La mer

昭和 53 年 8 月

日仏海洋学会

La Société franco-japonaise
d'océanographie
Tokyo, Japon
日仏海洋学会

編集委員会

委員長 冒永政英（鹿児島大学）
委員 佐野通平（東海大学） 井上英（東京水産大学） 森田良美（東京水産大学） 永田正（東京水産大学） 西村美（東海大学） 杉浦雄雄（気象研究所） 高木和徳（東京水産大学）
       高野健三（理化学研究所） 宇野寛（東京水産大学） 山路博（東京水産大学） 今村豊（東京水産大学） 神田誠二（東京水産大学） 有沢正男（気象庁） 増田茂男（東京水産大学）
       桐川三郎（東京水産大学）

投稿規定

1. 報文の投稿者は本会会員に限る。
2. 原稿は簡潔にわかりやすく書き、図表を含めて印刷ページで12ページ以内を原則とする。原稿（正1倍、副1・4倍）は、〒101 東京都千代田区神田駿河台2-3 日仏会館内 日仏海洋学会編集委員会宛に送ること。
3. 編集委員会は、事情により原稿の字句の加筆訂正を行うことがある。
4. 論文（欧文、和文とも）には約200英字の要旨（原則として仏文）の要旨をつけること。欧文論文には欧文の要旨のほかに約500字の和文の要旨をつけること。
5. 図及び表は必要なもののみに限る。図はそのまま版下になるように縮尺を考慮して鮮明に黒インクで書き、論文の図及び表には必ず英文（又は仏文）の説明をつけること。
6. 初校は原則として著者が行う。
7. 報文には1編につき50部の別刷を無料で著者に送付する。これ以上の部数に対しては、実費（送料を含む）を著者が負担する。

Rédacteur en chef
Comité de rédaction

Masahide TOMINANAGA (Kagoshima University)
Michihei HOSHINO (Tokai University)
Makoto INOUE (Tokyo University of Fisheries)
Yoshimi MORITA (Tokyo University of Fisheries)
Tadashi NAGATA (Tokyo University of Fisheries)
Minoru NISHIMURA (Tokai University)
Yoshio SUGIURA (Meteorological Research Institute)
Kazunori TAKAGI (Tokyo University of Fisheries)
Kenzo TAKANO (Institute of Physical and Chemical Research)
Yutaka UNO (Tokyo University of Fisheries)
Isamu YAMAZI (Tokyo University of Fisheries)
Yutaka IMAMURA (Tokyo University of Fisheries)
Kenji KANDA (Tokyo University of Fisheries)
Masao HANZAWA (Japan Meteorological Agency)
Tatsuyoshi MASUDA (Tokyo University of Fisheries)
Saburo YANAGAWA (Tokyo University of Fisheries)

RECOMMANDATIONS A L'USAGE DES AUTEURS

1. Les auteurs doivent être des Membres de la Société franco-japonaise d'océanographie.
3. Le Comité de rédaction se réserve le droit d'apporter, le cas échéant, des modifications mineuses aux manuscrits ainsi que de demander aux auteurs de les corriger.
4. Des résumés en langue japonaise ou langue française sont obligatoires.
5. Les figures au trait seront tracées à l'encre de Chine noire sur papier blanc ou sur calque. Les légendes des figures et des tableaux sont indispensables.
7. Un tirage à part des articles en cinquante exemplaires est offert gratuitement aux auteurs. Ceux qui en désirent un plus grand nombre peuvent les faire établir à leurs frais.
Origin of Trenches*

Michihei HOSHINO**

Abstract: The author maintained that the oceanic trench was formed as a furrow left behind when the ocean floor upheaved. The depths of two guyots which are located about 500 km apart on the Japan Trench are almost the same, and Middle Cretaceous shallow marine fossils were collected from the top of both guyots. The author urged that this phenomenon impresses the immovability of trench floor. The cause of origin of the trench is an upheaval of the ocean floor as a result of material rising from the upper mantle.

1. Introduction

In a previous work (HOSHINO, 1962) the author argued the case for a marked rising of sea level by the expansion of the earth, especially by the upheaving of the ocean floor, and he explained the formation of submarine canyons as a result of this uprisings of sea-level. Later he maintained (HOSHINO, 1970) that the oceanic trench was formed as a furrow left behind when the ocean floor upheaved. After that he published a book entitled “Eustacy in relation to orogenic stage” (HOSHINO, 1975) in which he explained the remarkable uprisings of sea-level after the Late Miocene, and also he referred to some related problems—submarine canyons, coral reefs, coastal plains, landbridges and so on. The term “orogenic stage” was used to mean the stage of great mountain building and not the stage of folding. He thinks that the great mountains were formed by block movement (so-called epiorogenic movement) in the Anthropogene (Pliocene-Recent) and the Triassic period (HOSHINO, 1978).

Recently, the author attempted a survey to prove the immovability of the trench floor. At the boundary between the Kurile-Kamchatka Trench and Japan Trench, there is the Erino Seamount. This seamount is a guyot rising from the trench floor at 7,500 m to about 4,400 m. Middle Cretaceous shallow fossils were collected from the top of the Erino Seamount (TSUCHI and KAGAMI, 1967). The Daiichi Kashima Seamount is located at the boundary between the Japan Trench and the Izu-Bonin Trench, and it has the same depth as the Erino Seamount. If the trench floor is an immovable region then it should be possible to collect Middle Cretaceous shallow marine fossils from the top of the Daiichi Kashima Seamount. He tried a survey with this in mind, and did indeed find the same types of fossils as those of the Erino Seamount on the top of the Daiichi Kashima Seamount (The Daiichi Kashima Seamount Res. Group, 1976). In the world, there are many other pieces of evidence that show —4,000 m Middle Cretaceous sea-level. As a consequence of this survey, he believes that the idea of the immovability of the trench floor has received important support, but there are few geologists who agree with this hypothesis.

There are those who accept the idea of earth expansion, but they urge a large scale expansion of the earth as a cause of continental drift. The author cannot support a large scale expansion of the earth, and he cannot understand their hypotheses to permit the depression of trenches. Absolute depression of the earth’s crust means shrinkage of the earth. Any hypothesis for the origin of oceanic trenches may be a touchstone for all hypotheses on crustal dynamics.

2. Relation between the orogenic belts and distribution of trenches

Major recent trenches are distributed at the margin of the Pacific, but very rare in the
Atlantic and Indian Oceans. Judged from the viewpoint of orogenic belts, the distribution of recent trenches coincides with the Alpine orogenic belt except Tethyan region. Are there any relationships between Caledonian or Hercynian orogenic belts and the distribution of trenches? Off the western coast of Scandinavia which corresponds to the region of the Norwegian Sea, there is sedimentary basin with wedge sediments (TALWANI and ELDKOLM, 1973). As the basement of this basin is oceanic crust, the depression may be called a “fossil trench”. The P wave velocity of the lowest part of the sediment is 4.4 km/sec, and Talwani and Eldholm described that this velocity shows the upper Palaeozoic formations. They also said that this depression extends to the North Sea, and the geologic age of the lowest sediments of the North Sea is of the Devonian period. So it may be concluded that the formation of this depression was related to the Caledonian orogeny. A similar depression under the continental rise is reported from the neighboring Barents Sea (RENARD and MASCLE, 1975). Perhaps, a similar depression may be observed from all the regions off Caledonian orogenic belts. Crustal movements of such an area is characterised by the so-called epirogenic movements—vertical block movements with faulting (TALWANI and ELDKOLM, 1973).

A typical Hercynian orogenic belt is seen in the Appalachia Mountains of the eastern part of the United States, and off the eastern coast of the United States there is a famous depression with a thick wedge sediments (HEEZEN, 1962). Recently, SHERIDAN (1975) described the sediment filling this depression and the geologic age of the oldest sediments is Triassic. He urged that formation of this depression is related to the opening of the North Atlantic. However, characteristic so-called epirogenic crustal movement in the Triassic period is not limited to the area around the North Atlantic: we can observe the same in many regions of the world. The author argued that this crustal movement in the Early Triassic is not related to continental drift, but is related to the expansion of the earth (HOSHINO, 1978).
Fig. 2. Diagrammatic structural cross section of the Cape Hatteras continental margin (from SHERIDAN, 1975).

Europe, one of the Hercynian orogenic belts is distributed on the northern part of the Iberian Peninsula. Under the outer continental margin of this region there exists a depression which has been filled with sediments since Triassic times, and is described as the "fossil North Spanish trough" (RENARD and MASCLE, 1975). The eastern continental margin of the Atlantic show similar conditions as those of western margin.

As mentioned above, all orogenic belts of Phanerozoic time are associated with filled trenches. The cause of this phenomenon is related to the crustal development of the earth. The orogenic belts of Cretaceous time are distributed in the continents, but the orogenic belts of the Phanerozoic time are distributed on that part of the continent which borders the ocean.

There is no trench (filled or unfilled) off the shield regions of the world. However in this case, the basement of oceanic crust gradually changes upward from continental margin to ocean (SIESSER et al., 1975). There is no trench at some marginal parts of the Pacific, e.g., the region between the Izu-Bonin Trench and the Mariana Trench and off California coast. Though MENARD (1964) stated that the Izu-Bonin and Mariana Trenches are separated from each other by volcanoes, separation of the two trenches is actually due to a non-volcanic submarine plateau. The author (1963) maintained the Yamato Bank in the Japan Sea, the Daito Ridge in the northwestern corner of the Philippine Sea and the Ogashawara Plateau which is located between the Izu-Bonin Trench and Mariana Trench may be formed of Precambrian basement from the evidence of the ultra deep earthquakes. Already a Precambrian rock specimen has been collected from the Yamato Bank (HOSHINO and HONMA, 1966), and acid plutonic and metamorphic rocks were collected from the Daito Ridge (MIZUNO et al., 1975). Perhaps older continental rocks may be sampled from the Ogashawara Plateau in future.

It is well known that there is no trench off California, and it is explained that this due to the extension of the continent (GUTENBERG and RICHTER, 1954). The existence of Precambrian rocks was reported by EMERY (1960) from an island which exists in the continental borderland off southern California. According to DUNBAR and WAAGE (1969, Fig. 7–18), the sedimentary basin of the Late Precambrian Belt series can be extended to the sea bottom off southern California. MAXWELL (1975) described that the sedimentary materials of the Belt series was not transported from a western region, but since the sedimentary basin of the Belt series extends under the sea, it is not possible to determine a lost continent from the subaerial Belt series. We must remember that the Precambrian orogenic belts are distributed only inside the continents. According to these evidences the author considers that the fact of no trench off California may be related to the distribution of the Precambrian basement.

3. Geologic and geophysical characters of the trench

A. Topographical characters of the trench

One of the topographical features of trenches is the uniformity of the depth. With respect to this problem, MENARD (1964) referred that the uniformity of the depth of main trenches of the Pacific shows the limit of the crustal downwarping, and von HÜENE (1975) described that the uniformity of depth and topography of
trenches of the Pacific reflects a similar origin for trenches. The uniformity of the depth of the trench is not only related to the recent trenches, but also related to the fossil trenches. For instance, the depth of the basement of the fossil trench under the continental rise off the eastern coast of the United States is about 10 km, and the depth of the basement of the fossil trench off Nova Scotia is also the same (SHERIDAN, 1975). Perhaps a similar circumstance may be exist in the Hawaiian Trench because the depth of the Mohorovicic discontinuity is 11.5-13 km (FURUMOTO et al., 1968). Although, the topography of the Southwest Japan Trench is obscure, and its depth is only 4-5 km, thickness of the sediments being 6.5 km (MURAUCHI et al., 1968), the depth of the basement of this trench is equal to the others.

MENARD (1964) suggested that the depth of the trench is not so important, rather the relative depth between the ocean floor and the trench is important as the measure of the crustal depression. The author maintains that the uniformity of the trench depth is the most essential character of the trench, though the relative depth is also important as it shows the magnitude of upheaving of the ocean floor.

Regarding the uniformity of the depth of trenches, it is very interesting to consider the depth of a guyot which is located on the about 500 km apart on the Japan Trench are almost the same, and Middle Cretaceous shallow marine fossils were collected from the top of both guyots. The author urged that this phenomenon impress the immovability of trench floor.

