.

- Les méthodes d’élevage en bassins à eau courante thermorégulée s’appliquent aux deux espèces avec des résultats qui ne diffèrent pas significativement. Bien entendu, pour obtenir des résultats équivalents, toutes conditions égales par ailleurs, il s’avère nécessaire de maintenir des températures de 27°C pour les japonaises et de 23°C pour les françaises.

- La similitude des résultats de croissance et de dispersion des lots s’arrête avec la venue de l’été japonais, quand la température de l’eau des bassins extérieurs dépasse 25-26°C. Des lors, les civelles et anguillates françaises se trouvent placées en milieu peu propice où le facteur température devient fondamentalement différent, et se manifeste par une réduction du taux d’alimentation, des troubles métaboliques divers, générateurs de maladies.

- Les croissances des civelles des deux espèces révèlent des potentialités individuelles réparties selon un même et très large éventail. Il est donc, comme constaté dans les élevages français de la première génération, normal qu’en l’absence des tris seule une fraction de la population, représentant 1/3 en poids, devienne dominante dès les premiers mois de grossissement et maintienne par la suite une influence négative sur le reste de la population. Cette constatation entraîne la nécessité absolue des tris réguliers au fur et à mesure de la croissance.

- Il n’existe pas de différence notable de croissance, dans l’une et l’autre des espèces, suivant l’origine et le lieu de capture des civelles. De même, malgré les tailles variées directement liées à l’époque de capture (MATSUI, 1972), il n’existe pas de différence significative dans les potentialités de croissance des populations de civelles en fonction de la période de pêche (NONAKA, 1975).

- Par contre, une corrélation très nette a été mise en évidence entre la croissance des populations de civelles et le temps de stockage qui a précédé le début de l’alimentation en bassin (NONAKA, 1975). Plus celui-ci est long et plus les résultats sont médiocres. Ce phénomène apparaît surtout important pour les populations françaises qui subissent un stockage en France, préalable aux expéditions (qui ne peuvent se faire par envois inférieurs à 300 kg) et un stockage à l’arrivée avant la distribution aux éleveurs par l’intermédiaire des coopératives. Cette constatation a d’importantes répercussions sur le marché des civelles. En effet, l’augmentation du prix des carburants ayant conduit la majorité des éleveurs à renoncer à la thermo-régulation de l’eau des bassins à partir de décembre-janvier, la demande des civelles (japonaises et françaises) reste faible sur les marchés jusqu’au mois de mars. C’est ainsi qu’en janvier 1975, le kilo de civelles japonaises se vendait en moyenne 10 000 yens dans la région de Hamanako. Au début du mois de février, à la suite de l’offre considérable résultant de l’apport d’excellentes captures, les cours étaient tombés à 8 000 yens, prix le plus faible enregistré depuis longtemps sur le marché d’Anguilla japonica. Il est évident que les prix des civelles françaises ne peuvent dépasser les précédents durant les mêmes périodes. Par contre, en mars et au début avril, les élevages non thermorégulés vont se porter acquéreurs en bloc et les cours doivent à cette occasion retrouver un niveau plus “normal”.

Dans tous les cas, les éleveurs évitent d’acheter des civelles à un moment où celles-ci sont bon marché pour les stocker... en attendant des jours meilleurs pour débuter l’élevage.

2) Le démarrage des élevages

- Matériel d’élevage

Les années où les civelles japonaises sont disponibles sur le marché à des prix raisonnables, elles sont préférées aux françaises. Ce choix a conduit le dirigeant de l’exploitation ci-après décrite à tenter deux campagnes partielles avec Anguilla anguilla. En 1975, le matériel d’élevage est constitué de civelles japonaises mises en bassins le 27 décembre 1974,
date à laquelle le poids moyen individuel était de 0,2 g.

- Les bassins, Thermorégulation

Abrités par une serre (film de polyéthylène) ils comprennent 2 bassins aux berges cimentées surplombantes de 200 m² environ chaque, et un bassin de 280 m² construit sur le même principe.

Le stock initial (70 kg) est introduit dans l’un des bassins de 200 m² puis réparti au fur et à mesure des tris dans les autres en fonction de la croissance.

La température optimale de 26-27°C ne peut être maintenue en raison du coût du carburant, et l’eau des bassins est aménée à 24°C grâce à un échangeur thermique constitué de tubes métalliques à l’intérieur desquels circule de l’eau chaude. L’eau des bassins provient de la nappe phréatique locale par pompage et est partiellement recyclée.

- Alimentation

Bien que le démarrage de l’alimentation soit possible directement avec l’aliment composé commercial, les éleveurs considèrent, probablement à juste titre, que le conditionnement alimentaire est bien plus efficace avec l’aliment naturel que constituent les oligochètes “itome” : Tubifex sp.

Dès la mise en bassin (voir corrélation croissance-stockage) le 27 décembre 1974, les 74 kg de civelles (350 000 individus environ) sont nourris avec 10 kg par jour de cet aliment. Afin d’éviter les pertes au niveau de la mangeoire, celle-ci est constituée d’une plaque de contre-plaquée de 1,5 × 1,5 m², entourée du grillage classique des mangeoires. L’aliment est directement posé sur la plaque qui doit de préférence être immergée de 2 à 3 cm. Progressivement, la quantité d’aliment distribuée augmente et atteint 30 kg/jour vers le 10ème jour de grossissement. Après 10 à 12 jours à ce “régime”, l’éleveur vérifie si tout l’aliment a été consommé la nuit et, dans ce cas, complète la distribution par de l’aliment artificiel (pâte commerciale). La transition à l’alimentation composée le 9 janvier s’achève une semaine plus tard. Pendant cette période, l’appétence et la cohésion de la pâte sont obtenues par l’incorporation d’oligochètes qui jouent le rôle de liant et d’attractif.

La distribution de la nourriture se fait 2 kg par 2 kg et est répétée 7 fois par jour, ce qui correspond à un taux d’alimentation (en % du poids vif des civelles) de 8 à 10 % environ à ce stade de grossissement.

L’aliment artificiel est constitué du mélange farine, eau et huile. Cependant, contrairement aux pâtes préparées en France jusqu’à présent, qui ne comportent que 70 à 80 g d’eau pour 100 g de farine, de façon à maintenir une cohésion évitant le dégagement de l’aliment à l’immersion, les pâtes japonaises contiennent 150 à 170 g d’eau pour 100 g de farine. Il en résulte une tenue, certes médiocre (d’autant qu’il ne semble pas y avoir dans le mélange de liant efficace : la farine contient 80 % de protéines apportées par de la farine de poisson blanc, et 25 % de glucides apportés par de l’amidon préglättinisé), mais compensée partiellement par les caractéristiques de la mangeoire. Par contre, la facilité de préhension de cette nourriture par les civelles est incontestable. La granulométrie de la farine est aussi fine et homogène que possible; les grosses particules, source de rupture de cohésion de la pâte en sont absentes.

- Homogénéité des tailles—Tris

Les tris constituent, avec le démarrage immédiat de l’alimentation en bassin, l’une des clefs qui contribue au succès ou à l’échec des élevages.

Ayant pour objet essentiel de séparer les animaux en lots à l’intérieur desquels les tailles sont aussi homogènes que possible, ils présentent en outre l’intérêt de permettre un contrôle direct de la charge des bassins (Fig. 1).
Le schéma général de l'élevage des cievles comporte 4 tris successifs qui sont effectués directement dans les bassins au moyen de filets souples (aux mailles croisantes, le diamètre du fil étant important par rapport à la maille: 3/10ème environ pour le premier de la série, de manière à empêcher les cievles de s'entortiller et de se blesser à leur passage). Le filet est manœuvré dans le bassin autour de la mangeoire, 15 à 20 mn après le début du repas.

Les tris sont effectués systématiquement tous les 20 jours dans l'exploitation considérée (Fig. 1) dans cette étude et permettent d'obtenir des lots 1, 2, 3, 4 etc., qui ont chacun une vitesse de croissance différente.

Le lot no 1, résultant de l'écrémage des meilleurs individus, a une croissance telle que la commercialisation peut s'effectuer dès le mois de juillet de la première année d'élevage, réduisant la durée totale du grossissement à un minimum de 6-7 mois. Cette performance n'est pas sans intérêt, en effet, elle permet de commercialiser une partie du stock à un moment où les prix de vente sont les plus élevés sur le marché de consommation (tradition de consommation japonaise à cette époque de l'année); par ailleurs, les meilleurs indices de conversion sont obtenus avec ces lots d'anguilles extrêmement performants.

Cette séparation des individus par groupes plus ou moins performants a un autre avantage pratique: l'éleveur obtient ainsi une utilisation rationnelle dans le temps de l'ensemble de ses bassins: le lot de tête "ichibankou", à partir du mois de mars, est placé dans un bassin couvert et theromégalé (bassin no 4) de 1 000 m³ environ, puis dans un bassin extérieur à partir du mois de mai, lorsque la température de l'eau atteint 23-24°C. Les lots successifs occupent les mêmes bassins au fur et à mesure de la liquidation des plus performants. Il s'avère ainsi possible de commercialiser les 2ème et 3ème lots (sibankou et sanbanko) en octobre et les lots suivants en décembre. Les individus qui "refusent" de grossir, ou anguilles boudeuses, encore appelées "gari" au Japon, comptent pour 10 à 20 % de la population initiale en nombre.