The second character of the trench topography is the marginal swell. The marginal swell, with an elevation of 200-300 m and the width of 200-300 km is located on the boundary between the oceanward slope of trench and the ocean floor. In many cases volcanoes are distributed on the marginal swell, for example low hills and volcanoes are distributed on the marginal swells off the Aleutian, Kurile and Middle America Trenches (MENARD, 1964). It is difficult to explain the origin of the swell as a result of compressional force since volcanoes are distributed on the marginal swell. Volcanoes occur only in the field of tension (TANNER, 1973), and de SITTER (1956) and UDINTSEV (1967) considered that the mantle materials are uprisings here.

The third character of trench topography is the "ridge and depression" on the oceanward slope of the trench. In the case of the Aleutian Trench, valleys of several kilometers in width and 50 km in length are developed by normal faulting; the ridges are fault blocks and the valleys are fault zones (HERSEY, 1961). Similar topography in the Japan Trench was called a "long narrow depression" (IWABUCHI, 1968). Both the marginal swell and the ridge and depression are not formed by compressional force.

B. Trench sediments

Generally, sediments of a trench are thin, and there are many parts which have no sediment. However, a trench which has no sediment is located along the island arc, other trenches which have large rivers in their hinterland have a plentiful supply of sediments and the trench topography is obscured. It is known that the volume of trench sediments is related to the age of trench formation and its palaeo-environment.

According to the plate tectonic concept, the oceanward slope of a trench should be covered by pelagic sediments, but in many places, pillow lavas and basalt flows are distributed on the ocean side slope of the trench (FISHER, 1975). Though there are thick sediments on the neighbouring ocean floor, there is little sediment in the New Hebrides and Vityaz Trenches. This makes it difficult to postulate plate sinking here (HAYES and EWING, 1971).

Since SCHOLL et al. (1968) pointed out that the sediments of the Peru-Chile Trench are not deformed, many geologists considered this problem and they have discussed non-deformed trench sediments. OLIVER (1970) suggested that the trench sediments are not deformed because they are too soft to be deformed by compressional force. However, since the uppermost sedimentary layer of the Japan Trench is cut by fault (LUDWIG et al., 1966), the author cannot agree the idea that trench sediment is too soft to be deformed. We observed slightly deformed sedimentary layers in the air-gun
records of the Southwest Japan Trench. We have also observed an abyssal hill in this trench and an intrusive body (HOSHINO, 1964). According to this phenomenon the author considers that the deformation of the trench sediments is caused by igneous diapiric activity. Deformation of fossil trench sediments off eastern coast of North America is also caused by the diapiric intrusion (SHRIDAN, 1975). At present, the problem of the deformation of sediment on the lower landward slope of trenches is under discussion. CHASE and BUNCE (1969) maintained that subduction of the plate is proved by the deformed sedimentary layer on the seismic profiler records at the boundary between the slope and ocean floor off Barbados Island. However, as GROW (1973) pointed out, these records cannot deny the possibility that the deformed sediments are the product of slumping.

During the deep-sea drilling by the Glomar Challenger on the lower landward slope of the Southwest Japan Trench (Site 298), deformed young sediment was obtained, and many plate tectonists urged that this phenomenon was caused by subduction of the plate. Coring length of this site is 611 m, and upper 194 m is not deformed. The shipboard geologists described all core sample belongs to the Quaternary system. The author has some doubts about the age determination by microfossils and is inclined to judge the age of the boundary between deformed and nondeformed sediment to be the Early/Middle Pleistocene, namely the Rokko movement stage of the western Honshu which is at the same orogenic stage as the Pasadena in California (HOSHINO, 1975). Crustal movement of the Pasadena stage is observed in many places of the world (HOSHINO, 1975). After this stage, remarkable crustal movement is not observed on land, and "terrace stage" or real glacial stage had been commenced. Also at Site 181, the landward slope of the Aleutian Trench, the upper 170 m of sediments is not deformed (SEELY et al., 1975). The author considers that the conclusion that the sediment on the landward slope of a trench was deformed because of the sinking of the plate, must be reexamined.

The wedge sediments of the Aleutian and Washington-Oregon Trenches (e.g., Site 174 of the G. Challenger) are horizontal deltaic sediments of the Middle to Late Pleistocene time (SCHOLL, 1975). The thickness of this wedge sediments increases toward land, and at the lower part of the slope the thickness of the wedge is 1-1.5 km. It is most significant that the geologic age of the wedge sediments is post Early to Middle Pleistocene. Namely the age of trench formation accords with the Pasadena stage which is the latest "epicogenic" block movement stage of Earth's history (HOSHINO, 1978). As the fossil trench off the eastern coast of the United States had been formed in the Early Triassic "epicogenic" stage, it is beyond doubt that the formation of the Washington-Oregon Trench is in the Anthropogene epicogenic stage. Geologic phenomena related to the Triassic and Anthropogene epicogenic stage had been described in other paper (HOSHINO, 1978). According to the data of the Washington-Oregone Trench (SCHOLL, 1975), the depression which has a 1-1.5 km relative depth was formed at the boundary between ocean floor and continental slope. The author (1975) urged that sea-level rose 1,000 m in this time as the result of ocean floor upheaving.

In many cases, recent trench sediments are not composed of pelagic red clay; for instance, the sediments of the Japan Trench is composed of blue mud which contain much organic material (HOSHINO, 1962) and this material is the basic food for trench animals. Biologist have discussed the antiquity of the trench fauna (ZENKEVICH and BRISTEIN, 1960; MENZIES et al., 1961), but it seems to me that they refrained from giving any definite opinion on the problem. BELIAYEV (1971) suggests that the development of the trench fauna is very rapid, and implies that the age of the formation of recent trench is the Cenozoic era. Relatives of the trench fauna inhabit the landward slope, and did not inhabit on the ocean floor. On the contrary, the pelagic red clay fauna is a descendant of the continental margin fauna (MENZIES et al., 1973).

C. Gravity anomalies and terrestrial heat flows around the trenches

( 5 )
From the initial stage of maritime gravity observations, the problem of negative anomaly associated with oceanic trenches had been discussed by many earth scientists. Based upon this anomaly, the concept of backarc theory was proposed as the origin of trenches (VENING MEINESZ, 1948). The author, urged that the negative gravity anomaly zone along the lower continental slope reflects the thick Neogene sedimentary basin at the base of continental slope (HOSHINO, 1969). The same conclusion was reached by HAYES and EWING (1971), and it is impossible to relate this gravity anomaly with the origin of trench.

In many places on the marginal swell, a positive gravity anomaly was observed. For example, on the marginal swell of the Kurile-Kamchatka Trench, gravity anomaly of ±50−60 mgal was recorded (WATTS et al., 1976). They suggested that this value does not agree with the plate theory. VENING MEINESZ (1948) considered that this positive anomaly indicates compensating upwelling mantle materials which occur at the boundary of the tectogene. Though UYEDA (1975) and SEGAWA and TOMODA (1976) urged that this phenomenon is related to the stress system with the convergence of the lithosphere, it is impossible to suppose such a stress system from the geological and geophysical character of the marginal swell. A positive gravity anomaly was observed on the Hawaiian marginal swell, too (WATTS et al., 1976). The most reasonable explanation is to suppose the upwelling of heavy materials from the upper mantle.

Plate tectonists maintain that the trench is the part of sinking of the plate, and the value of terrestrial heat flow is lower than in other parts of the earth. Indeed the value of terrestrial heat flow from the trench floor is generally lower than that from the island arc or ocean floor, but frequently a slightly higher value is observed from the marginal swell. Namely, the curve of the heat flow value coincides with the topographic profile. It is highest at the island arc, lowest at the trench floor, and slightly higher at the marginal swell than on the ocean floor (YASUI et al., 1970). At the marginal swell of the Ryukyu Trench, three high isolated heat flow positions (2.46, 4.20, 2.40 HFU) were detected (WATANABE et al., 1970). They described that this high values had not been observed at the eastern part of the Kurile, Japan and Mariana Trenches, and any explanation cannot resolve this phenomenon. But it is well known that high heat flow values have been observed in the neighborhood of the Southwest Japan Trench of the northern part of the Shikoku basin. Though these high values are explained as related to the Izu-Bonin Ridge, the parts of highest heat flow are not so close to the ridge, but are observed from the ocean floor.

Deep oceanic trenches are characteristic topography of the Pacific, and the heat flow value of the Pacific (mean value is 1.7 HFU) is higher than from the Atlantic and Indian Oceans (LANGSETH and von HERZEN, 1970). They suggested that the high heat flow of the Pacific reflects the youthfulness of the Pacific. The author considers this fact to be related to the origin of the Pacific trench.

D. Earthquakes and trenches

For many years the concept of a seismic plane has been established and many earth scientists are interested in the relationship between trench and earthquakes. The seismic plane is called
Benioff zone, and BENIOFF (1949) maintained that this seismic plane is a reverse fault plane or a thrust plane. A distinct seismic plane cannot be observed in some trench regions. BELOUSSOV (1971) described that among many geological and geophysical phenomena, only the earthquake mechanism shows that trenches are place of compression. However, recently, the records of the earthquakes of tensional (normal fault) origin have been collected. KANAMORI (1972) reported the great earthquakes of normal fault origin occurred under the Japan and Aleutian Trenches, and KATSU- MATA and SYKES (1969) reported that earthquakes which occurred on the marginal belt of the Philippine Sea have a reverse fault origin, but TANNER (1973) stated that many earthquakes have a normal fault origin. According to these data we know that the trench region is not a simple compressional field. KANAMORI (1972) urged that normal fault under the trench occur as a result of tearing off of the cool plate. The author cannot agree with his opinion based on the data of heat flow and gravity observation at the marginal swell.

Deeplving of the earthquake foci from trench to continent, cannot be observed in some trenches. Around the Greater Antille Islands, the earthquake foci deepen from the Puerto Rich Trench toward the south, and from the Muertos Trench toward the north (SYKES and EWING, 1965), consequently the profile of distribution of foci shows a V form. These distributions of earthquake foci are not only observed at an island arc-trench system region, but also is observed in the Hindu Kush Mountains (HIRAYAMA and ASANO, 1972). HATHERTON (1975) discribed that the relation between the inclination of the Benioff zone and shallow earthquakes which occurred in an active margin is obscure. The author (1969) considered that there are no relation between shallow earthquake and trench, because shallow earthquakes are related to the Neogene sedimentary basins on the “active” continental slope. The earthquakes which are located in the Benioff zone are due to continental massif and ocean relationship.

4. Origin of trenches

Science early in the Twentieth Century, many geologists have discussed the origin of trenches. For instance, SUES (1906) asserted the origin of trench as down folding as a result of earth’s shrinkage. Nowadays nobody believes in the concept of a shrinking earth. Though geologists of Netherland tried to explain the origin of trench by the concept of buckling crust (VENING MEINETZ, 1930; KUENEN, 1936; UMGROVE, 1947), the sediments of many trenches are not so thick, and negative gravity anomaly observed on the landward slope of a trench is not related to the buckling materials. VAN BEMMELEN (1954) urged that the upheaving of the island arc was caused by granite that was differentiated from basaltic magma. Basaltic magma moves from the ocean side to the lower island arc to compensate for upris- ing granite magma, then a trench was formed at the base of the continental slope. But as the author has stated elsewhere (HOSHINO, 1975), the upheaving of the island arc in the Anthropogene period was caused by basic materials from the upper mantle.

Plate tectonists maintain that the formation of a trench is related to sinking of the plate, but the nature of the plate is very obscure and it is very difficult to understand the idea of a pair of upwelling and desending plates.

The hypothesis of the author on the origin

![Fig. 4. Explanatory scheme for the origin of trenches (from HOSHINO, 1970)](image-url)
of trenches was described in a other paper and a book (HOSHINO, 1970: 1975). After that, he obtained considerable evidence from the survey of the Daiichi Kashima Seamount where a guyot is located on the trench (The Daiichi Kashima Seamount Res. Group, 1976). Recently, the author obtained same evidence from the J-smalograf in the northeastern corner of the fossil trench off the eastern coast of the United States (The Shipboard Scientific Party, 1975). The idea of the author is based on the 'insignificant' expansion of the earth. In his meaning, the extension of the earth means the upheaving of the ocean floor caused by differentiation of the upper mantle materials, and that part left behind is the valley which is called a trench.

The fact that there is no trench around the Precambrian shield region, the distribution of the Caledonian and Hercynian fossil trenches around the Norwegian Sea and the North Atlantic and recent trenches around the Pacific Ocean, all show that the upheaving of the Pacific Ocean floor took place in the latest stage of the earth's development. WORZEL (1975) described that the P wave of the lower crust and the upper mantle of the Pacific Ocean is much more basic than in the other oceans. LANGSETH and von HERZEN (1970) described that the heat flow of the Pacific Ocean is higher than that of the Atlantic and Indian Ocean, and this evidence implies the youthfulness of the Pacific Ocean. From the view point of the earth's development, the Cryptozoic is an acidic igneous stage (continental stage), and the Phanerozoic is a basic volcanic stage (oceanic stage). These kinds of evidence, namely the lower crust and upper mantle of the Pacific Ocean is younger than the Atlantic and Indian Oceans, show that the activity of the Pacific is the youngest of the earth's development.

From the view point of the plate tectonics hypothesis, the fracture zone off the coast of California has a special character, but following the author's hypothesis these ridges are the boundary of the differential vertical movement of the crust. The depth of the northern floor of the Mendocino Fracture zone is less than the southern floor, and the terrestrial heat flow of the northern floor is higher than to the south (MENARD, 1964). In this case, the thinness of oceanic crust of the northern region is caused by the existence of a 7 km/sec layer which belongs to the mantle, and the smallness of the depth of this region is caused by the upheaving of the basement of the oceanic crust. These phenomena show the original form of the expansion of ocean floor, and MENARD (1964) described that the upheaving of the ocean floor as a result of the decrease of P wave velocity by 0.8 km/sec due to decrease in density of mantle material. The author seconds his opinion. The author cannot agree with the opinion of BELOUSSOV (1971) or SHERIDAN (1975) that 7 km/sec layer is produced as a result of mixing of the continental crust and upper mantle materials. With regard to the formation of trenches, the upheaving ocean floor of the northern part of the Mendocino Fracture Zone produced the Washington-Oregon Trench in the Anthropogene period, and the non-upheaving of southern floor is related to the non-production of an oceanic trench. The Venezuela basin of the Caribbean Sea has the Muertos Trench in the northern part, the Los Ríos Trench in the southern part and the Grenada Trough in the eastern part, and the central part of the basin is gradually domed up with relative height in 700-800 m from the margin of the basin (OFFICER et al., 1957; EWING et al., 1971). The author considers that the origin of the depression around the Venezuela basin may be the same as that of the typical oceanic trenches around the Pacific Ocean.

Many geologists have pointed out that the trench is not a compressional field since the layering of trench sediments is not deformed. Slumping sediments or deformed sediments occur on the landward slope of the trench. It is not sufficiently proved that the slumping or deformation of sediments was due to the subduction of the plate. On the contrary, the deformation of the young sediments on the landward slope of the Southwest Japan Trench and Aleutian Trenches occur some 100 m-200 m under the sea-bottom, thus showing that the deformation of sediments occurred at the time of worldwide crustal disturbance. In short, it was produced
by the Pasadenaian orogeny in the Early/Middle Pleistocene.

The fact that there is a fossil trench which was filled by the sediments since the Triassic period under the continental rise and that the recent trenches have sediments since the Early Anthropogene, shows that the mechanism of the formation of trenches is upheaving of the ocean floor which was caused by a large scale uprising of mantle materials. This event was called "volcanic orogeny" by the author (Hoshino, 1978). If the trench is a furrow left behind when the ocean floor upheaved, the trench floor show primary surface of the earth, and the uniformity of the trench depth shows the surface of the spheroidal primary earth.

As to the origin of the Aleutian Trench, Stowely (1967) described that the trench around the mainland was established since the late Cretaceous, and that the formation of the trench was accelerated in the Pleocene to Pleistocene period. Scholl (1975) said that the age of the wedge sediments of the North Pacific trenches are limited to the Middle and Late Pleistocene time, thus the age of trench formation is either young or it is very old as the wedge sediments have lost their wedge-shaped character. Von Huenne and Shor (1969) suggested that it was not necessary to move the continental slope with trench, but crustal movement of the trench had to be closely connected with the movement of the slope or land parts, and it is a reasonable idea that the formation of the trenches was related with the upheaving of the continental shelf and Aleutian Peninsula since the Miocene time. The author consider that the crustal movement of continental slope and ocean floor took place at the same time since the Early Pliocene, and the trend of the movement of these parts was and uprising due to the expansion of the earth.

Scholl et al. (1965) described that to the south of Valparaiso the Peru-Chile Trench contains 500–700 m thickness of turbidites which abut on the basement, and the age of these sediments is not older than the age of the upheaving of the Andean Mountains in the Miocene to Pleistocene. Stille (1955) also said that the age of formation of the Pacific trench is almost the same, the Late Pliocene. As the fossil trench of the eastern or western margins of the North Atlantic was formed at the Early Triassic period after the penepisation stage of the Late Permian, the Pacific trenches were created in the Early Triassic period, grew up at the Cretaceous transgression stage (stage of ocean floor upheaving) and were completed with the epigene movement which produced the great sea-level uprising at the Early Pliocene and Early/Middle Pleistocene. Belousov and Ruditch (1960) said that the fore-depression margin of the Japanese Islands had rapidly been depressed in the Pliocene period, and the region became a trench where the depressional movement was too rapid to be filled by the sediments. The relation between 'depression' after the Pliocene period and the formation of trench corresponds to the relation between the trench forming and ocean floor upheaving and the uprising of sea-level as the result of ocean floor uprising.

The data from geophysical surveys cannot conclude that the trench is a compressional field, and the trench is produced by subduction of the plate. Though Tanner (1973) urged that the trench is under a tensional force, without expansion of the earth it has to produce compressional field in other parts of the earth's surface. As Worzel (1965) suggested both the trench and the ridge are tensional areas, then we should expect moderate expansion of the earth. Worzel (1965) described extension of the earth's radius as 2–3%. It is an increase of radius of about 100–200 km. The author considers the expansion of the earth's radius is about 5 km since the Palaeozoic era resulting in an uprising of the sea-level. Such a magnitude of the earth's expansion cannot produce the continental drift.

Can the positive gravity anomaly and high terrestrial heat flow of the marginal swell be explained by the concept of plate subduction? Topographic high of the marginal swell also show the highest uprising of heat from the upper mantle. Though Oliver (1970) said that the topography of "ridge and depression" on the oceanward slope of trench is produced by tensional force as a result of the buckling plate,
this opinion cannot explain the origin of the positive anomaly and high heat flow. UYEDA (1975) explained the origin of positive gravity anomaly as a result of convergence of the lithosphere, but his opinion is not so persuasive.

5. Conclusion

The author urges that the trench was formed as a furrow left behind when the ocean floor upheaved. LUDWIG et al. (1966) described that the trench was produced where the thickness of earth’s crust is thin and the thinness of the earth’s crust was due to the faulting, warping with the crustal extension. From the view point of the crustal structure, the author considers that the trench is a place which is not so much affected by the expansive force because of the existence of the boundary between the continental and oceanic structures. WORZEL (1965) also said that the trench has a similar origin as that of a rift valley, i.e. tensional faulting. Though the author agrees with Worzel’s opinion that the trench is a rift valley, the rift valley is not a valley caused by depression, rather it was produced as an abandoned valley when the ancient crust upheaved. KATZ (1975) maintained that the formational force of trenches — downwarping — can act only in a local area, and it relates to the development of the marginal part of the orogenic zone. The author agrees with the opinion that there is no need for plate tectonics to explain the formation of the trench, and the formation of the trench is related to the geological development of each regions. However he cannot agree with the opinion that formational force acts only in a limited area. The origin of trench is an upwelling of the ocean floor as a result of materials of the upper mantle rising. This also produced the domed elevation and rift valley in the shield regions, and produced the high mountains in the orogenic belt. The formational force of the trench is a global expansion of the earth.

Today, geologists describe the continental margin of the Pacific and Atlantic Oceans as active and passive margin respectively. The division may be done using the geological age of the margin as a basis for classification. This author divides the continental margin into two main classes, one is the Precambrian shield margin and the other is the Phanerozoic margin. The former has no trench and the latter has fossil or recent trenches. He believes it is a reasonable to divide the continental margin into active and passive, but he cannot agree with the opinion that the passive margin is a rift margin and the active margin is a subducting plate margin. Though the age of orogeny is not the same, every continental margin of an orogenic zone of the Phanerozoic eons has the same origin. Usually the trench was formed as a furrow left behind in the epirogenic stage, at the boundary between the continental and oceanic crusts.

Acknowledgements

The author appreciates assistance he has received, in preparing his manuscript, from Prof. A. SMITH, Bedford College and Prof. M. HAYASAKA, the Faculty of Marine Science and Technology, Tokai University.

References

BELOUSSOV, V. V. and E. M. RUDICH (1960): Position of the island arc upon the development of the earth (transl. Y. KURODA), Green-Tuff Sosho, no. 2, 1–24.


Renard, V. and J. Mascle (1975): Eastern Atlantic
continental margins various structural and morphological types, in "The Geology of Continental Margins", 286-291, Springer-Verlag, N.Y.


海溝の成因

星野通平

要旨：海溝の地形・地質・地球物理学的諸特徴は、海溝が圧縮の場において形成されたものではない、むしろ、張力の場において形成されたものであることを示している。筆者は、海溝は地球の膨張からとど残された凹地である、と主張する。つまり、地殻の弱緯にとどして膨張（隆起）力が作用せず、膨張（隆起）する大陸・大洋地殻のあいだにとり残された凹地が海溝である。現世および化石海溝は、第三記の造山帯にとどして分布しており、このことは第三記が償還性（海洋性）火成岩の活動時代であることに因応しており、太平洋に現世海溝が多数分布することは、太平洋の海洋性地殻の活動（隆起）が一覧新期間のものであることを物語っている。
Biological and Ecological Studies on the Propagation of the Ormer, *Haliotis tuberculata* LINNAEUS

I. Larval Development and Growth of Juveniles*

Yasuyuki KoiKE**


La ponte a été obtenue par stimulation thermique en eau de mer courante. Un grand nombre d'œufs fécondés a pu être obtenu au début août 1973.

Le développement larvaire et la croissance de naissain ont été suivis pendant 435 jours après la fécondation. Les stades importants du développement sont illustrés au moyen de figures.

La taille moyenne de 2840 individus au 435e jour était 2,12 cm de longueur et 1,28 cm de largeur.

1. Introduction

The ormer (ormeau or oreille de mer in French), *Haliotis tuberculata* LINNAEUS, is a European abalone, and is found along the northwest coasts of France, from the south coasts of the Brittany Peninsula to the west coasts of the Normandy Peninsula, as well as around the British Channel Islands (Fig. 1.). It grows to a maximum size of about 12 cm in shell length and has always been highly esteemed. There has been a special ormer fishery industry since ancient times. Above all, in Guernsey in the Channel Islands, the ormer fishery was commercially important (53 tons of total catch in 1967), and from here the ormer used to be exported to France (Girard, 1972). The ormer shellfishery there has long been operated under strict regulations, but nevertheless the natural stocks have decreased remarkably in recent years so that a ban had to be placed on all ormer fishing. Even in France measures have been taken to protect ormer stocks and fishing by divers has been prohibited since 1965. At the present time the only ormer fishery permitted is shoregathering at the period of the spring.

Fig. 1. Range (hatched area) of the European abalone, *Haliotis tuberculata*.

* Received May 29, 1978
** Centre Océanologique de Bretagne (Aquaculture), CNEXO, Brest, France.
Present address: Laboratory of Animal Ecology, Tokyo University of Fisheries, Konan 4-5-7, Minato-ku, Tokyo, 108 Japan.
tides.

The study of the basic biology of this shellfish has a long history; BOUTAN (1899) describes its early development in relation to asymmetry. STEPHENSON (1924) makes an investigation to seek the reasons why ormer stocks decreased around Guernsey. CROFTS (1929, 1937) examines its basic biology and larval development with regard to torsion. FORSTER (1962, 1967) carries out ecological studies by diving and tagging experiments to make clear its distribution, movement and growth around the coasts of Guernsey. GIRARD (1972) makes a histological study of gonad development as well as other aspects of ormer reproduction. However, no work had ever been done concerning the artificial propagation of this species.

The present author began trials in June 1973 for the artificial induction of spawning of the species in question at the Centre Océanologique de Bretagne, CNEXO (CNEXO-COB) in Brest. The aim was to develop a technique for getting a good number of seedlings for mass production or tank rearing on a large scale. This study reveals some interesting facts new to science, and above all it makes clear all the aspects of early development and growth of the ormer for 435 days after fertilization through spat and juvenile stages under artificial conditions.

2. Material and methods

The adult ormers for the rearing experiments were taken by diving in Brest Bay during the period from the end of June to the beginning of August in 1973.