Les indices de conversion obtenus avec les différents lots, bien qu'aucune expérience précise n'ait été effectuée à ce sujet, se répartissent de la façon suivante (Fig. 2).

Il convient de rappeler que ces résultats sont valables pour les deux espèces Anguilla japonica et A. anguilla, placées respectivement dans leurs conditions de milieu optimales.

- Conclusions

Le résultat fondamental qui apparaît est la prédominance des tris dans le bon déroulement des élevages, tant par les avantages commerciaux, de gestion des bassins ou d'utilisation optimale de l'aliment composé qu'en découlent. Néanmoins, ces tris sont effectués manuellement et requièrent une main d'œuvre spécialisée capable de manœuvrer correctement les filets dans les bassins. La nécessité absolue pour atteindre les objectifs précédemment cités de démarrer les élevages immédiatement après la pêche des cievles, en eau à 23 ou 26°C suivant les espèces, met en évidence l'intérêt des eaux de refroidissement des centrales énergétiques dans ce domaine.

3. Elevage des anguillettes

- Alimentation

Le rythme des repas est réduit à 2 distributions par jour et accompagne une réduction du taux d'alimentation. La préparation de la pâte est modifiée de manière à accroître sa teneur: réduction de 150 à 170 g d'eau par 100 g de farine à 120-130 g.

La composition de la pâte est modifiée dans le sens d'une réduction de la teneur en protéines brutes. Les recherches du centre de Hamanako ont montré que si le niveau—élevé—de 45 % de protéines dans la farine s'avère nécessaire pour obtenir une bonne croissance de A. japato.

Les pertes d’aliment dans les bassins par délitage, mal connues, seraient de l’ordre de 10 à 30 % suivant le mode de préparation, le temps de repas et la nature du liant.

• Tris

Les jeunes anguillottes sont triées au moyen de filets souples, dans les bassins, de la même manière que les civelles.

Les tris d’anguilles sont systématiquement destinés à produire deux classes de tailles, et jusqu’à présent il n’a pas été possible de mettre au point une machine calibreuse qui puisse donner efficacement 3 ou 4 classes de tailles à la fois.

Les tris sur les jeunes anguilles (tailles comprises entre 30 et 200 g), impliquent la pose d’un filet à mailles fines autour de la mangeoire 15 mm après le début du repas matinal. Les tris purement manuels nécessitent un personnel si nombreux que leur intérêt est vraiment très faible. Par contre, les tris “mécaniques”, pratiqués dans la plupart de exploitations modernes, sont beaucoup plus efficaces. Le trieur consiste en un caisson dont le fond en pente est constitué de rouleaux métalliques (Fig. 3) à écartement constant. Les anguillottes pêchées sont séparées en 2 lots: les grosses recueillies à l’autre extrémité du trieur dans des bourgnes, et les petites qui retombent directement dans le bassin.

Ce tri, dit mécanique, appelle plusieurs réserves: il exige une main d’œuvre importante pour les opérations de pêche, et demeure par nature incomplet; la pose du filet autour de la mangeoire n’emprisonne jamais la totalité du stock.

• Pêche

Elle reste l’une des opérations les plus fastidieuses de l’élevage, avec les tris. Les principes retenus pour la pêche qui précède la commercialisation sont les mêmes que ceux qui sont en vigueur lors des tris. Un filet de retenue est placé autour de la mangeoire (manœuvré depuis l’autre extrémité du bassin) pendant le repas. Puis, dans l’enclos ainsi formé, les anguilles sont pêchées au moyen d’épuisettes…

Le rendement d’une telle opération est médiocre, même effectuée par des équipes spécialisées qui parcourent successivement les exploitations. Ainsi, il faut une journée à 10 personnes pour recueillir 70 % des anguilles d’un bassin de 5 000 m² (stock moyen 5 à 10 t). Par cette méthode, 30 % environ des individus échappent à la capture et, le jour suivant, le bassin est vidé par l’évacuation normale et des pompes de secours, et la même équipe de 10 personnes parvient à récupérer l’essentiel des individus restants, dans le fond du bassin.

3. Analyses des techniques japonaises envisagées dans le contexte français

1. Opérations manuelles

Les pisciculteurs expérimentés considèrent, tant pour la commodité des opérations que pour le maintien de l’état sanitaire des poissons, que toute manipulation directe du matériel mis en
culture est à proscrir. L'élevage de l'anguille au Japon, peu automatisé et mécanisé, est donc à l'opposé de ce principe. Les tris et les pêches nécessitant une main d'œuvre importante, familiale, locale (illégalement sur le plan fiscal dans bien des cas) constituent la règle. La rentabilité des élevages n'en est pas compromise du fait de la modicité des coûts correspondants, mais il ne saurait être question d'envisager actuellement la transposition des méthodes japonaises de tris aux élevages français. L'application en est évidemment possible à l'échelon expérimental, et permettrait sans aucun doute d'obtenir des résultats analogues à ceux obtenus au Japon sur *A. anguilla*, mais elle est exclue dans le cadre d'exploitations à caractère commercial.

Les solutions restent donc à trouver dans ce domaine. Les Japonais n’ont aucunement expérimenté les tris progressifs basés sur les comportements des anguilles, procédé testé partiellement avec un certain succès par les exploitations italiennes (Anonyme, 1974). Cette méthode, généralisée à l'ensemble de l'élevage des cievilles, exige une conception et un aménagement des bassins entièrement différents de ceux existant au Japon (Fig. 4). Les tris seraient obtenus par une combinaison des réactions comportementales des anguilles à la nourriture d'une part, au courant—et donc à la qualité des eaux—d’autre part. Les temps requis pour chaque tri restent à déterminer, mais il est évident qu’une efficacité de 100 % ne doit pas être l’objectif recherché, car elle augmente les risques d’interruption trop longue de prise de nourriture et ce, malgré la disposition spéciale des mangeoires près des grilles de calibrage situées entre les bassins.

L’opération de pêche demeure problématique avec le type de bassin utilisé dans les élevages classiques, si l’objectif de réduction de la main d’œuvre est prioritaire. La pêche électrique s’y prête assez mal et exige au contraire des bassins allongés du type “raceway”. Dans l’état actuel des techniques, il est difficilement envisageable d’utiliser, pour les anguilles rassemblées autour de la mangeoire, les méthodes appliquées avec les truites, pompage par exemple. Dans ce dernier cas, qui n’est pas à écarter a priori pour la pêche finale précédent la commercialisation, il convient d’éviter que le repas précédent la pêche ne soit trop important.

2. **Alimentation**

La distribution de nourriture et la qualité de celle-ci semblent être des problèmes globalement résolus dans le cadre japonais. Cependant, la nature même de l’aliment, à savoir la pâte, impose plusieurs opérations consommatives de main d’œuvre: préparation au pétrin, transport sur les lieux de distribution, pose sur les mangeoires, etc. Ces procédés ne peuvent constituer, dans le contexte européen, que des pisaller, mais il serait vain de chercher dans les élevages japonais l’ombre d’une solution au problème de l’automatisation de la distribution de nourriture.
La présence d'éléments hydrolysables dans le mélange farine-eau interdit toute préparation antérieure à la distribution, même de quelques heures, à moins d'avoir recours aux chambres froides et de s'exposer à tous les inconvénients, de prendre tous les risques que comportent les aliments humides.

Quant à la distribution proprement dite, il nous faut avouer que malgré le caractère imparfait des méthodes japonaises, elles sont les seules d'application pratique à l'heure actuelle. Comme pour la tenue des aliments qui reste l'un des problèmes fondamentaux de l'alimentation, il appartient aux exploitants et aux fabricants d'aliments composés de rechercher des nouvelles solutions pratiques.

3. Conclusions

L'examen des techniques japonaises utilisés au Japon et susceptibles d'être retenues en France afin de réduire l'importance des facteurs limitants des élevages, les révèle inadaptées, au moins pour celles qui font appel à une main d'œuvre nombreuse.

Néanmoins, le degré d'inaffinité est directement fonction du prix de vente des anguilles sur le marché européen et il n'est pas impossible qu'une hausse des prix combinée à une amélioration des techniques précédemment décrites, ne conduise à des possibilités réelles de développement.

Références

Anonyme (1973): Le développement de l'élevage de l'anguille en France. Note Technique 74/1, Ministère de l'Agriculture, CIGREF, Groupe-ment de Bordeaux, Division Aménagements Littoraux et Aquaculture, pp. 22.