The procedure employed in the experiment is summarized as follows:

Spawning was induced in the laboratory by means of exposure to air, or of fluctuating water temperature acting as a stimulant on the mature adults. The aquarium used for spawning for both sexes was made of polyethylene, rectangular in shape, and 60×40×25 cm in size. After emission of a quantity of sperm, male shells were removed from this tank and placed in other tanks.

The eggs were fertilized in the tank by the sperm already emitted therein. When necessary, some extra sperm was added from the other tanks.

After being washed several times, fertilized eggs were reared in another tank of the same size and type. At the trochophore stage, ormer larvae were removed to a series of larger tanks, 200×50×25 cm in size. During the first 12 days, the larvae were kept in still water which was not changed at all. Furthermore, during this time very little aeration was applied.

After the 13th day and for the rest of the experiment, larvae were kept in running water; water temperature was in the range of 20°±1°C, and specific gravity between 1.0252 and 1.0267.

At the time of settlement of the larvae, collectors were set in the tanks. They were made of transparent plastic plate, on which diatoms had grown to form a thin film or layer. The water was enriched by adding to it "Conway solution" (1 cc/l) and Sodium metasilicate, Na₂SiO₄·5H₂O, (30 mg/l) to promote the growth of diatoms. An additional feeding of Tetraselmis suecica was found to be very effective.

After the young abalones started to grow up and to move from the collectors, a number of pieces of rock and U shaped plastic plates were placed in the tanks as shelters for them. The plastic plates were 30×20×2 cm in size. Young abalones were then fed first on Ulva lactuca in small pieces and later on a mixture of Laminaire digitata, Saccorhiza polychides and Rhodymenia palmata.

3. Results and considerations

Induction of spawning

For the trials for inducing spawning, about 30 adult ormers were collected on June 29th, 1973. All spawned during the night of 29th-30th June and could not be used for the experiments. In this case water temperature in the tanks was maintained at the natural water temperature of 17.2°C. However it took 40 minutes to transport the ormers from the collecting site to the laboratory, and stimulation caused by drying during this time will have had some effect on inducing spawning. From this result it became clear that mature adults are easily stimulated and that collected ormers should be induced to spawn on the same day they are collected. Following this method,
Table 1. Conditions for induction of spawning carried out on 1st August, 1973.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Items</th>
<th>Time</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection of adults</td>
<td></td>
<td>12 hr 10 min</td>
<td>17.5 (open sea)</td>
</tr>
<tr>
<td>Stimulation in air</td>
<td></td>
<td>during 40 min</td>
<td>28.7 (air)</td>
</tr>
<tr>
<td>Beginning of induction process in heated water</td>
<td></td>
<td>13 hr 30 min</td>
<td>25.0 (water)</td>
</tr>
<tr>
<td>Emission of sperm (5°C)</td>
<td></td>
<td>15 hr 45 min</td>
<td>21.0 (water)</td>
</tr>
<tr>
<td>Spawning (2°C)</td>
<td></td>
<td>15 hr 55 min</td>
<td>21.0 (water)</td>
</tr>
<tr>
<td>Fertilization</td>
<td></td>
<td>16 hr 00 min</td>
<td>21.0 (water)</td>
</tr>
<tr>
<td>Number of eggs obtained</td>
<td></td>
<td>1,120,000</td>
<td></td>
</tr>
</tbody>
</table>

normal experiments were carried out on 1st August.

The ormers used for the experiment were 21 females and 11 males ranging in shell length from 7.8-9.5 cm. The procedure followed for inducing spawning is shown in Table 1. Mature adults were collected at 12 h 10 p.m. It took 40 minutes to transport them to the laboratory, that is 40 minutes stimulation by drying. The air temperature at this time was 28.7°C and the water temperature in the tanks was maintained at 26.0°C so as not to have too great a temperature difference. Stimulation by fluctuations of water temperature was started at 13 h 30. Water temperature was gradually decreased by adding running water of 21.0°C. After 2 hrs 15 min, when the water temperature had decreased to 21.0°C, three males started to spawn and after 2 hrs 25 min, two females spawned at the same water temperature (Fig. 2). The number of eggs was 590,000 (shell length 7.8 cm) and 646,000 (shell length 8.2 cm). Of the total of 1,236,000 eggs, around 1,120,000 were viable and could be used for rearing experiments.

Concerning attempts to obtain fertilized eggs of *H. tuberculata*, STEPHENSON (1924) succeeded at Guernsey on 1st August, using mature adults collected the day before and CROFTS (1937) at Roscoff, France, succeeded in getting fertilized eggs from natural spawning in the laboratory on 22nd July. From these results and that of the present study it is clear that induction of spawning with this species is easier than with Japanese abalone *H. discus discus* and *H. sieboldii* (INO, 1952), *H. diversicolor superterax* (OBIA, 1964) and *H. discus hannai* (KIKUCHI, 1964).

Fig. 2. Spawning of *Halitotis tuberculata* in a tank. A row of water drops (arrows) can be seen here ejected by the mother shell through its respiratory pores; ova are carried in these drops.

Early development

The fertilized eggs are spherical and have a diameter of 0.21 mm including egg membrane. The yolk has a diameter of 0.17 mm. With a water temperature of 20°C ± 1°C, the first polar body appeared after a few minutes. Very soon after, the second polar body appeared, but as with *H. discus discus* (INO, 1952), in many cases no second polar body was observed (Plate I-1). The time sequence for egg development following fertilization was as follows:

After 1 hr 10 min–1 hr 50 min, the first division took place along the vertical axis of the egg (Plate I-2). After 1 hr 40 min–2 hrs 10 min, the second division took place along the same axis (Plate I-3, 4). After 2 hrs 20 min, the third division took place just above horizontal axis of the egg and at that time the differentiation between micromeres and macromeres could be made and the micromeres were seen to move around the macromeres in a clockwise direction.
(Plate I-5). After 3 hrs 15 min, the fourth division took place and the direction of torsion was observed to be counterclockwise (Plate I-6). After 5 hrs, the embryo reached the morula stage (Plate I-7), and after 8 hrs 30 min-9 hrs, reached the gastrula stage after passing through the blastula stage. After 10 hrs, at the trophophore stage, the cilia appeared and intermittent rotating movement was observed in the egg membrane. After 13 hrs, hatching took place and the size of newly hatched larvae was 0.2 x 0.155 mm and some larvae were observed to have already secreted their transparent larval shell from the shell gland (Plate I-8). There are various opinions in the literature concerning the apical tuft in this species. According to BOUTAN (1899) no apical cilia were observed at any stage of development. CROFTS (1937) reports that the trophophore has no apical cilia, but the veliger has a transitory apical tuft. In the present experiment it was observed that from trophophore stage just before hatching until veliger stage just before the velum divides, this species has an apical tuft (Plates I-8, 9 and II-1, 2).

The trophophore moved slowly on the bottom of the tank for the first two hours. Then they began to float up to the surface and they were observed to be swimming up and down between the middle and surface layers grouped in several vertical columns. At this time they showed positive phototactice and it was easy to transfer them to another tank by using a light to attract them to one corner for siphoning. Concerning phototactice in *Halioitis* species, OBA (1964) reports little evidence of positive phototactice in *H. diversicolor supertexta*, INO (1952) observed strong positive phototactice in *H. discus discus* but only moderately strong for *H. sieboldii*. It appears that this behaviour varies according to species.

After 18-20 hrs, the larval shell had developed and the larvae reached veliger stage. With the growth of the larval shell the cells of the visceral hump developed and the velum was formed (Plate I-9). After 35-38 hrs, veliger torsion was complete, and the foot and the operculum developed. At that stage the larvae were already able to retract themselves into the shell indicating the development of the muscle (Plates I-10 and II-1, 2). In the literature, the stage at which retraction first was observed differs according to species. In the case of *H. discus discus* (INO, 1952) and *H. diversicolor supertexta* (OBA, 1964) retraction first was observed in veligers only after division of the velum and appearance of the eyes and rudiments of tentacles. This indicates that retraction starts later for these two species than in the case of *H. tuberculata*. The veligers of *H. tuberculata* were observed to swim actively but to react immediately by retracting

---

**Table 2. Comparison of development characteristics among Halioitis tuberculata**

<table>
<thead>
<tr>
<th>Items</th>
<th>H. t. (INO)</th>
<th>H. d. (INO)</th>
<th>H. s. (INO)</th>
<th>H. g. (MURAYAMA)</th>
<th>H. d. s. (OBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (mm) of fertilized egg</td>
<td>0.21</td>
<td>0.23</td>
<td>0.28</td>
<td>0.27</td>
<td>0.20</td>
</tr>
<tr>
<td>Length (mm) of larval shell</td>
<td>0.26</td>
<td>0.29</td>
<td>0.29</td>
<td>0.36</td>
<td>0.254</td>
</tr>
<tr>
<td>Trophophore stage (hours after fertilization)</td>
<td>10</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>4.67</td>
</tr>
<tr>
<td>Time (hours) required for hatching,</td>
<td>13</td>
<td>20</td>
<td>18</td>
<td>21-22</td>
<td>6</td>
</tr>
<tr>
<td>(in given water temperature, °C)</td>
<td>(20)</td>
<td>(16-17)</td>
<td>(16-18)</td>
<td>(16-18)</td>
<td>(26.2)</td>
</tr>
<tr>
<td>Torsion (hours)</td>
<td>35-38</td>
<td>45-46</td>
<td>35</td>
<td>40-43</td>
<td>13</td>
</tr>
<tr>
<td>Appearance (days) of eyes and cephalic tentacles</td>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>10</td>
<td>0.7-0.8</td>
</tr>
<tr>
<td>Appearance (days) of epipodes</td>
<td>3.5</td>
<td>5</td>
<td>4</td>
<td>28</td>
<td>1.6</td>
</tr>
<tr>
<td>Time (days) required before creeping</td>
<td>3.5-5</td>
<td>6-10</td>
<td>4-7</td>
<td>7-10</td>
<td>1.8-1.9</td>
</tr>
<tr>
<td>Appearance (days) of peristomial shell</td>
<td>5-6</td>
<td>10-11</td>
<td>10</td>
<td>10</td>
<td>2.7</td>
</tr>
<tr>
<td>Appearance (days) of first respiratory pore,</td>
<td>38-40</td>
<td>130</td>
<td>—</td>
<td>—</td>
<td>23</td>
</tr>
<tr>
<td>(shell length, mm)</td>
<td>(2.0-2.3)</td>
<td>(2.3-2.5)</td>
<td>—</td>
<td>—</td>
<td>(1.8-1.9)</td>
</tr>
</tbody>
</table>

(17)
into their shell when subjected to any external stimulation. At this stage the shell had an irregular moiré pattern which differed considerably from the patterns on the shells of veligers of H. discus discus (INO, 1952) and H. diversicolor supercorta (OBA, 1964), (Plate 1-10).

After two days and a half, the velum separated into two parts and rudiments of cephalic tentacles and eyes appeared at the center of each part (Plate II-3, 4). At this stage the larval shell was complete and measured 0.26 mm in length which is a little larger than H. diversicolor supercorta and smaller than H. gigantea, H. sieboldii and H. discus discus (Table 2). The veligers were observed to swim in rotating fashion near the bottom of the tank resting on the bottom of the tank from time to time and twisting their foot. When they retracted into their shell, the foot was folded at its centre. The edge of the mantle also developed and could be recognised through the transparent larval shell as an arch shaped fold. Gradual development of the cephalic tentacles with papillae was then observed and the rudiments of epipodial tentacles appeared on both sides of the foot.

By the end of the third day, cilia started to develop on the pedal sole and the first signs of settlement behaviour were observed. Many of the larvae could change the shape of their foot and attach it to an available surface but they were unable to start creeping. After 4-5 days most of the larvae were seen to be creeping around. At this time the papillae of the cephalic tentacles had become more numerous and sensory threads and a pale green pigmentation were observed. The velum had diminished in size and the snout had begun to protrude at the front of the velum. The statocyst was observed between the head and foot with five or six grains all grouped together at the centre forming the statolith (Plate II-5, 6).

On the sixth day the cilia on the velum disappeared and the secretion of the peristomal shell began on the right side of the aperture of the larval shell. At this time the snout was well formed and the pedal sole had become more developed allowing the larvae to creep around actively. The movement of the heart was also apparent (Plate III-1).

On the ninth day the spat measured 0.37 mm in shell length including 0.18 mm of the newly secreted peristomal shell on which wave-like lines were conspicuous. At this time the number of papillae on the cephalic tentacles increased. Movement of the radular was observed for the first time and the first ciliary lobe appeared behind the right eye-stalk (Plate III-2). The exact timing of the loss of the operculum was never fully established but it was still present at this stage.

On the sixteenth day the spat measured 0.47 mm in shell length and the shape became flat with the gradual growth of the peristomal shell covering the right side of the body. The thickness of the shell had also increased. On the surface of plastic collectors, the spat were recognizable, when observed with the naked eye, as white dots with a pale brown patch over the visceral hump. The length of the cephalic tentacles increased and the number of papillae on them had increased also. The first development of the left ctenidium was recognized in the branchial chamber (Plate III-3). After that the first ciliary lobe became gradually larger and then the second ciliary lobe appeared behind the first one. The movement of their cilia was observed to produce a water current flowing from the left side of the head to the right side (Plate III-4). These ciliary lobes continued their function for the following two weeks (Plate V-2), but at the time that the cleft of the first respiratory pore started to form in the shell (about the 30th day) their size began to diminish (Plate V-4), and by the 40th day, when the first respiratory pore was completely formed, only traces of them were left and their function ended. From this fact, it can be considered that, as suggested by Crofts (1937), INO (1952) and OBA (1964), these ciliary lobes act as respiratory organs having the function of circulating and discharging the water in the branchial chamber.

On the 25th day the spat measured 0.98 mm in shell length and 0.89 mm in shell breadth and the shell shape had become almost circular. On the surface of the shell, brown patterns appeared in patches. The cephalic tentacles had
become longer and the number of their papillae became more numerous. The epipodial tentacles had developed in four pairs and the dark line of the intestine could be seen through the shell (Plate IV-1, 2). The left ctenidium in the branchial chamber had developed and the number of branches on it had increased (Plate V-1). On the opposite side of the head, two ciliary lobes still moving actively could be recognized (Plate V-2). At this time feeding behaviour was very active and the areas of grazing on the diatom film could be seen as white patches on the surface of the collectors (Plate V-3).

From about the 30th day, a cleft in the margin of the shell on the right side of the head was observed and, by 38th-40th day, the cleft had become a hole in the shell and the first respiratory pore was formed (Plate IV-3, 4). At this time the spat measured 2.0-2.2 mm in shell length and there were reddish brown patches on the surface of the shell and 3 or 4 ridges running from the front end to the apex of the shell were seen. The visceral hump could be seen like a violet patch through the shell. The eye stalks had grown longer than the two ciliary lobes which had nearly disappeared and the left ctenidium had increased the number of its branches (Plate V-5). At the aperture of the snout the radial folds had formed running from the center to the margin of the aperture and the active movement of the radular was observed (Plate V-6). The number of the epipodial tentacles of *H. tuberculata* at the time of the formation of the first respiratory pore was 14 or 15 pairs; this was more than *H. discus discus* which had 8 or 9 pairs (INO, 1952) and about the same number as *H. diversicolor superteraxta* (OBA, 1964).

Concerning the stage at which the formation of the first respiratory pore takes place, observations for several species, as described in the literature to which reference has already been made, are shown in Table 2. For *H. tuberculata* it is earlier than *H. discus discus* but later than *H. diversicolor superteraxta*. The present observations for *H. tuberculata* coincide with those of CROFTS (1937) who described that it takes place two months after fertilization at a size of 2 mm in shell length. In the case of *H. discus hannai* (KIKUCHI, 1964) it takes place on the 42nd day when the shell measures 2.5 mm in shell length, which is a little later than *H. tuberculata*.

After about 50 days, the spat reached a size of 2.5-2.6 mm in shell length and the epipodial tentacles numbered 20-22 pairs. At this time the shell had two respiratory pores and on the inside of the shell the pearly lustre was first observed.

By the 85th-90th day, the spat had reached a size of 3.1-3.3 mm in shell length and there were 26-27 pairs of epipodial tentacles. Four respiratory pores were formed but the first one was already closed. The flame-like patterns on the surface of the shell had changed in colour from reddish brown to violet. The visceral hump also changed colour to deep violet which was seen through the shell. At this time many spat were observed to be feeding on the green seaweed, *Ulva* spp., growing on the collectors.

At about 160th day, they reached a size of 6.2 mm in shell length and the number of respiratory pores had increased to 9-10 of which 4 or 5 pores were open. The cephalic tentacles had grown to about the same length as the shell and the epipodial tentacles had become more numerous (Plate VI-1). The number of respiratory pores continued to increase with shell growth, but closed gradually except for the 3-6 pores nearest the front margin of the

![Fig. 3. Relationship between number of respiratory pores (ordinate) and shell length (abscissa, mm) in young *Halit/is tuberculata*.](image)

- Total number of pores, both open and closed, ○; Number of open pores.
shell which were functioning. The relation between growth and the number of respiratory pores is shown in Fig. 3.

Concerning changes in colour of the Haliotis shell, INO (1952), SAKAI (1962) and OBA (1964) describe that the colour of the shell of *H. discus discus*, *H. discus hannai* and *H. diversicolor supertexta* changed with the different seaweed on which they fed. This phenomenon was also clearly seen in *H. tuberculata*. The colour of the shell was reddish brown when they were feeding on diatoms, but the colour changed to green when feeding on Ulva spp. and Laminaria spp., and changed to red when feeding on Rhodymenia spp. (Plate VI-2). This may be useful as a way of distinguishing between groups of juveniles each having different patterns on their shells when they are released on the sea bed.

The growth of juveniles is shown in Fig. 4. By the 435th day after fertilization they reached an average size of 21.153±3.872 mm in shell length and 12.766±2.246 mm in shell breadth. The number of living juveniles at that time was 2,840.

4. Summary

Tank rearing of the European abalone, *Haliotis tuberculata* was carried out from 1973 to 1974 at Laboratory of Centre Océanologique de Bretagne (CNEXO-COB) in Brest, France. Spawning was promoted by stimulation using fluctuations of water temperature and fertilized eggs were obtained in August 1973. Their development was observed for 435 days after fertilization. The results are summarized as follows:

1) Mature adults of *H. tuberculata* have a tendency to spawn more easily following stimulation than three species of Japanese abalones, *H. discus discus*, *H. discus hannai* and *H. diversicolor supertexta*.

2) The eggs are spherical and each is enclosed within a thick gelatinous coating. Their size is 0.21 mm in diameter including egg membrane, and yolk is 0.17 mm in fertilized condition.

3) The division of the egg is total, unequal and spiral.

4) At a temperature of 20°C, the trochophore escapes from the egg membrane within 13 hours after fertilization. Size is about 0.2 mm in length. The hatched larvae are positively phototactic and swim near the surface of the water.

5) The apical tuft is visible at all stages from trophophore before hatching to veliger before the velum separates into two parts.

6) The change from trophophore to veliger stage takes place within 20 hrs. and torsion takes place 35-38 hrs. after fertilization.

7) The rudiment of cephalic tentacles, eyes, foot and operculum appear in the post-tosional veliger. The larval shell is 0.26 mm long.

8) The transition from pelagic to benthic life takes place within a period varying from 3.5 to 5 days after fertilization. The velum is then absorbed and the peristomial shell is secreted along the outer lip of the aperture of the larval shell.

9) The first ciliary lobe appears 9 days after fertilization and the second one appears 7 days later.

10) The first respiratory pore appears 38-40 days after fertilization when the larvae are 2.0-
2.3 mm in shell length. At this time the function of the two ciliary lobes is lost.

11) The juveniles change the colour of their shell when they are fed on different sorts of seaweeds, e.g. diatomites: reddish brown, *Ulva* and *Laminaria*: green, *Rhodymenia*: red.

12) The juveniles reached a size of 2.12 cm in shell length and 1.28 cm in shell breadth on the 455th day.

**Acknowledgement**

The author wishes to acknowledge the continuing guidance and encouragement of Prof. T. IWAI of Kyoto University during his study. He is also greatly indebted to Prof. Y. UNO of Tokyo University of Fisheries for suggesting this subject of research and for stimulating interest in it. Sincere thanks are due to many former colleagues, especially Dr. J. P. FLASSCHI, at the Centre Oceanologique de Bretagne, Brest; without their assistance this study could not have been completed. The author would also like to express his special appreciation to Messrs. Y. NORMANN and C. AVELINE at the Centre for all the help they gave him. Finally he would like to thank Prof. K. TAKAGI and Mr. J. J. WALFORD, visiting researcher, of Tokyo University of Fisheries, for their kind suggestions with respect to the format of this text.

**References**


欧州産アワビ，*Halioit tuberculata* LINNAEUS の
増殖に関する生物学的および生態学的研究

I. 初期発生および稚貝の成長

小 池 康 之

要旨：人工採苗によって得られたヨーロッパ産アワビ*Halioit tuberculata* の稚貝を 435 日間飼育し，その初期発生および成長過程を明らかにし詳細に図示した（Pls. I-VI）。

本種は日本産アワビ属と比較して，産卵期発動刺激に反応しやすい傾向を示す。卵は水温 20°C において受精後約 13 時間で担輪子に成長し孵化する。担輪子は顕著な走光性を示す。受精後約 20 時間で被面子に達し，35～38 時間後に殻え（torsion）が起こる。頂毛は孵化直前の担輪子から面盤（velum）が二葉に分化する前後の被面子に至るまでに認められる。受精後 50～60 時間の被面子には頭部触角の起源。眼および蓋が形成され，その時期の幼殻の大きさは 0.26 mm である。

被面子は受精後 3.5～5 日で胚生期に達し，この時期に上皮突起の起源が現われる。6 日目には面盤が退化して周口殻の分泌が始まる。第一触手葉は 9 日目に，第二触手葉は 16 日目までに形成される。最初の呼吸孔は 38～40 日後，殻長 2.0～2.3 mm で形成され，この時期に触手葉が退化してその機能を失なり。

飼育稚貝は 435 日後に殻長 2.12 cm，殻幅 1.28 cm に成長する。
EXPLANATION OF PLATES I–VI

PLATE I
1. Fertilized egg with polar bodies. 0.21 mm in diameter including egg membrane; yolk, 0.17 mm in diameter.
2. Egg in 2 cell stage, 1 hr 10 min–1 hr 50 min after fertilization.
3. Egg at the beginning of second cleavage, 1 hr 40 min.
4. Egg in 4 cell stage, 1 hr 50 min.
5. Egg in 8 cell stage (animal pole view), 2 hrs 20 min.
6. Egg in 16 cell stage (animal pole view), 3 hrs 50 min.
7. Embryo in morula stage, 4 hrs 50 min.
8. Embryo in trophophore stage, 13 hrs. 0.15×0.20 mm.
9. Larva in early veliger stage, 20 hrs 20 min. 0.20 mm in diameter.
10. Larva in veliger stage after torsion, 38 hrs 30 min–40 hrs.

PLATE II
1. Larva in veliger stage after torsion, 38 hrs 30 min–40 hrs.
2. Same specimen as seen in Plate II–1 (ventral view).
3. Veliger larva in late swimming stage, 2.5 days. 0.26 mm in diameter of shell.
4. Same specimen as seen in Plate II–3; body retracting into shell.
5. Veliger larva in early benthic stage, 4.5 days. 0.26 mm in diameter of shell.
6. Same specimen as seen in Plate II–5 (ventrolateral view).

PLATE III
1. Creeping larva, beginning to secrete peristomial shell (ventral view), 6 days. 0.27 mm in diameter.
2. Creeping larva (dorsal view), 9 days. 0.37 mm in shell length.
3. Creeping larva, beginning to develop epipodes (ventral view), 16 days. 0.47 mm in shell length.
4. Same specimen as seen in Plate III–3, showing ciliary lobes (ventral view).

PLATE IV
1. Creeping larva having much more developed epipodes (dorsal view), 25 days. 0.98 mm in shell length.
2. Same specimen as seen in Plate IV–1 (ventral view).
3. Young abalone having first respiratory pore (dorsal view), 40 days. 2.2 mm in shell length.
4. Same specimen as seen in Plate IV–3 (ventral view).

PLATE V
1. Developing ctenidium (ventral view), 25 days.
2. Two ciliary lobes and radular in movement (ventral view), 25 days.
3. Larvae (white dots) on the collector, 25 days.
4. Two ciliary lobes having lost their functions (ventral view), 30 days.
5. More developed ctenidium (ventral view), 25 days.
6. Snout and radular in movement (ventral view), 35 days.