昭和49年度日仏交換教授（日仏海洋学会）報告書

高木和徳**

Un séjour en France pour la mission scientifique de la Maison Franco-Japonaise à l’année 1974

Kazunori TAKAGI

まえがき：筆者は佐々木義夫会長が推薦を受け、昭和49年度日仏海洋学会の派遣に選ばれ、フランス各地を訪れる機会に恵まれた。この短文は昭和49年11月19日付で日仏海洋学会（副会長高木和徳）より公表された書の表題の報告書（原稿）に一部改訂加工したものです。加筆は人名改名書きに原稿書きを塗り去るに止めたが、なおこの短文のため改稿を参照（第1回）を別に加えた。

昨年5月17日付で私は日仏海洋学会の派遣する学術留学の指名を受け、喜んで出発した。昨年5月17日付で第2回国際海洋開発会議がその常設会場のあるボルドーで開催されるので、日程の初めにここでの講演表を組み入れ、日仏海洋学会研究者ケレル氏（M. J. QUERELLOUX）などの助言によりフランス国立海洋開発センター（CENEO）国際海部会常任委員ハット氏（M. G. P. DE SAINT MAUR）などの御配慮を含めて約1か月余りの旅行が決まったのは、出発日が間に合わない9月中旬であった。ちょうど退任直前のフランス学長（M. B. FRANK）からアテスティシオンを受けられたのは、幸いであったし、訪問先に好感をもって受け取られた。

9月27日（金）22時30分羽田発（JL403）、パリ着陸（CDG）に翌28日（土）9時30分着、東京の1日をパリで過ごし、29日（日）早朝パリモノカルド駅からブレストへ向い、午後にはパリにある海洋開発センターの広大な研究所であるプルマヌー海洋学研究所（CENEO）に到着。副所長ベス氏（M. F. BESSE）の案内で庭内全景を見学したが、後述のように後日生物-水産系部門の幾つかの研究室をあらためて訪問することになる。翌30日（月）午後ブレスト發新スー-パリ空港（ORY）経由（IT502/1T325）、同日ボルドーに到着。

10月1日（火）午前、国際海洋開発会議に参加。当市長、市長の有力組織者であるジャパン＝デルマス氏らの列挙による開会式に列席。午後に研究発表も始まる。この国際会議は3年ごとに当地で開催される。関連会議（東京、ブリストルなど6都市で開催）のなかでも数多くの講演者を招く昨年末、同1日から4日（金）までに230余りの研究発表と逝者1,000～1,500名の参加者があって、前回同様の盛況であった。この国際会議には、主に国内科学学会に属する者から、実演用の人が参加した大規模な常設会場で展示会の併せられるのが目立った特徴になっている。昨年度は日本を含む16か国からの300余りの講演者が参加、延べ450品目余りの展示が実現した。会場はヴァンの名門学として、席を欠くのはしゃトージョースクールで主催団体共催のレセプションが開かれる学界、業界多か一堂に会して歓迎を尽くした。

私の発表は第2日目、10月2日（水）午前の「水産利用の評価」を題するセッション（原委、東京水産大学教授佐々木義夫）に出席した。漁業開発は特的地域性を備えるものであるが、私の発表題目として「南極沿岸域イセイエビ資源の漁業生物学」を選んだ。東京水産大学小渕実験場（千葉県千葉市）で私々のも研究室が過去30年間継続してきたイセイエビ資源の試験探査と栄養素発表実験に対する成果の紹介を主体に、漁業統計調査による資源量の変動を及ぼす変動、並びに漁獲量分布の実態を明らかにし、これらに基づいて資源水準の推移のあるあるを推測の可能性を示唆した。

* 1975年1月22日受理
** 東京水産大学水産養生学 東京都品川区港南4-5-7
Tokyo University of Fisheries, Konan, Minato-ku, Tokyo, 108 Japan

(38)
新間論調などにみるフランス国内の当会議への関心は、特にマンガための開発ないし環境汚染などに向けられていたが、前者は当会議直後の昨年11月仏政府間協定による共同研究の第一課題として提案された。

10月4日（金）朝ホルト発（IT312）、週末のパリ滞在を経て、6日（日）パリ空港（ORY）発（AF662）ジュネーブ着。昨年の気候は東京でも異常を感じさせたが、これは後述のようにフランスでも同様のようで、このころから時雨の訪れがしばしばで、この日は雨雲のなかの旅行ははじめとなった。

10月7日（月）朝、ローマン郊外キリーに向う。ここには高層気球と深海深水球とを著名なビカール家の当主ビカール教授（M.J. PICCARD）の主宰する海洋深水調査研究会の研究所があり、深海で月の１日を特に割愛して訪問を予定した。スイスは多数の湖水に恵まれ、これが自然の景観に一層の魅力を添えているが、近年の環境問題の傾向はこの国でも例外ではないとし、これが財団設立の動機となった。環境問題の改善は海洋も湖水も同様の問題に従うというのがビカール教授の考えで、これが財団に現われている。実際の活動は国内全湖水に少なくとも１名の監視員をおおく目標で進められている。

フランスにも、後述するように、海洋環境汚染問題を主題とする研究所が設立されているが、ボルドーで実験したことであるが、海洋環境保全への関心は、行政面でもその広報活動の一端から、十分な積極性がうかがえた。

10月8日（火）午後ジュネーブ発（AF1693）ニューヨーク。バフィラシのパリ第6大学臨海実験所にブッギ教授（M.P. BOUGIS）を訪問。水産大学の臨海実験場は町の焼畑跡に建てられたものであるが、ここは19世紀まで農業だったこととなり、広大な研究室に、それに面した足道路のある曹の作業場が大小プランクトンネットの乾燥室に変わっていたのも興味をひいた。そのような地元が臨海研究に好ましい環境を与えているようであった。

翌10月9日（火）都ニューヨーク新らしいバスセンターから長ナコの海洋博物館へ向う。館長のクストー・セルマ（M.J. COUSTEAU）は出発中で、アリナ副館長（M. ALINAT）の部屋に通された。この研究所には中東の国際海洋
うみ 増13巻 第1号 (1975) 日本海洋学会誌

耐能研究所放射化学主任研究員深井博士とも面談できえた。館長主任秘書のピョギャメイ (Mlle J. BIGOT) や水族館長アルノワ・マ (M. ARNOTOUL) らの案内で水族館を含む博物館を見学。女史との昼食の招待を受ける。この博物館の運営は現在独自の活動をするよりもも、上記のように他の研究機関の出向研究員に負担する形で運営されているようである。 moth館の収蔵品目にはさますかと思われるものがある。特に水族館の運営には新しい装置を開発するなどして、飼育生物の種類の多様性などともとに、今なお高い水準を維持していることが感じられた。

この日の午後遅くなって訪問したのは、オーネル博士 (M. M. ALBERT) の生物学研究海洋研究センター (CERBOM) である。ここは基礎研究については国立保育研究海洋研究センターに所属し、応用研究についてはニース市の財団法人となっている。ここでは海洋生態学の広い範囲を手に持つ、それらを海洋環境の汚染防止に役立つことを大きな目的としており、特に先に述べたビックル教授の研究に類似する。ここは公共衛生院の出向博士のお勧めによる訪問先であるが、所長夫婦の食事もおもてなしを受けた。

10月10日(水)早朝ニース駅で正午前半がかりビアリッツ方面へ向かう。途中、車中から見た広大な農牧地に代表されるフランス農村の風景を、陸上での旅ではまれに見ることのできるものであった。その中にレルナドの濃い水没で見せられた大群の例を代表される宗教への依存の深さがよく印象に残った。

ビアリッツでは当市科学技術研究センターのビレール所長 (M. M. PERCIER) のお世話になった。このセンターには国立農学研究所 (INRA) 陸水生物実験所、水族館を含む国立自然史博物館などがその傘下におかれている。10月11日(火)朝をセンターに所長を訪ね、次いで実験室生態学研究室のレルナド主任 (M. R. LÉSEL) の案内で担当課題の説明を受けた。たまたり、私たちの研究室でも取り扱っている陸水生物生態学の類似課題があると、特に興味を覚えた。所長夫人の家に於いて「陸水生物生態学概論」の著者メンツル先生 (M. R. VIBERT) に出発前からのお期待が実現ししていく所をかかったのは幸いであったが、後日レンガで殴る先生との同席の機会が与えられた。午後ビアリッツ、レルナド夫妻のセブンベルというお宅に、セブンベル所長の案内でフランス西岸主要漁港サントドリアスの見学を終えて、サンペル駅でパリに出発。水族館の案内 (M. GODARD) の説明により観察。夕刻には18世紀の水産小屋を改装したお宅で所長夫人のアペリチフで乾杯。
昭和49年度日仏賞授賞式（日仏海洋学会） 報告書

場で我が国のイセエビ漁業についての質疑応答などを交
えて挨拶。同夜はルルド・レヴィニ overthrow 氏で増殖場訪問時のフ
ィルムによって地元のこの業種に対する関心の高さが示
された。オマール増殖事業は近い将来我が国の水産業に
も導入される可能性がある。

翌17日（木）午後便の都合で予定より遅れてヴィア島
を離離、夕刻8時ごろ到着 OBホテルに到着。3
日の間は自動車旅行の旅りとなった。

10月18日（金）朝ブルターニュ海洋学センター科学研
究部生物部門を再び訪問。午前中生産学部門長ルガル氏
（M. J. Y. LE GALL）の案内で生産学および漁業科学会
研究室を視察。前者ではピエレ氏（Mme LAUBIER）
の頭頸類の生殖生理研究が興味をひいたほか、コナン氏
（M. G. CONAN）のアカザエ類の飼育を主とした生態
研究室の私の担当の課題に近く、後者ではダオ氏（M.
C. DAO）がネガサギやマグロ類の飼育解剖を担当し
ていく生産学の面から、それぞれ意見交換ができた。
午後は OB 副所長の昼食会に招かれ、フランス水産增
殖学の重層ペレス教授（M. J. M. PERE'S）のイベルル
氏ら多くの名士と同席の機会をもった。昼食後プルターニ
ユーピ大学のルカス教授（M. A. LUCAS）を訪問。同教授の
動物学研究室とグレマレック教授（M. M. GLEMANE）
の生物海洋学研究室を視察した。