PLATE VI
1. Young abalone (dorsal view), 160 days. 6.2 mm in shell length.
2. Young abalone with different colour bands (dorsal view), 13 months. 20.3 mm in shell length.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap. t.</td>
<td>spical tuft</td>
<td>l. sh.</td>
<td>larval shell</td>
</tr>
<tr>
<td>ceph. t.</td>
<td>cephalic tentacle</td>
<td>m.</td>
<td>muscle</td>
</tr>
<tr>
<td>c. l. 1</td>
<td>first ciliary lobe</td>
<td>mant.</td>
<td>mantle</td>
</tr>
<tr>
<td>c. l. 2</td>
<td>second ciliary lobe</td>
<td>op.</td>
<td>operculum</td>
</tr>
<tr>
<td>ct.</td>
<td>ctenidium</td>
<td>p. b.</td>
<td>polar body</td>
</tr>
<tr>
<td>e. c.</td>
<td>endodermal cell</td>
<td>ped. gl. p.</td>
<td>posterior pedal gland</td>
</tr>
<tr>
<td>e. m.</td>
<td>egg membrane</td>
<td>ped, so.</td>
<td>pedal sole</td>
</tr>
<tr>
<td>ep.</td>
<td>epipode</td>
<td>pr. g.</td>
<td>prototrochal girdle</td>
</tr>
<tr>
<td>ep. t.</td>
<td>epipodial tentacle</td>
<td>pst.</td>
<td>peristomal shell</td>
</tr>
<tr>
<td>f.</td>
<td>foot</td>
<td>rad. s.</td>
<td>radular sheath</td>
</tr>
<tr>
<td>h.</td>
<td>heart</td>
<td>resp. p.</td>
<td>respiratory pore</td>
</tr>
<tr>
<td>int.</td>
<td>intestine</td>
<td>s.</td>
<td>snout</td>
</tr>
<tr>
<td>l.</td>
<td>liver</td>
<td>stat.</td>
<td>statocyst</td>
</tr>
</tbody>
</table>
Effect of the Approximation to the Equation of State for Sea Water on the Model General Circulation*

Kenzo TAKANO**

Abstract: In place of the Knudsen formula, simpler approximate equations of state are used for computing the density of sea water in the numerical models of the ocean circulation. In order to understand how the approximation to the equation of state affects a model general circulation driven by a thermal forcing, we carry out numerical experiments with two different equations of state. One is a linear function of the temperature with a constant coefficient of thermal expansion of $2.5 \times 10^{-4} \text{ C}^{-1}$, and the other is an equation by FRIEDRICH and LEVITUS giving the density as a little more complicated function of the temperature, pressure and salinity. The salinity is assumed to be 35% everywhere. The former suppresses a cyclonic gyre at high latitude upper layers to develop a large anticyclonic gyre all over the upper layers, whereas it overestimates the horizontal and vertical circulation and the meridional heat transport, considerably increases high latitude surface temperatures and a little increases tropical surface temperatures.

1. Introduction

The Knudsen formula for computing the density of sea water from hydrographic data is so complicated that simpler approximate polynomial formulas have been used in the numerical models of the ocean circulation so far developed.

The simplest one gives the density $\rho$ as a linear function of the temperature $T$ with a coefficient of thermal expansion $\alpha$ and a constant $\rho_0$ as

$$\rho = \rho_0 (1 - \alpha T). \quad (1)$$

Not a few models used this formula for its simplicity, though its accuracy is poor when $\alpha$ is assumed to be constant. A value of 2.0 to $2.5 \times 10^{-4} \text{ C}^{-1}$ is usually assigned to $\alpha$. However, the coefficient of thermal expansion of sea water decreases with decreasing temperatures and decreasing salinities except at low salinities and low temperatures. For instance, for surface waters of 35% it takes a value of $3 \times 10^{-4} \text{ C}^{-1}$ at $T=25^\circ \text{C}$, $2.5 \times 10^{-4} \text{ C}^{-1}$ at $T=19^\circ \text{C}$ and $1 \times 10^{-4} \text{ C}^{-1}$ at $T=4^\circ \text{C}$. Since the effect of the pressure is relatively small, Formula (1) with $\alpha = 2.0$ to $2.5 \times 10^{-4} \text{ C}^{-1}$ underestimates the density change by the temperature change for warm water in tropical surface layers and greatly overestimates it for cold water at high latitudes and in deep layers.

The density field is closely linked with the pressure field, which in turn is closely linked with the velocity field. Therefore, Formula (1) may significantly distort the numerical solution of the general circulation in a large ocean where the temperature varies over a wide range. The present study shows, by several examples, to what extent the approximation to the equation of state affects the model general circulation.

2. Model

The model ocean extends from the equator to 70°N and over 48° in longitude. The depth is 4000 m everywhere. The horizontal grid size is 2° in both longitude and latitude. The momentum advection has no significant effect when such a coarse grid is set up. Thereby, the momentum equations are given by

$$\frac{\partial u}{\partial t} = - \frac{1}{\rho R \cos \varphi} \frac{\partial p}{\partial \lambda} + 2 \omega v \sin \varphi$$

$$+ A_u \beta^2 u + \kappa u \frac{\partial^2 u}{\partial z^2}.$$
\[
\frac{\partial \bar{u}}{\partial t} = -\frac{1}{\rho R} \frac{\partial \bar{p}}{\partial \bar{\phi}} - 2\bar{w} \sin \bar{\phi} \\
+ \lambda \frac{\partial}{\partial \bar{t}} + \kappa_H \frac{\partial^2 \bar{v}}{\partial z^2},
\]

\[
0 = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial z} - g,
\]

\[
\bar{F}^z = \frac{1}{\rho R^2 \cos \bar{\phi}} \left( \frac{1}{\cos \bar{\phi}} \frac{\partial^2}{\partial \bar{t}^2} + \frac{\partial}{\partial \bar{\phi}} \left( \cos \bar{\phi} \frac{\partial}{\partial \bar{\phi}} \right) \right),
\]

where \( \lambda \) is the longitude, \( \bar{\phi} \) the latitude, \( z \) the vertical coordinate positive upward, \( t \) the time, \( \bar{u}, \bar{v} \) and \( \bar{w} \) are the eastward, northward and upward component of the velocity, \( \bar{p} \) the pressure, \( R \) and \( \omega \) are the radius and angular velocity of the earth, \( g \) is the acceleration of gravity, \( \lambda \) the coefficient of horizontal eddy diffusivity and \( \kappa_H \) the coefficient of vertical eddy diffusivity.

The equation of continuity is

\[
\frac{1}{R \cos \bar{\phi}} \left( \frac{\partial \bar{u}}{\partial \bar{\lambda}} + \frac{\partial}{\partial \bar{\phi}} (\bar{v} \cos \bar{\phi}) \right) + \frac{\partial \bar{w}}{\partial z} = 0. \tag{2}
\]

The equation for the temperature is given by

\[
\frac{\partial \bar{T}}{\partial t} = -\frac{1}{R \cos \bar{\phi}} \left( \frac{\partial}{\partial \bar{\lambda}} (\bar{w} \bar{T}) + \frac{\partial}{\partial \bar{\phi}} (\bar{v} \bar{T} \cos \bar{\phi}) \right) \\
- \frac{\partial}{\partial z} (\bar{w} \bar{T}) + \lambda \frac{\partial}{\partial \bar{t}} + \kappa_H \frac{\partial^2 \bar{T}}{\partial z^2},
\]

where \( \lambda \) and \( \kappa_H \) are the coefficients of eddy diffusivity for heat.

The coefficient \( \delta \) is defined by

\[
\delta = \begin{cases} 
1 & \text{for } \frac{\partial \bar{T}}{\partial z} > 0, \\
0 & \text{else} 
\end{cases}
\]

which parameterizes the vertical mixing process in such a way that strong vertical mixing restores a neutral stratification whenever the vertical stratification becomes unstable.

Three cases are dealt with. Formula (1) is applied to Cases 1 and 3, and a formula by FRIEDRICH and LEVITUS (1973), hereafter referred to as F&L, to Case 2. Of these two formulas the latter, giving the density variable with temperature, pressure and salinity, is much more accurate than the former which ignores the variation of the coefficient of thermal expansion with temperature. Because the salinity is excluded in the present study, it is made 35%.

![Fig. 1. Reference atmospheric temperature \( T_A \). Solid line for Case 1 and broken line for Cases 2 and 3.](image)

everywhere in Case 2.

The boundary conditions at the surface are

\[
\bar{w} = 0, \tag{3}
\]

\[
\kappa_H \frac{\partial \bar{T}}{\partial z} = d (T_A - T_s), \tag{4}
\]

\[
\kappa_H \frac{\partial}{\partial z} (u, v) = (0, 0). \tag{5}
\]

The surface heat flux is assumed to be proportional to the difference between the calculated surface temperature \( T_s \) and a prescribed reference atmospheric temperature \( T_A \) which depends on the latitude only. The constant \( d \) is somewhat arbitrary. It is taken here as 50 cal cm\(^{-2}\) day\(^{-1}\). Figure 1 shows \( T_A \) for Case 1 by a solid line and \( T_A \) for Cases 2 and 3 by a broken line.

So far as the formulation is concerned, Cases 1 and 3 are identical with each other except for \( T_A \). Only at high latitudes north of 56°N it is higher in Cases 2 and 3 than in Case 1. The reason why \( T_A \) is modified in Cases 2 and 3 so as to weaken the surface cooling at high latitudes is as follows. In the case where
Formula F&L is used, the density increase by the temperature decrease is very small at low temperatures. It takes, therefore, long time for the high latitude surface water to be, by surface cooling, dense enough to sink from the surface to deeper layers. The surface temperature decreases and reaches the freezing point (-1.8°C), if the same $T_A$ as in Case 1 is used in Case 2. Obviously the reference atmospheric temperature used in Case 1 leads to an excessive surface cooling, when the density increase by the temperature decrease is correctly calculated by Formula F&L. In other words, when the density is calculated by Formula (1), the density increase due to the temperature decrease is so large at low temperatures that the high latitude surface water can not remain at the surface for a longtime, and readily sinks to deeper layers before its temperature does drop correctly. The broken line in Fig. 1 is subjectively drawn in such a way that the surface temperature does not reach the freezing point. To be compared with Case 2, supplemented is an additional case, Case 3, where Formula (1) is used together with the same $T_A$ as in Case 2.

No wind stress is applied to the ocean surface in the three cases, which might be helpful to make clear the effect of the degree of approximation to the equation of state.

There is no heat flux through the bottom and the lateral boundary. There is no friction along the bottom and the southern boundary, no slip along the western, northern and eastern boundary. Symmetry is assumed with respect to the southern boundary.

The grid is staggered. The $u$ and $v$ points are $1^\circ$ in both longitude and latitude from the $T$, $p$ and $w$ points. The lateral boundary is defined by $T$, $p$ and $w$ points.

In the vertical, five levels are set up to calculate $u$, $v$ and $T$ at depths of 20, 120, 640, 1280 and 2760 m, and $w$ at depths of 70, 380, 960 and 2020 m.

The finite differencing is not described here, because it is almost the same as that detailed in another paper (TAKANO, 1974).

Principal numerical parameters are as follows:

$\alpha = 2.5 \times 10^{-4} \text{C}^{-1}$,

$A_H = 2 \times 10^8 \text{ cm}^2 \text{ sec}^{-1}$,

$\kappa_H = 1.5 \text{ cm}^2 \text{ sec}^{-1}$,

time step = 8 hours.

The time integration is fundamentally leapfrog with the Matsuno’s backward differencing applied every ten time steps. Case 1 starts from an initial state where the temperature varies with depth and latitude. Then, the time integration is forwarded over 10.4 years. Cases 2 and 3 start from the final state of Case 1. Case 2 runs over 30.4 years. Case 3 runs over 16.3 years. A period of integration of tens of years is not long enough to get a steady state in the whole ocean basin. A secular variation is still persistent at the last stage of the time integration. At the end of the integration, the temperature averaged over the whole ocean basin is decreasing at a rate of 0.015°C year$^{-1}$ in Case 1 and of 0.004°C year$^{-1}$ in Case 3, and is increasing at a rate of 0.018°C year$^{-1}$ in Case 2. However, an almost steady state is reached in each case. There is no short time scale fluctuation because of the large coefficients of eddy diffusivity.

3. Velocity field

Case 1. The horizontal velocities at depths of 20, 640 and 2760 m are shown in Figs. 2 to 4. This case is somewhat similar to Case 1 in a paper by BRYAN and COX (1967). The ocean shape, the grid size and the coefficients of eddy diffusivity are not identical with each other. The temperature in their study is an “apparent temperature” including the salinity implicitly. In addition, it is the apparent temperature that is prescribed at the ocean surface as a thermal boundary condition, while the thermal condition at the ocean surface is given here in terms of the surface heat flux calculated by (4). There are no significant differences between the two solutions, however. A single large anticyclonic gyre spreads almost all over the surface. A western boundary current flows northward all along the western boundary. It gradually widens downstream.