10月19日（土）午前 COB 生物部門のうち残りの水産増
殖研究室をレルー・オルニーズ（M. M. L'HERROUX）の案内で
視察。ここには、私たちの大学から小池信之氏がアワビ
増殖研究担当で勤務中である。日仏海洋学会が作製中の
日英仏海洋水産用語集について意見交換の機会もえられ
た。同日夕刻からはルガル氏夫妻によるレセプションに
小池氏と共に招かれ。この夜からブルタニユのタンバ
ペットを遊ばせ、冬の訪れの近さを思わせた。フラ
ンスも今年は異常気象と秋の作物の収穫を憂慮される
ようである。

20日（日）はやや天気が悪いが、小池氏の案内で水産学会
統合研究会の新村研究会編の「水産海洋科学探検記
」に、養殖場再観光となれるかと鎌倉に午後の半日を
通した。

21日（月）朝 OB の到着でロスコヨーに向かう。
この際海実験所の研究会は国立科学研究所らで
の一部に合併したことに衝撃が大きかったが、運
命は子送りとして行われている。
副所長のカビオシャ氏（M. L. CABIOCH）の案内で各研究室を視察。ここでも
オマールの飼育方法の蓄積研究の進んでいるこ
と、実験場域での観光時休環境の大規模な共同研究が進
まれていることなどが興味をひいた。今世紀初め以来
の実験室に招き入れられたときには、その伝統に深い感
概を覚えた。この日夕食にはカビオシャ氏の招待を受け
た。氏は当時名門の出身ということであったが、ブルタ
ニユの古事実話は戦後のものに時を忘れ、この地方の
特徴ありかもって興味をひかれた。

10月22日（火）朝小川所の本部でディナールへ向
う。約束の午後3時、国立科学博物館（パリ）所属の臨海
実験室に副所長のピジン氏（M. L. PLOU）を
訪問。女史の配慮でランスの海事博物館を見学する機会
も与えられた。見学時間が限られていたため、博物館を
まず視察ののち、実験所を案内される。同日夕刻には
当所の客員としてランス大学動物学科のレディ
エール氏（M. C. RETIÈRE）の案内でサンマロで夕食
の招待を受ける。食卓では水産生物学のあり方などを話
題に時を過した。

23日（水）午前ルチアル氏の水産生物学研究室を
訪れたのち、ピジン女史の勧めでディナールに
渡る。渡りの船で約40分を要した。夕方にディナ
ール港に到着し、ここからロンドンに帰った。

ロンドンでは10月25日（金）午前9時から2日間の滞在を
したが、これは私たちの研究室にとっ
ても前任者故久保教授以来親しいある大英博物館自然科学
部甲殻類研究部前部長ゴードン女史（Mlle I. GORDON）
への表敬を主な目的とするものであった。

26日（土）からの週末は資料の整理や報告書原稿の
作製などで過ごし、午後27日（日）午前から午後か
けてジャイロ宮内の海洋博物館を全館見学したのは、
同館案内にありとおり、ちょっとした観光であった。

28日（月）午前海洋開発センター東京本部所属生産部
長ルノアン氏（M. J. LENOAN）と総務国際水産部次長
ドランセ氏とを訪問。親しくに当時の計画を
あったとも言及する機会を失った。同本部はギボン
博物館に近いが、この別館でフランス臨海学の收藏品を
もたらす国際海芸術館に親近する機会をもった。午後
には科学情報センター（CNRS）の生物部門を訪れ、か
ねて依頼中の文献検索について交渉することがあった。
この事の解決には翌日正午の円面が必要となる。

29日（火）午前国立科学博物館水産資源研究所
（旧称、海外漁業研究所）を訪問。あいにく主任教授ノ
氏（M. Th. MONOD）は不在であったが、同研究室の
ニュース（M. J. C. HUREAU）の案内で各研究室を視
察。時間の都合で解放しなければならなくなった研究
室のできていることは無残であった。午後は約束の2時半過ぎ海
洋研究所を訪問。生物学研究所でプッチ教
授と再 (41)
会。同研究実員のトゥレモン氏（Mille Toulemon）の案内で生理学研究室など所内を歴訪。ここでのフィンテラヌ教授は出張中であったが、ラカラヌ氏（M. LACAZE）が案内役を引き受けられた。この研究所が今回の旅行で
は文字通り最後の訪問先となったが、公式授業のビュタノンヌ氏 M. Vu Tan TUEなどフランスの自然科学研究などの話題で夕刻まで休憩して別れた。
10月30日（水）午前 C. デゴール空港でチェックイン。
13時間空港滞在（JL440）、翌31日（木）11時40分羽田空港着。実に多くの講演の協力を得て規則に定められた一日を終え、今回の旅行を大満足に果すことができた。
この有益な1か月余りを振り返って、主な印象を思い付くまままとめてみると、次の通りである。
フランスの海洋生物学研究はここ一財年で目覚ましい発展を遂げ、飛躍を収めている。各所で聞いたように、個々の面で我が国が先駆けた役割を果たしていることも確かであろう。しかし、フランスにおける海洋学の強い興味は、将来必ず水産の業界で応用学の展開に有力な基盤となるに違いない。既に述べたように、水産増殖法が大きな注目を水の反応を利用していても、日本の場合取水を投油投資の大きな部分を占めているのをみると、増殖学の実践に大きな利点であることが分る。bruarヌ地方を中心にとする水産鉱物学に対する依存度の高さあるいは開発の強さ、私にとってはフランスの海洋科学的な一面を示すものであった。これもまた、水産学の発展にとって大きな支えとなるはずのものである。
一方、海洋漁業において、我が国のオキアミ研究に対する関心が一両年で示され、私の不思議でない外国の印象を受けた。私の帰国直後、海洋開発センター理監事のレヴィ（M. J-P LEVY）の持つもあり、オキアミ漁業が、政府関係者による共同研究の1題目として提案されて、このことに対するフランスでの関心の強さがあらためて示された結果となった。
これに関連して、水産生物学領域に限れば、科学情報交換にとって日仏双方にかなり大きな障壁のあることが随所に感じられた。このような障壁は双方から取り除くことが今後の課題であるという印象を深めたことであった。
旅行中行きあった市民の何人かが異口同音に問いかけたところによると、日本といえば「水産」という強い印象が与えられているのは、外見というか一つの衝撃であったが、これはまずテレビジョンをはじめとするマスコミの市民への影響の強さを表すものと理解すべきであろう。私の心から見たフランスの第一印象がコンチネンタルであるということであったが、環境汚染には国事の広さが強く影響しているように思われる。フランス沿海ではまだ環境汚染など予想外の点もあるようし、日本では開発の余裕が深刻に現れている面があるに違いがない。そのようなフランスでも海洋環境の保全に強い関心のもとされていることは各所で見聞したうえで経済活動では一見私が国よりも遅れているような実例に出会ったことは常に述べた通りであるが、このような周到さでもういうべきものは我々が見習ってよいことのように思われる。
最後に、短時間の駆け足旅行ではあったが、それでも地方都市が中央都市に対して多くの面でその独自性を確

(42)
資料

極地海洋会議及び南大洋の生物資源に関する小委員会に出席して*

根 本 敬 久**

Polar Oceans Conference and Subcommittee on Marine Living Resources in the Southern Ocean

Takahisa Nemoto

極地海洋会議（Polar Oceans Conference）は1974年5月5日より11日までカナダ国モントリオールのマクギル大学において開催された。又、この最終日11日には極地研究科学委員会の小委員会である南大洋の生物資源に関する委員会（Subcommittee on Marine Living Resources in the Southern Ocean）も開かれた。私は、日本文部省の海外学術研究集会出席旅行により、この学会並びに会議に出席する機会を得たので、ここに小会合について報告する。出席に際し種々便宜をはかられた海洋研究所・極地研究所所員各位並びに文部省国際学術調査会の皆様に厚く感謝の意を表する。次に、海洋生物関係の報告につき御教示を受けた理化学研究所の高野健三博士に感謝の意を表する。

1. 極地海洋会議

本会議はSCOR（海洋研究科学委員会）とSCAR（南極研究科学委員会）の共催で、McGill大学及びArctic Institute of North America（現在ロンドン本部、アメリカ合衆国）の後援を得て1974年5月5日より11日まで7日間、モントリオールのマクギル大学において開催された。この会議は12か国、90余名が参加し、日本からは極地研究所の星野孝男博士並びに東京大学海洋研究所の根本敬久が参加した。

参加国としては、日本、アメリカ、フランス、カナダ、オーストラリア、アルゼンチン、英国、ノルウェー、ニュージーランド、デンマーク、スペイン、スウェーデン等であり、UNESCO、IOCの代表としてMAMAEV博士が出席した。

種々のことには、ソ連邦の科学者が当初予定されたKORT博士、PARIN博士、MOISEEV博士らがすべて欠席し、18余にのぼる講演が取り消された。このため、プログラム委員長DUMBAR博士を始め組織委員会はプログラムの再編成に会期中追及することになった。