The currents at 120 m are a little weaker. The maximum speed of the western boundary current decreases from 29.3 cm sec$^{-1}$ at 20 m to 26.9 cm sec$^{-1}$ at 120 m. The current pattern does
Fig. 2. Horizontal velocity field at a depth of 20 m in Case 1.

Fig. 3. Horizontal velocity field at a depth of 640 m in Case 1.

Fig. 4. Horizontal velocity field at a depth of 2760 m in Case 1.

not change from that in Fig. 2 except in the south-eastern region of the ocean basin. A weak, broad eastern boundary current flows southward south of 35°N. The currents are mostly westward between the equator and 20°N except in the eastern and western boundary region. The southern border of the eastward currents at middle and high latitudes goes up north by 6°. The anticyclonic gyre is, as it were, a little pushed northward.

The western boundary current is much broader at 640 m than at upper layers. It spreads over almost half the zonal extent of the ocean basin at high latitudes. The anticyclonic gyre is better organized and further pushed northward. Its center is located around 35°N in the eastern boundary region.

The vertical integral of the horizontal velocity from the bottom to the surface vanishes everywhere, because there are no wind stress, no momentum advection, no bottom friction, no depth change. Hence, the currents at upper layers are compensated by the currents at lower layers. At 1280 m, the equatorial current flows
still westward as it does at the upper layers, but the western boundary current changes its direction and flows southward. The current direction is almost reversed at low and middle latitudes. Going further north, the anticyclonic gyre is centered around 60°N to the east of 40° in longitude. A cyclonic gyre is emerging to the south of this main gyre.

At 2700m a single large cyclonic gyre is well developed with a strong southward current along the western boundary, which is much broader than the northward boundary current at the surface layer. The equatorial current flows eastward. There is no anticyclonic gyre any longer at high latitudes.

**Case 2.** The velocity field is strikingly different from that in Case 1. Figure 5 shows the velocity distribution at 20m. The anticyclonic gyre prevailing at the surface layer in Case 1 is, roughly speaking, shifted southward by about 15° in latitude. It is between 13°N and 31°N that the western boundary current is fastest, while it is between 19°N and 45°N in Case 1. The maximum speed considerably decreases from 29.3cm sec⁻¹ in Case 1 to 19.2cm sec⁻¹ in Case 2. North of 55°N there appears a cyclonic gyre with a broad, weak western boundary current flowing southward. In contrast with a single gyre circulation in Case 1, a double gyre circulation, though the cyclonic one is much weaker, is thus driven provided that Formula F & L is used instead of (1). The effect of Formula F & L can be interpreted as an additional heating of the high latitude surface applied to Case 1, which upsets the overestimate of the density increase by the temperature decrease resulting from Formula (1). As is mentioned above, the coefficient of thermal expansion, 2.5 ×10⁻⁴°C⁻¹, holds good around a temperature of 20°C only. A high latitude additional heating gives rise to a cyclonic gyre with a western boundary current flowing southward. The appearance of the cyclonic gyre is readily understood in this way, although the velocity field in Case 2 is not merely a linear superposition of the velocity field produced by this additional heating upon the velocity field obtained in Case 1.

Formula F & L brings about an additional heating to the equatorial region in Case 1, too, so as to make up the density decrease by the temperature increase which is underestimated by Formula (1). However, when α is taken as 2.5×10⁻⁴°C⁻¹, the resulting error in the equatorial region is much smaller than that in the high latitude region. This is the reason why Formula (1) is not so wrong there as at high latitudes.

The currents flow eastward with very weak meridional component in the central and eastern region between 10°N and 20°N. In Case 1 the zonal component is not so pronounced there: the currents flow southwest in the western half, south in the central region and southeast in the eastern region.

The motion is slightly weaker at 120m. The maximum speed of the western boundary current decreases from 19.2cm sec⁻¹ at 20m to 15.9cm sec⁻¹ at 120m. The current pattern is close to each other except in the equatorial region. At 20m the westward current north of the equator is about 8° wide in the west and about 4° wide in the east. At 120m it is
about 22° wide in the west and about 26° wide in the east except in the boundary region, indicating that the center of the anticyclonic gyre is located between 22°N and 26°N, far north of its center at a depth of 20m located between 4°N and 8°N. The northern border of the gyre does not go up. It is still around 55°N.

At 640m there is no western boundary current except south of about 15°N as is shown in Fig. 6. The circulation is cyclonic rather than anticyclonic, with eastward currents between 0° and 10°N and westward currents at higher latitudes. It might be remarked that Case 1 shows a well organized anticyclonic gyre: there are westward currents at low and middle latitudes and eastward currents at high latitudes (Fig. 3).

The northward current along the western boundary and the westward equatorial current are much shallower in Case 2 than in Case 1. The southward current along the western boundary develops northward with depth. At 1280m it starts from 55°N. No northward
boundary current is present as yet north of 55°N. The equatorial current flows again westward in the eastern half at 1°N.

Figure 7 gives the velocity field at 2760m. The currents are mostly northward at middle latitudes except near the western boundary, where a relatively strong current, though not faster than 1.8 cm sec⁻¹, flows southward. To the south of this southward current there is a strong northward current, and to the north there is a weak northward current. This contrasts strikingly with the pattern in Case 1.

Common features between the two are only the southward current along the western boundary at middle latitudes and the northward currents in mid-ocean at middle latitudes.

Case 3. The horizontal velocities at three levels are shown in Figs. 8 to 10. The pattern at 20 m resembles closely the pattern in Case 1, although the motion is slightly weaker due to the weaker cooling by the higher T₄ in the northern boundary region. The pattern at 640 m is, however, a little different from each other in the equatorial region: the currents flow eastward all along a parallel of 1°N as in Case 2, indicating that the westward equatorial current in surface layers is shallower in Case 3 than in Case 1. Except for the equatorial current at 1°N, the difference between Cases 2 and 3 is no less than the difference between Cases 2 and 1.

Contrary to Case 1, the western boundary current at 1280 m starts from the northern boundary and flows south to the equator, and then turns to the east. This also suggests that the surface western boundary current flowing northward should be shallower in Case 3 than in Case 1. In this regard, the result in Case 3 is closer to the result in Case 2 than to the result in Case 1. The currents are eastward in the equatorial region between 0° and 10°N, whereas they are mostly westward in Case 1 and eastward in Case 2.

The pattern at 2760 m agrees fairly well with the pattern in Case 1 except for the southeast half of the tropical region where the currents are mostly westward, opposite to Case 1.

4. Temperature field

Case 1. Figure 11 shows the temperature field
at a depth of 120m. Related to the northward strong current, isotherms are strikingly pushed northward near the western boundary. They are slightly pushed northward near the eastern boundary where the currents are northward north of 39°N, southward south of 39°N at this depth, and northward everywhere at 20m.

The isotherm pattern at 20m is alike, but the northward pushing is much less pronounced near the western boundary, because the surface temperature is controlled to a greater extent by the prescribed reference atmospheric temperature which does not vary with longitude.

The temperature at 1280m is shown in Fig. 12. A warm tongue-like core extends from the eastern boundary around 60°N to the west and then to the southwest. A cold water mass, absent at a depth of 640m, whose lowest temperature is 1.3°C on the eastern boundary, extends to the south of the warm core. This cold water mass is further enlarged at 2760m. A sharp thermal gradient by the eastern boundary between the warm and cold water mass, located around 59°N at 2760m, about 7° north of its location at 1280m, is closely related to the transition of the vertical component of the velocity from the southern upwelling to the northern sinking in the eastern boundary region.

Case 2. Figure 13 gives the temperature field at
120m in Case 2. Corresponding to the wane of the northward current and to the presence of the southward current north of 55°N, the northward pushing of isotherms is much less pronounced than in Case 1.

What is peculiar to the temperature fields at the five levels in Case 2 is that isotherms are crowded into a small area around 50°N in the eastern boundary region located at the border between the anticyclonic and cyclonic gyre. This area coincides with strong convergence at depths of 20, 120 and 2760m, and with strong divergence at depths of 640 and 1280m. This peculiarity is well brought in Fig. 14. The maximum of the vertical component of the velocity at each level is found there: \(-1.07 \times 10^{-2} \text{cm sec}^{-1}\) at 70m, \(-3.96 \times 10^{-2} \text{cm sec}^{-1}\) at 380m, \(-2.45 \times 10^{-2} \text{cm sec}^{-1}\) at 960m and \(3.14 \times 10^{-2} \text{cm sec}^{-1}\) at 2020m. Crowding of isotherms is seen in Case 1, too, but only at the lower three levels.

Case 3. The isotherm patterns at the five levels are not very different from those in Cases 1 and 2. For instance, the temperature field at 120 m shown in Fig. 15 is similar to that in Case 1. The northernmost region is slightly warmer because of weaker cooling due to the higher \(T_d\).

The temperature ranges at the upper two levels in the three cases are given in Table 1.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 m</td>
<td>1.4 to 27.4</td>
<td>-1.0 to 27.8</td>
<td>2.0 to 27.5</td>
</tr>
<tr>
<td>120 m</td>
<td>1.4 to 18.4</td>
<td>1.6 to 20.3</td>
<td>2.0 to 19.5</td>
</tr>
</tbody>
</table>

The same \(T_d\) is applied to Cases 2 and 3, but the lowest surface temperature is lower by 3°C in Case 2 than in Case 3, and the highest surface temperature is slightly higher in Case 2 than in Case 3, because the accuracy of Formula (1) is poorer at high latitudes than at low latitudes as mentioned earlier. Compared with Case 1, both the highest and lowest temperature in Case 3 are a little higher at 20 m and 120 m as a result of weaker cooling at high latitudes. The temperature averaged over the whole ocean basin is 3.38°C in Case 1, 4.02°C in Case 2 and 3.32°C in Case 3.

5. Total meridional circulation
    Integrating Equation of continuity (2) from
Fig. 16. Total meridional circulation in Case 1 (units: $10^{13}$ cm$^3$ sec$^{-1}$).

Fig. 17. Total meridional circulation in Case 2 (units: $10^{13}$ cm$^3$ sec$^{-1}$).

Fig. 18. Total meridional circulation in Case 3 (units: $10^{12}$ cm$^3$ sec$^{-1}$).

Figures 16 to 18 show the total meridional circulation in Cases 1 to 3 in terms of the stream function which is made equal to 0 at the boundary.

Case 1. There appears a large counterclockwise gyre with sinking in the north and weak upwelling in the south, centered at 2020 m, 61°N. The maximum value of the stream function, i.e., the total transport of the meridional circulation is $4.25 \times 10^{14}$ cm$^3$ sec$^{-1}$. In addition to this major gyre, there is a weak clockwise gyre just north of the equator, whose intensity is only $5 \times 10^{12}$ cm$^3$ sec$^{-1}$. The downward transport in deep layers at the equator is mainly due to the downward motion at the eastern region at 960 m and at the western region at 2020 m.

Another minor clockwise gyre is seen close to the northern boundary. Its transport is only $0.3 \times 10^{13}$ cm$^3$ sec$^{-1}$. A strong sinking occurs at the eastern region on the northern boundary, but a weak upwelling in the central region and a fairly strong upwelling in the western region upset the downward transport to make a net weak upward transport along the northern boundary.

The sinking region of the major gyre is much narrower than the upwelling region just as shown by BRYAN and COX (1967). The latitudinal extent of the former is about 8°, while the extent of the latter is about 58°.

The main source of the downward transport is a strong downward motion along the eastern
boundary. The maximum downward speed at each level is found there: $1.0 \times 10^{-8} \text{cm sec}^{-1}$ at 70 m, $5.2 \times 10^{-9} \text{cm sec}^{-1}$ at 380 m, $10.3 \times 10^{-9} \text{cm sec}^{-1}$ at 960 m and $14.3 \times 10^{-9} \text{cm sec}^{-1}$ at 2020 m.