論文発表は四つの会合にわたり行われたが、論文要旨及び私の発表した生物関係の論文内容から紹介すると次の如くになる。

第1部会 水塊と循環（この部会には私は出席できなかったので委員長の様子だった。）

この部会で講演を予定されたKORT博士（演題はTransport exchange、mass and heat budget）は先に述べているように欠席した。

ワシントン大学のCOACHMAN博士及びAAGAARD博士は4個の流速計を北極海のスッピフルレン、グレンランドの間に11か月間設置した。又、4か月にわたり2個の流速計をバローブに4か月にわたり4個の流速計を水島T-3（85°N、90°W）の近くに設置した。これらのAIDJEX計画により高速観点より110km離れた点における1か月間の連続海洋観測、10〜30km離れた点における2週間の連続海洋観測を行った。この測定の結果により密度躍層、上下にまたがる小さな傾圧流の波高性流が明らかにされた。Rostの波高変動の大きさを持つ波状の現象が記録された。アメリカのSEMTER博士はBRYAN及びCOXのモデルにより北極海の循環の数理的検討を行った。

カナダのROSS博士はデンマーク海峡における低密度の海水の流出について論じた。これは、カナダの研究船Hudson号による観測を基にしたもので、26個の流速計、温度計のArrayを5週間保もって記録をとる

* 1975年1月23日受理
** 東京大学海洋研究所 東京都中野区南台 1-15-1
Ocean Research Institute, University of Tokyo, Minamidai, Nakano-ku, Tokyo, 164 Japan

(43)
と共にその付近の地域的な特性を観察し、冷水の輸送とその変動について報告したものである。

南極洋及びその隣接海域の研究としては DEACON 博士(英国)の南極洋の水塊及び層構造に関する研究の一部、および TCHERNIA 博士らの人工衛星を用いての南極洋の氷山の研究、KILLWORTH 博士の南極底層水の形態のモデルの報告があった。TCHERNIA 博士は 9〜12 か月の長期にわたり東部南極大陸の 30〜100 深度まで移動する氷山の日別の移動を 1 深度の精度で人工衛星により追跡し、一日に移動する距離は平均 5〜7 深度であった。その変化についての知見を得た目的であったが、結果は得られなかった。又、壊散的な水塊及び層構造については MANN 博士のドレイク海峡付近における水塊と海流、HEATH 博士による南極大陸のマクロード入江における水循環付近の海水の循環 CARMACK 博士によるウェッジル湾の水塊と循環、LEWIS 博士によるウェッジル湾の水塊の形成等があった。

第 2 部 氷と海水生物相

この部分については前半に海水に関する物理的な研究が主として発表された。この中には AIDJEX 於くの研究報告が含まれていたため最も残念な部分となってしまった。アリスカ大学の HORNOR 女史は「History and recent advances in the study of ice biota」として新地の海水の生物の研究史を述べると共に南極海洋の生物に関する研究について報告した。氷海の生物研究は、1840 年代の若葉米の報告に始まっているが、初期の研究は着色水に含まれる藻類の種類の表の記載が多かった。藻類群の研究以外の研究にはほとんどなかった。植物色素 Chlorophyll a の測定は IGY 開始の期間に開始され水下において付着生物（特に藻類）を捕食する動物の研究と共に行われた。氷海における第一次生産の測定実験は、米国においてに 1960 年の初期、1960 年代の後半に北極海域で始まった。又、現場法による測定は、現在北極海では行われている。光の制限因子であるが、温度も 2 次の制限因子となる、技術的な観点より、南極と北極の第一次生産の比較は難しい。女史は特に北極海ペロー河口の研究の場の例を引

きながら報告した。カナダの GRAINGER 博士は海水形成時に取り込まれた NO3 と PO4 の量、分布、変動を検討した。氷中のこれらの箇所は北部で少なく、層状にその量は多く減少し、下層では 14 μg/L の NO3-N、4 μg/L PO4-P 以上に達する。これらの変化は海水から取り込まれるが、冬の後期から春にかけて植物の増殖により消される。成長の最大は水の下面にみられる。夏の初期に水の表面下にみられる栄養塩の濃分は夏季の氷の消融により海水中に放出される。初夏にはかけて数年の海水の中の栄養塩は春期に最大値を示すことになる。

デンマークの PETERSEN 博士はグリーンランドにおいての水温、塩分分布に分布する魚種の分布に対する水温の影響を検討したものである。沿岸水の底層は沿岸帯の生物が産卵の影響を受けるのを妨げる。又、これらの生物は塩分期に水の底層に産すが、水の塩分は水の底層に限らないものは壊れ、他の塩分の分布に影響を与えない。生物の種の入れ口の水の塩分分布は塩の源の外的(すなわち光、水蒸気の影響)によると考えられている。水による試験をした第一次生産の形成は幼体産出に適する塩分を適切に支援され、幼体の拡散が妨げられる。水の底層に産すが、水の塩分は水の底層に限らないものは壊れ、他の塩分の分布に影響を与えない。又、その両側の海水の塩分を示す。

出席しなかったソ連邦の GRUZOV 博士は The influence of fast ice and anchor ice on the shore communities、GOLIKOV 博士らは Peculiarities of distribution of shallow water bottom and ice ecosystems in the Arctic near Franz Josef Land and Novosibirsk Island の主題で講演の予定であった。

日本から出席した星合博士は南極昭和基地付近の海域における水温の生物集団の季節的変化について報告した。この研究は海水の底層にみられる塩水のポケットに棲む微生物について検討したものである。秋の生物集団は、Nitzschia 及び Fragilaria を含む栄養塩の影響を含めて水の表面より約 30 cm 下に褐色の層を形成する。この層におけるクロロフィル a は 4 月には 829 mg/m² に達する。植物細胞の一部は下方に移動し、冬期に形成される海水の中に含まれる。上記報告のほかに Peridinium が 8 月に底層から出現した。Amphihipora、Stephanopaxia、Nitzschia 及び Navicula に属する種が繁殖を始め、又氷の底部 130 cm にわたって褐色の層が 10 月〜12 月にかけて形成される。氷の中間にも層が
第1図 会場入口。黒板内に会議のシンボルマークの地球と氷が示されている。

第2図 会議の行われたリーフォック・ビルディング。

第3図 マグボル大学内の建物の一つ。

第4図 参席者一人、英国のDEACON氏。(左)。

第5図 話をするEL-SAYED博士(右)とTOMO博士(左)、左奥はMARGALEF博士。

第6図 フランスのARNAUD博士と筆者。マグボル大学横門よりリーフォック・ビルディングを望む。

(45)
12月に出現する。下部の褐色着色層におけるクロロフィル量は1,000 mg/m²㎡に達する。この上部の層は秋の大増殖期に相当するが、一部の藻類の増殖層は春の大増殖
期に形成されると考えられる。

第3部 海洋の生産力、極と熱帯

この部では私にとって最も興味のある論文が多かった。
まず、スペインのMARGALEF博士は極地と熱帯の
海域における生物群集の多様性について報告した。熱帯
の生態系においては、 magicianの頻度は低いが、相対数
値は無限に示す。大きな季節的な変化がみられる一定の
広さの海域は高生産量/現存量比を示すことを述べた。

EL-SAYED博士は南極海における生産力と熱帯亜熱帯
海域における比較を行った。これは、近年のメキシコ河
及びカリブ海における研究結果と彼が先に研究した南極
海の結果より行われたものである。これは生物プラン
クトンの現存量、生産量、種類数、植物プランクトン
の多様性等をパラメータと含めている。このほか、
物理的化学的パラメータも含め比較された。南極
及び亜熱帯海域においてナノプランクトンは現存量
の61〜76％を占め、又生産量の92％を占める。ナノパ
ランクトンは、メキシコ河及びカリブ海においては現存
量の83％、又生産量の84％を占める。いずれの海域に
においても、ナノプランクトンの重要性が強調された。生
産量の垂直の変化、季節の変化、地理的分布は太陽の日射
量、栄養塩の分布等を考慮して南極洋におけ
る第一次生産量の過大評価に対する反省を述べていた
たのは、更に今後の問題点として残されたよう。

アルゼンチンのBIENATTI氏は、南極洋アルゼ
ンチン前進地における第一次生産量の測定と栄養塩添加
による生産量の変化の実験につき報告した。

ニュージーランドのKNOX教授及びLOWRY氏は南極
と北極の陸棚海域におけるベントスについて報告した。
氷の季節の移動、海底地形、堆積物、水域と藻類、栄
養塩と第一次生産についても触れた。一般的なベントスの
問題としては、両海域のベントスの生物量の分布、生
物群集の種類数と多様性等が論議された。南極半島のア
ーサー湾及び北アメリカの東部の北極域とが動物種の多様
性について比較された。種類構成の多様性が特に生物地理
学的研究に取り上げられ、PETERS（1971）のプログラム
により解析され、この結果が北極海域の結果と対比され
た。

オレゴン大学のCAREY博士は、西ピューノット海
のベントスに着目して生態学的研究を報告した。
この研究は淡水系Glacier号により行われたピーボ
ート海のbaseline studyとして行われたものである。
200地点以上の採泥箇の資料、27のドーター、トロールの
資料、25のステレオ、カメラによる航続撮影の資料が15
〜2,300mの海底について得られた。これらの資料のうち
具類を主とするInfaunaは海底の環境と対比して検
討されたが、生物量及び個体数は海岸より離れす密度が
増すにつれて増加し、大隆起斜面南部において最大に達
し、再び2,300mまで減少の傾向を示した。

フランスのHUREAU博士はセントボール島及び
アムステルダム島におけるEusia paulensisの生産
について報告したが、内容的には後述する南太平洋の生
物資源に関する小委員会で報告されたものとはほぼ一致
する。ノルウェーのHASLE博士は街 Hawksの地理的分布を
新しい分類に基づき検討した。彼女は結晶微細構造によ
る新しい分類に基づき、従来分類されていた種の統合、及び種の整理を行ったものである。特に、私の
興味を持っているのは、Ακαμια類の種として、Fragilaria
属についての更に今後の論議を進めたいと考える。
Nitzschia cylindrusはFragilaria cylindrusとシノ
ニムであり両種同様ということになり、又Thalassiosira
も両種同様となる。Nitzschia seriataは北極より北半球
温帯まで分布することになり、Nitzschia kerguelensis
は南極から南半球の温帯まで分布する。このように、
Nitzschia, Fragilaria, Fragilariaopsis等の再検討はそ
の地理的分布と関連してHassel女史の研究の成果とも言えるものであろう。

カナダのGORDON博士は北極海水中における非生存
の有機物について報告するはずであった。GORDON博士
は1970年に、有機物状態を染色によりその性状の研究
を行っているが、今回は不参加で要旨を述べれば、北極海
における海水中の有機物の量は北極域に比べてそれほど差
がないことが明らかにされたが、粗状有機物については
若干の差が認められたとのことである。

1970年の夏、日本で行われたJoint Oceanographic
Assemblyの際に来日したことのあるアメリカのGEORGE博士は北極海
及び北極海における底質動物の生態系の構造と機能の類似性と非類似性について検討した。
北極海の底質動物の生物群集は、南極マコモド堆
の底質動物と比較して生産的適応点で著しく異なっ
ており、特に温度変化のストレスに対する応答性が示
られた。北極海の等温域及び寒帯域が含まれていた各
種の試料は、底質動物の研究に新しい知見をもたらした。
GEORGE博士は等温域を中心に温度、塩分濃度に対する
耐性、生物量、多様性等につき講論した。
アメリカのスクリプス海洋研究所のDEVRHES博士は南極洋の魚類が冬期 -1.8°Cの海水と水の中で生活し、夏期には異なる水温帯に生活する点を指し、低温抵抗性と水温の関係から生き物の生態的特性の生態を試みる。南極域の魚類は低温に適応していると記載しているが、北極域は水温が高い。生存可能な水温、塩分範囲は狭い。又、凍結に対する抵抗性は季節的変化がある。

第4部 気候の変動と極地域

この部分においては、極域における気候の変動を地史的に、すなわち海底堆積物、大陸氷、氷河のコア資料により解釈し、過去の気候変動を論じた論文が多く提出された。

最後にこの学会の報告、討論をオーストラリアのKNOX博士を中心としてまとめ、以下の決議が公表された。

1. 南極における海水中的生物相図は、極域の生物生態研究上重要である。南北両極域での動物相図について生理生態学的研究を進めるべきである。
2. 南大洋における船による海洋生物の研究が進んでいるとの考えられる。この種の研究は海洋生物資源の管理上重要であることにかんがい、海洋生態系の船による観察、特にオキアミ類、魚類等の資源量の研究を促進すべきである。
3. 分類学的研究、なかんずく極域の生態系研究における無脊椎動物、特に分解者において考慮を要する。
4. 熱帯、温帯域、極域の生態系の生態の重要性について考え、第一次、第二次の生態研究の実施すべきである。
5. 北極域の研究者と南極域の研究者との共同作業が望ましい。又、両極域で得られた結果の直接的な比較ができるように、同じ研究技術を用いることも重要である。
6. 海洋開発の急速な進展による海洋の汚染の増加に伴い、現状の解明、水による汚染の影響の研究が望まれる。特に、北極域での研究は重要である。
7. 船上で行う研究について言えば、各国独自の研究に加え、研究者の国際交流と資料の交換が必要である。
8. WHOの南大洋におけるバイ資源を促進する。南大洋研究に従事するすべての国はこの計画を支援すべきである。
9. 景観における海洋植物資源の不足を補う目的と、気候、環境変化のトピックに対する協力という目的とで、沿海及び陸上における基盤における周辺海洋資源を実施すべきである。海流、潮流観測、各種海洋学観測及び水深、海水の流動観測を実施することが望ましい。ICO資料収集についての指導的立場をとるべきである。
10. 南極海洋水帯の冬期海況についての知識に乏しい実にかんがえ、例えば浮遊藻に水温が低い状態での海洋観測であったらどのような状況を国際的に進めることができるかが望ましい。
11. 极域における溶存有機物、粒状有機物の定量と分解の研究を強化実施する。
12. 北極、南極両地域に現在ある沿岸基地を維持するための協力努力をすべきである。
13. 観覧用に、あるいはデータ中継用にサテライトを利用して考えられるべきである。
14. 南極における潮汐変化を作成するため、必要な国際的努力を払うべきである。

なお、1974年9月に開催されたSCARの生物学研究委員会（日本より南極研究所の松村教授が出席）では、この決議の1, 2, 3, 5, 9, 10, 11, 12, 13, 14が承認されている。（以上決議案は合意博覧による）。

2. 南大洋の生物資源に関する小委員会

南大洋の生物資源に関する小委員会（Subcommittee on Marine Resources in the Southern Ocean）は1972年オーストラリアのキャンペラにおいて行われた第12回南極研究科学委員会（SCAR）の総会において、生物学作業グループによって議論された。生物学作業グループは当初、南極域の開発可能性と考えられたオキアミ類、頭足類及び魚類等について議論し、その研究の必要性を認めた。作業グループは、他の海洋生物及び海洋生物資源の研究に関心を持つ他の組織（IABO, IOC及びFAO等の関心を認める）に委員を設け、重ねた結果SCARの中に新しい小委員会を設けることになったものである。議長には南極の第一次生産の研究を続けているテキサスA&M大学のEL-SAYED博士がその第12回南極研究科学委員会において選出され、以後同博士を中心に委員の選定、議題の検討にわたった。

この小委員会の目的は次の3項目よりなる。

1) 南極域の海洋生態系に関する現在までの見解を総覧し、その構造、動態、生物、栄養関係に沿って生物量等について検討を行う。特に、オキアミ類、イカ類、魚類及び無脊椎類についての資源調査に焦点が置かれよう。
2) 各魚種の生態、特にオキアミ類、イカ類、魚類、無脊椎類に関する生態学、資源動態に関する研究を促進する。
3) 南極洋の生物資源の開発に関する資料を SCAR の海洋学、生物学研究グループに提供し、且つ、SCAR 及びその作業グループの見解を SCOR, FAO, IOC 及び IABO 等の関係国際機関組織に送付することにより SCAR と他の国際機関との関連を深める。

4) 南極洋の生物資源に関する多くの事項の報告を作成するに当り、SCOR, FAO, IOC ほかの機関に協力する。

5) FAO 等によるこれらの資料の将来の商業的漁獲に対する指針を設定することに協力する。等の項目があげられている。

以後、議長を中心にメンバーの協力、委員会の作業へと取り掛かった。当初メンバーは次の 5人であったが、千名寄附され、会議開催時には 11名となった。

S. Z. El-Sayed (アメリカ、テキサス A&M 大学)
J.-C. Hureau (フランス、国立科学博物館)
G. G. Newmann (南アフリカ、水産研究所)
P. A. Moiseyev (ソ連、全ソ漁業研究所)
根本敬久 (日本、東洋海洋研究所)

過去 1年余りを経て、手紙による意見の交換等が行われたが、今回カナダ国モントリオールにおいて極地海洋会議 (Polar Oceans Conference) が行われる際、その第 1回の会合が持たれることになった。

第 1回の小委員会は 5月 11日極地海洋学会に於て最終日 9時よりマクギル大学の評議会室で行われた。当初予定された出席者全員は出席委員のほか、

D. G. Chapman (ウィシントン大学、水産学部、瓶類)
G. Deacon 副 (イギリス国立海洋研究所所長)
J. A. Gulland 博士 (FAO)
R. M. Laws 博士 (英国外交)
O. Mamaev 博士 (UNESCO-IJC)
B. D. Siniff 博士 (アメリカ、ミネソタ大学)

A. P. Tomo (アルゼンチン、水産研究所)

の 7名に招待講演者、オブザーバーとして参加を要請した。しかし、委員中 Newman, Moiseyev 両博士は欠席し、又上記の招待講演者中 Chapman 博士、Gulland 博士、Laws 博士の 3名も出席不可能となったため、当日あらためて出席者を中心とした agenda が配布されることになった。この中で Laws, Siniff 両博士は ACMRR の海底研究のパネルより参加し、この委員会のメンバーとして今回参加する形をとった。

委員会は El-Sayed, Hureau, 根本, Siniff, Tomo (以上、委員) のほか戸田 (日本), Deacon (英国), Knox (ニュージーランド), Mamaev (Unesco), DeVries (アメリカ), Margalef (スペイン), Arnoud (フランス), Carey (アメリカ), Kvinblf (スウェーデン), Comes (アルゼンチン) の 15名の出席者により行われた。委員中, Gulland, Laws, Newmann, Moiseyev は出席しなかった。議題を採択し後、Rapporteur に Siniff 博士を指定して議事に入れた。

まず、SCAR の生物学研究グループの議長でもある Knox 博士（SCAR 議長）が南極のアザラシ研究の一部にふれ、その小委員会としても、アザラシ類を取り扱うことを提案し、Term of reference にアザラシ類を入れることが同意された。次いで, Deacon 博士が南極洋における海面 Discovery Investigation の過去の成果の一部、特に無類、オキアミ類の結果を紹介し、この委員会において充分討議されるよう望んだ。

サウス・ジョージア島近海における主要生物の研究において観察された生物量、生物種の年変化、サウス・ジョージア島東岸におけるオキアミ類の出現の変遷、季節等、生活史等について総論し、特に生活史については、Fraser, Bargman 両研究結果につき説及し、今後の問題点を指摘した。これはいわば永年来の Discovery Investigation の南極洋の生物研究に対する総論とも言え、あらためて南極洋の海洋生物研究における国の過去の寄与を考えさせられた。

次に、今会議より委員として参加した Siniff 博士より、1972年の、1) 南極洋のアザラシ条約, 2) 南極洋のアザラシ研究の歴史, 3) 南極域におけるアザラシの現存数の推定について報告し、アメリカの南極基設遠近のアザラシ研究状況についてもその概要を報告した。現在、南極洋のアザラシは 1971年のレベルで 2億頭に達すると考えられるが、この 90％はカニクイアザラシで占める。残りの 80％はオキアミ類（特に Euphausia superba）、残りの 15％は魚類及び鳥、特にペンギンである。カニクイアザラシは分散して分布しているので、商業的な捕獲は困難であるが、面積 10%程度の捕獲は可能であると考えた。アザラシ類はオキアミ類等を周年摂餌し、且つ体の大きさからみて、ひげ捕餌よりも単位重量当たり高い食物消費レベルにあると考えられる。従って、アザラシ類の南極洋生物の食物連鎖における意義は重要であるが、現在までのところ必ずしも満足には明らかにされていない。

アザラシ類は南極大陸における各国の基地を中心年に年センサスが行われている例が多く、このような研究は継続的に行われてこそ意義がある。1968年に実施された南極生態学会において、数つかの興味ある結果が報告
された。後刻配布された会議の報告の原稿によると、若干の訂正が行われている。この辺が南極のアザラシの研究の現状を示すのかかもしれない。SINIF 博士のこの資料によれば、1968年～1969年度におけるウッデル海域において 800万～1,000 万頭のノーキアザラシが棲息している。以降、パールのハッセン海やオーストリアの区

域においてもアザラシの産卵場が始まった。これらの結果、アザラシの個体数は南極半島から南に向かって少

なくなり、又ノーキアザラシの個体数は 5,000 万頭より多くはないと考えられる。パールは南極周辺において、

テレマクリー方式により研究したアザラシの行動や捕食行動は、ヒョウアザラシは初夜ペンギンや魚類を捕食す

る最も良し肉食種と考えられたが、ノーキアザラシは（Eumastacia superba）を捕食する量もかなりの量に達す

ることが明らかになった。

かくて、南極洲の脊椎動物がいかにオキアミ類に依存

するかを SINIF 博士は言及し、オキアミ漁獲の影響に

ついても、この推論会は若干発展をもたらした。

日本、ノーキアザラシの南極洲の開発の現状は

根本により報告された。特に、1973～1974年度南極洲

における調査において、約 700 トンの Eumastacia superba

を漁獲し、この種の漁業にメドをつけて、ノーキアザラシの現状

とその漁業を関連させると、南極洲のオキアミ漁業は既に資源管理

を考慮すべき段階に入り、と考えられる。重要な生物学的

資料その漁獲とその解析を現在より着手する必要があるこ

とが示された。

南極洲海面海域の魚類資源については過去にかなり

多くの報告がある。このアカデミーチの TOMO 博士

は具体的な数字によりパーカリアザラシの魚類資源につき報

告した。これからの報告は現在まだ未開発状態にあ

ると考えられる。一例の外見は、Salmon der Mar=Pin

guipes f. asciates で、3,500 トンが S.Y.（Sustainable

yield）と考えられ、現在漁獲 1,700 トンに達している。

TOMO 博士より示された推算的な数字は第

1 表の如くである。この資料には日本の水産庁の調査船

開洋丸の資料も考慮されており、今後も国際的な協力で

南極洲の漁業資源の開発を進めて行きたいと考える。

南極大陸のマクグーロのオキアミタリ（Dissosti-

cous mawsonii）については、若干の資料を DEVRHIS 博士

が提供した。1971年以降 450 個体以上のほかオキアミ

タリの個体を採取したが、体長は 1.8 m まで、重量は

5kg から 75kg に至る大型の個体までである。分布深度

は 100 m～500 m 間に分布する。その資料は頭足類、中

深層性の生物及び時として深度生物である。マクグール

第 1 表 TOMO 博士によって示されたパーカリアザラ

 Sergio の水産資源の概要。

<table>
<thead>
<tr>
<th>魚／類</th>
<th>資源量</th>
<th>漁獲可能量</th>
<th>現在の漁獲量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraca（Micromesistis australis）</td>
<td>2,000,000</td>
<td>500,000</td>
<td>なし</td>
</tr>
<tr>
<td>Merluca capo</td>
<td>640,000</td>
<td>160,000</td>
<td>なし</td>
</tr>
<tr>
<td>Hake（Merluccius）</td>
<td>1,800,000</td>
<td>500,000</td>
<td>80,000</td>
</tr>
<tr>
<td>Granado</td>
<td>180,000</td>
<td>45,000</td>
<td>なし</td>
</tr>
<tr>
<td>Merluca negra</td>
<td>44,000</td>
<td>10,000</td>
<td>なし</td>
</tr>
<tr>
<td>Salmon der Mar</td>
<td>14,000</td>
<td>3,500</td>
<td>1,700</td>
</tr>
<tr>
<td>Calamar</td>
<td>145,000</td>
<td>36,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Notosaurus guntheri</td>
<td>75,000</td>
<td>20,000</td>
<td>48</td>
</tr>
</tbody>
</table>

基桝付近のオキアミリタリ資源は、南極洲におけるオキ

アザラシ及び日本の調査資料と考え合わせても有望な漁業資源

と考えられると述べた。しかし、北極海でのオキアミリタリ

資源は必ずしも大きいとは考えられず、漁獲の当より

その漁獲組成等について充分な資料の収集が必要と考え

られる。

南大西洋のセントボア島及アムステルダム島にお

けるエジ（Jasus）漁業についてはフランスの HURE

AU 博士が報告した。この海域におけるエジ漁において、

漁獲効力は 1959 年以降増加している。当初の 10 年間は

600～800 トンの漁獲（商品となる尾の部分のみ）で 1970

年に 1,000 トンに達した後、漁獲量は 1973 年の 600 トンに

減少し、単位漁獲労働量当りの漁獲も再減した。1974年

には 100 トンに漁獲をおさえ、資源を回復させることが

なるよう。

このエジはトロップによって漁獲され、漁業的形態

としては 4 種があり、年間 300 万ドルでその漁獲は速い。

この種のエジ（Jasus）は他の南極洲の島にも当然分布

が予想され、今後の研究課題となる。

南大西洋のその他の海域におけるエジ漁についての報告

はなかったが、カ＝トナムナフシなどのフランスの AR

NAUD 博士はクローゼット島付近におけるカ＝トナム（Litho-

des murrayi）についてのフランス研究者の近年の研究

の一端を紹介した。このカ＝トナムについて初めて有望な資料

としてクローゼット島付近の群が注目されたわけである

が、この種はマグリスへ海、マコノミルやニューオーリ

ンド沿岸海域から記載されている。又、日本の開洋丸の調

査においてもニューオーリンド沿岸のバンクより記載さ

れる、今後の調査に期待する。

最後に、この小委員会において FAO の GUILLAND

博士の海洋生物資源の開発に関連する資料の編集に関する

報告を検討した。この報告の
重要性を考えて GULLAND 博士はその報告の全文を依頼し、これを小委員会報告の付文とした。GULLAND 博士はこの委員会のメンバーの一人であり今回は出席しなかったが、今後も FAO との関連をも含めて協力が進められることになろう。

その他の議論としては GIPME（The Global Investigation of Pollution in the Marine Environment）に対する IOC の報告が配布され若干の論議が行われたが、今後の検討にまつることにして議事に留めた。

勧告として次に各項が取り上げられた。この勧告は SCAR, SCOR, IOC 及び FAO（ACMRR）を通して送られることになる。

1）近年多くの国々が南極洋の生物資源、特にオキアミ類、イクラ類、数種の魚類の開発を始めた。しかしながら、これらの生物について充分な知識は少ない。従って、これらの生物とその資源について、開発と同時に将来の資源管理に備えて充分な生物学的資料を集めめる必要がある。SCAR は南極条約により、これらの資料が当初よりこの「南極洋の生物資源に関する小委員会」に入手できるよう取り計らうことを希望する。又、この小委員会は FAO の線とこれ等資料の収集及び関心を持つ研究グループへの配布を協力する。

2）南極洋生態系におけるオキアミ類の重要性及びその資源生物の適切な管理との関連において、南極洋のオキアミ類の生物学、生態学及び資源解釈及び群集団の分布等に関する研究を激し発展に協力する。又、プランクトネット等による手法のみならず音波調査等によ

る群集団の分布、現存量の推定等の研究が更に行われるべきである。

3）イクラ類、浮魚、底魚等の一部、開発可能と考えられる未開発資源に関する我々の知識のギャップに関連して、これらの種の生物学的分布及び資源解釈が早急に着手されることを希望する。

4）我々はセント・ポール島及びアムステルダム島におけるエビ（イセエビ近似種）の乱獲に注意をすすめる。

我々は漁業会社が、これらのエビ類が適正漁獲量よりも Over fishing であるとの報告の時点で、資源研究の専門家の意見に従うよう勧告する。

5）我々はこれらの生物資源の適切な管理のための必要手段として、南極洋の生物海洋学研究の必要性を喚起する。南極洋において多くの海洋生物学的研究を研究船において行う必要があるが、広大な南極洋を考えれば少数の研究船においてこの海洋生態系を研究することは困難である。我々は、従って十分に組織された「南極洋の国際生物調査計画」International Biological Expedition of the Southern Ocean（IBESCO）を提案する。

IBESCO の目的は、

a. 南極洋の生態系の営巣活動の研究。
b. 南極洋の生物資源の適切な管理のための資料、情報の収集。
c. 食物網を通じて移行する海洋汚染物質のモニタリングのための資料、情報の収集等である。

(50)
学会記事

1. 昭和49年12月23日，東京水産大学において，第2回日仏海洋学会賞受賞者等推薦委員会が開かれました。
2. 昭和50年1月31日，東京水産大学において，編集委員会が開かれ，第12巻第4号の編集が行われました。
3. 昭和50年2月28日，東京水産大学において，編集委員会が開かれ，第13巻第1号の編集が行われました。
4. 下記の諸氏が入会されました。

正会員:

氏名 所属 紹介者

高山 晴光 東京農工大学，学生 佐々木哲義
川名吉一郎 通産省工業技術院 塚原 呉弘

中国工業技術試験場

小野寺三郎 物産プラスマチック開発部 池谷 勝治

中田 雅 青木建設㈱ 佐々木哲義

J.-Y. Le Gall Centre Océanologique de Bretagne

5. 死亡

正会員，城戸文夫氏は昭和49年12月26日逝去されました。従んで弔慰電を届ける。

6. 交換及び赠送図書

1) 英国産業ニュース，17(11, 12).
2) 海洋機器開発，6(11, 12), 7(1).
3) 海洋産業研究資料，5(9, 9, 11).
4) 海洋情報，26～28号。
5) 線研通信，278～280号。
6) 日本航海学会論文集，52号。
7) 機械学会誌，20号。
8) 日本ブランクトン学会報，21(1).
9) なつしま，11号。（科学センター）
10) 気象データ研究所研究集，8号。
11) 淡水論文研究所研究報告，24(1)。
12) 広島大学水産学部紀要，13(2)。
13) 国立科学博物館研究報告，17(4)。
14) Ocean Age, No. 12, 1974, No. 1, 2, 1975。
15) Deep Sea Mineral Resources Investigations in Northwest Pacific, No. 1。
19) Revue des Travaux de L'institut des Pêches Maritimes, Tome XXXVII Face, 4。

（51）
T.S. 水質モニターセンサー

当社製センサー（流速、流向、波浪、水位、塩分、酸素、PH、水温等々）が観測塔及び洋上ブイ、河口堰など全国に多数設置され連続測定記録、データメーターに使用され、水質監視を続けています。

THE TSURUMI SEIKI CO., LTD.
1506 Tsurumi-cho Tsurumi-ku, Yokohama, Japan 〒220
CABLE ADDRESS
TSURUMISEIKI Yokohama
TELEPHONE 045-521-5252～5
TELEGRAPH 3823750 TSKJPNJ
IWAMIYA INSTRUMENTATION LABORATORY
長期捲自記流速計
（NC-Ⅱ）

本流速計は海中に設置し、内蔵した記録器に流速流向を同時に記録するプロペラ型の流速計で約20日間の記録を取る事が出来ます。但し流速は20分毎に3分間の平均流速を又流向は20分毎に一回、共に棒グラフ状に記録しますから読取が非常に簡単なのが特徴となっております。

プロペラはA、B、C三枚一組になって居り
A（弱流用）……1m/sec
B（中流用）……2m/sec
C（強流用）……3m/sec

流速ベラに依る最低速度は約4cm/secです。

フース型長期捲自記検潮器
（LFT-Ⅲ）

営 業 品 目
階段抵抗式波高計
ケーブル式波高計
フース型検潮器
小野式自記流速計
港施型土圧計
理研式水中カメラ
その他海洋観測諸計器

協和商工株式会社
東京都豊島区目白4丁目24番地1号
TEL （952）1376代表 〒171
SAVE YOUR MONEY
thru NAKAGAWA's Cathodic Protection & ZAPCOAT (inorganic zinc rich paint) for valuable marine equipment & structures.

For complete information, write or cable:
NAKAGAWA CORROSION PROTECTING CO., LTD.
21, Kanda-Kajicho, Chiyoda-ku, Tokyo
Phone: Tokyo 252-3171
Cable: NAKAGAWABUSHI, TOKYO
ながい経験と最新の技術を誇る！
大洋の船舶用電気機器

主要生産品目
自励・他励交流発電機
直流発電機
各種電動機及制御装置
船舶自動化装置
配電盤

大洋電機株式会社

本社 東京都千代田区神田稽見町3の1-6
電話 東京 (293) 3061～8

岐阜工場 岐阜県羽島郡笠松町如月町1-8
電話 笠松 41111～5

伊勢崎工場 三重県伊勢崎市八木島町726
電話 伊勢崎 1815・1816・1835・816

下関出張所 下関市竹崎町399
電話 下関 (22) 28203704

北海道出張所 札幌市北二条東二丁目 北海道ビル
電話 札幌 (25) 6347(23)8061・8561
Direct-Reading Current & Direction Meter

Model
CM-2

Catalogues are to be sent immediately upon receipt of your order products

Products
KM-2: Direct Reading Knot-Meter for Trawl-Boats to Control Adequate Speed
ET-5: Electric Meter of Water Temperature
ECT-5: Electric Conductivity and Temperature Meter for Chlorine

TOHO DENTAN CO., LTD.
Office: 1-8-9, Miyamae, Suginami-Ku, Tokyo, Tel Tokyo (03) 334-3451-3

AUTO-LAB PORTABLE S-T BRIDGE
Model 602

製 造 品 目

転 倒 温 度 計 各 種
電 気 式 水 温 計 各 種
水 器 - 海 洋 観 測 機 器
気 象 水 理 化 学 用 温 度 計
サーモレンジャー・温度調節器

製品

日本およびアジア總代理店

株式会社 渡部計器製作所
東京都文京区向丘1の7の17
TEL（811）0044（代表）113

（カタログ御希望の方は請名御記入の上御請求下さい）
メルタック
熱溶融型接着剤ですから、溶剤や水を含まないので乾燥の必要がなく、瞬間的に接着します。
ポリエチレン、アルミ箔等にも良く接着します。

ポリロック
含浸、注型、充填用として使用される接着性と作業性の良いシーリング材です。

ポリワックス
ワックスを主成分とし、各種ポリマーをブレンドした防湿、密封用のシーリングワックスです。

東京工材株式会社
東京都中央区築地 4-7-1 TEL (542) 3361 (代)
Notes originales

The Remaining of Fish Entered a Set Net
(in Japanese).........................Yoshihiro INOUE 1

The Diffusion Coefficients of Radio-
nuclides in the Sediment..............Noburu TAKEMATSU and Motoaki KISHINO 5

Clay Minerals and Gypsum in a Sediment
Core off Southwest of Boso Peninsula,
Chiba Prefecture (in Japanese)........Saburo AOKI 15

Biological Features of the Trends Shown
in the Monthly Catches by the Spiny
Lobster Fishery in Uchiura Bay, Chiba
Prefecture..............................Kazunori TAKAGI,
Ken'ya MIZUGUCHI and Atsushi OHNO 20

Miscellaneées

System of Oceanography (in Japanese)
.......................................Michihei HOSHINO 25

Compte rendu

Facteurs limitants de l'élevage des anguilles
en France. Techniques japonaises cor-
respondantes et "adaptabilité"...............Joël QUÉRELLOU 30

Documentation

Un séjour en France pour la mission
scientifique de la Maison Franco-Japonaise
à l'année 1974 (en japonais)Kazunori TAKAGI 38

Polar Oceans Conference and Subcom-
mittee on Marine Living Resources in
the Southern Ocean (in Japanese)......Takahisa NEMOTO 43

Procès-Verbaux..................................51