Case 2. The pattern changes strikingly. The major counterclockwise gyre in Case 1 shrinks, shallows and shifts southward. Its center is located at 380 m, 39°N. Its northern border around 52°N coincides with the convergence between the anticyclonic and cyclonic gyre mentioned above. Its transport is $12 \times 10^{14} \text{cm}^3 \text{sec}^{-1}$, compared with $43 \times 10^{15} \text{cm}^3 \text{sec}^{-1}$ in Case 1. The weak northern boundary gyre in Case 1 grows southward into a shallower but larger gyre of $1.4 \times 10^{15} \text{cm}^3 \text{sec}^{-1}$. As in Case 1, the upward transport at the northern boundary region originates mainly from the upwelling in the western boundary region.

At low and middle latitudes below the counterclockwise gyre emerges a large clockwise gyre whose transport is $21 \times 10^{14} \text{cm}^3 \text{sec}^{-1}$, almost twice as large as the transport by the upper counterclockwise gyre.

The downward transport at a depth of 2020 m between 10°N and 27°N results mostly from the sinking at the eastern boundary, whose maximum is $1.7 \times 10^{-8} \text{cm sec}^{-1}$ at 22°N. There is a sinking along the western boundary at these latitudes, too, but it is much weaker except at 10°N to 14°N. This downward transport is lacking in Case 1, where, contrary to Case 2, a strong upward motion is found almost all along the eastern boundary, and the upward motion in mid-ocean is also a little stronger than in Case 2. An upwelling at the eastern boundary gives rise to the upward motion between 27°N and 51°N, though a weak sinking at the western boundary reduces it.

Case 2 runs over 30.4 years only. One may ask oneself, therefore, whether or not the time integration is long enough to get an almost steady state which is capable of meaningful description. In parallel with the present study, another study is done for the circulation driven by not only the surface heat flux but also the surface salinity flux. The time integration is forwarded over 120 years. The resulting meridional circulation pattern does not essentially differ from that in Case 2. A deep clockwise gyre is present below the upper counterclockwise gyre just as in Case 2, indicating that Fig. 17 is not a transition phase far from the steady state to be reached.

Case 3. Although the circulation pattern does not significantly differ from that in Case 1, the main counterclockwise gyre is shallower and weaker: the maximum value of the stream function, $27.3 \times 10^{15} \text{cm}^3 \text{sec}^{-1}$, is found at 960 m, 53°N. The northern sinking region is nearly twice as large as that in Case 1. The maximum speed of the downward motion in each level is found on the eastern boundary as in Case 1, but about half as large as that in Case 1: $0.59 \times 10^{-8} \text{cm sec}^{-1}$ at 70 m, $3.0 \times 10^{-9} \text{cm sec}^{-1}$ at 370 m and $6.0 \times 10^{-9} \text{cm sec}^{-1}$ at 2020 m.

Similar to Case 2, four weak clockwise gyres appear at middle and low latitudes.

The downward motion at 2020 m at low latitudes are mainly due to sinking at the eastern boundary which is as strong as in Case 2 and much stronger than in Case 1. The downward transport at the equator is produced by the sinking along the equator, while the upwelling is produced by the mid-ocean upwelling, though there is a relatively strong sinking at the western and eastern boundary.

Although $T_4$ is a little higher north of 56°N only than in Case 1, the total meridional circulation is affected to such an extent.

It is only the equation of state that is different from each other between Cases 2 and 3. Compared with Case 2, the counterclockwise gyre is strong, though not so much as in Case 1, whereas the clockwise gyre in deeper layers at middle latitudes is almost half in transport.

6. Total zonal circulation

Integrated with respect to the latitude from the southern boundary to the northern boundary, the equation of continuity becomes

$$\frac{1}{R} \frac{\partial}{\partial \lambda} \left( u \frac{\partial \phi}{\partial \phi} + \frac{\partial \psi}{\partial z} \right) w \cos \phi \, d\phi = 0.$$ 

The transport stream function is defined, as a measure of the total zonal circulation, by

$$\int u R \, d\phi = - \frac{\partial \phi'}{\partial z}, \quad \int w R \, d\phi = \frac{1}{R \cos \phi} \frac{\partial \phi'}{\partial \lambda}$$

(47)
Figures 19 to 21 show the total zonal circulation in the three cases in terms of the transport stream function.

**Case 1.** There are a counterclockwise gyre in the greater part of the eastern half and a clockwise gyre in the remaining region. The latter in turn splits into two small gyres, lower gyre centered at 2020 m, 47° and upper gyre centered at 380 m, 45°. The transport is 41.8 × 10¹⁴ cm³ sec⁻¹ and 37.3 × 10¹⁴ cm³ sec⁻¹, respectively. It follows, therefore, that the total zonal circulation is as strong as the total meridional circulation. The strong sinking along the eastern boundary is mainly due to the sinking of cold water from the surface of the northeastern corner. The western boundary region is a strong upwelling region by the upward motion through the length of the western boundary. Its upward transport is 17.5 × 10¹⁴ cm³ sec⁻¹ at a depth of 2020 m and 24.2 × 10¹⁴ cm³ sec⁻¹ at a depth of 380 m, almost half of the downward transport along the eastern boundary. Unlike the total meridional circulation, the total zonal circulation is upward in the greater part of deep layers.

**Case 2.** The pattern drastically changes. Reflecting the wave of the sinking at high latitudes, particularly in the northeastern corner, the upper clockwise gyre in Case 1 is considerably weakened and confined into upper layers. Its transport is reduced from 37.3 × 10¹⁴ cm³ sec⁻¹ in Case 1 to 18.4 × 10¹⁴ cm³ sec⁻¹. The lower clockwise gyre is located at the center and transports 9.8 × 10¹⁴ cm³ sec⁻¹, while in Case 1 it is located near the eastern boundary and is the strongest gyre transporting 40 × 10¹⁴ cm³ sec⁻¹.

The western boundary region splits into two regions: the upper is an upwelling region transporting 13.6 × 10¹⁴ cm³ sec⁻¹, and the lower is a sinking region transporting 14.7 × 10¹⁴ cm³ sec⁻¹, while Case 1 shows an upwelling region extending from the surface down to the bottom.
Case 3. The circulation pattern is close to the pattern in Case 1. Its intensity is less, however. The transports of the three gyres in Case 1 are reduced from $41.8 \times 10^4$ cm$^3$ sec$^{-1}$, $37.3 \times 10^4$ cm$^3$ sec$^{-1}$ and $-21.3 \times 10^4$ cm$^3$ sec$^{-1}$ to $41.2 \times 10^4$ cm$^3$ sec$^{-1}$, $33.8 \times 10^4$ cm$^3$ sec$^{-1}$ and $-6.5 \times 10^4$ cm$^3$ sec$^{-1}$, respectively.

7. Meridional heat transport

The meridional heat transport across a parallel has three components: transport by the total meridional circulation, transport by the horizontal circulation and transport by the subgrid scale eddy diffusion. The first component is achieved by bringing warm surface waters northward and cold deep waters equatorward. The horizontal circulation yields a net northward heat transport by bringing warm western boundary waters northward and relatively cold waters equatorward in the central and eastern region. The eddy diffusion brings heat from warmer regions to colder regions.

Figure 22 gives the total meridional heat transport in the three cases. Case 1 transports the largest amount of heat, and Case 2 the smallest amount. The meridional heat transport and the surface temperature are interdependent through the surface heat flux which is made proportional to the difference between the surface temperature and the reference atmospheric temperature. The maximum and minimum of the zonal means of the surface temperatures are tabulated in Table 2.

The minimum is found between 68°N and

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>27.34</td>
<td>27.71</td>
<td>27.74</td>
</tr>
<tr>
<td>Min</td>
<td>1.68</td>
<td>-0.86</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Table 2. Maximum and minimum of the zonal means of the surface temperatures (°C).

Fig. 22. Total meridional heat transport in Cases 1 to 3. Numbers 1 to 3 written alongside the curves refer to Cases 1 to 3.

Fig. 23. Three components in Cases 1 and 2. A, B and C denote the transports by the meridional circulation, horizontal circulation and subgrid scale eddy diffusion, respectively.
70°N in every case. The maximum is between 0° and 2°N in Cases 1 and 2, but between 2°N and 4°N in Case 3. On account of these temperatures and the reference atmospheric temperatures at these latitudes, the incoming surface heat flux is largest in Case 1, smallest in Case 2. It is also the case with the outgoing surface heat flux.

Figure 23 gives the three components in Cases 1 and 2. The meridional circulation is of essential importance in any case. The eddy diffusion is considerable at high latitudes only.

Although a larger amount of heat is transported in Case 1 than in Case 3, there is no qualitative difference between the two cases in respect that each component varies with latitude in a quite similar way. About half the difference of the total heat transport between Cases 1 and 3 is accounted for by the difference of the heat transport due to the meridional circulation and the remaining half by the difference of the heat transport due to the horizontal circulation.

However, the decrease of the total heat transport in Case 2 compared with the other two cases is another thing. It is mainly attributed to the decrease of the heat transport by the meridional circulation. The other two components do not decrease much. Another particularity of Case 2 is the role of the horizontal circulation, which transports an amount of heat comparable to that in Case 3. Since the total transport strikingly decreases, its role in the total transport increases relative to the meridional circulation. Moreover, its transport is southward rather than northward. The southward transport south of 45°N is much larger than the northward transport north of 45°N. The transport by the horizontal circulation is northward at any latitude in Case 1, and northward between 0° and 20°N in Case 3.

8. Summary

When a constant coefficient of thermal expansion, $2.5 \times 10^{-4} \text{°C}^{-1}$, is assumed as in most models of the ocean circulation excluding the salinity, the solution is affected not only at high latitudes but also at low latitudes in various aspects:

1. High latitude surface temperatures considerably increase.
2. Equatorial surface temperatures a little decrease.
3. The double gyre horizontal circulation at upper layers disappears. Instead, a single anticyclonic gyre spreads all over the upper layers. No southward boundary current exists any longer along the high latitude western boundary.
4. The high latitude sinking is much accelerated. With regard to the total meridional circulation, the deep gyre with sinking at low latitudes and upwelling around 50°N is much decelerated. Too a deep convection penetrates into bottom layers at high latitudes.
5. The surface western boundary current, equatorial current and other currents become deeper.
6. The meridional heat transport is spurred thereby. The role of the horizontal circulation decreases relative to the role of the meridional circulation.
7. Along the western boundary the total zonal circulation shows no deep sinking, although there is still an upwelling in upper layers.
8. The circulation, either horizontal or vertical, becomes too active.

Neither wind stress nor surface salinity flux comes into play in the present study. Hence, comparison with the observed circulation is out of the scope. A separate paper deals with the change which they bring to the thermal circulation as obtained in Case 2.

The grid used here is not fine enough to resolve the mesoscale eddies whose presence is recently revealed. Although the interaction between the large scale circulation as studied here and the mesoscale eddies is not yet well understood, the approximation to the equation of state should have some effect on the eddy dynamics. Formula (1) is used in almost all the eddy resolved general circulation models so far developed. We carried out a series of numerical experiments by use of Formula F & L and a fine grid in order to have insight into the effect of the degree of the approximation to the equation of state upon the eddy dynamics. A next paper is concerned with the wax of the
Effect of the Approximation to the Equation of State for Sea Water

eddy activity resulting from Formula (1).

References


FRIEDRICH, H. and S. LEVITUS (1972): An approxi-

mation to the equation of state for sea water, suitable for numerical ocean models. J. Phys. Oceanogr., 2, 514–517.


状態方程式の近似の度合が海洋大循環の数値解に及ぼす影響

髙野健三

要旨: 海洋大循環の数値研究では、海水の密度を計算する際に Knudsen の式のかわりに、もっとかんたんな近似式を使うのがふつうである。近似の度合が解に及ぼす影響を調べるため、2つの近似式を使って結果をくらべる。大循環は熱だけで駆動される。海水の密度は、第一の近似式では水温の一次関数であるが、第二の近似式では水温と圧力のやや複雑な関数（FRIEDRICH と LEVITUS の式で定数を一定（35 %）とおいたもの）である。前者では海水の熱膨張係数は水温や圧力とは関係なく一定となる。この一定値を 2.5 × 10⁻⁴⁻⁴ C⁻¹ とする。近似精度は後者のはほうがずっと高い。第一の式を使うと、(1) 高緯度の表面水温はいちじるしく上昇し、(2) 赤道海域の表面水温はやや低下し、(3) 低緯度から高緯度へ運ばれる熱量は大きくなり、(4) 高緯度表層の反時計まわりの循環は消えて、ただ一つの時計まわりの循環が表層全体をおおし、(5) 表層流は一般に深くなり、(6) 子午線直緯循環はいちじるしく弱くなり、(7) 水平循環も弱くなる。というわけで、水温の変化幅が広い場合に対しては精度の悪い近似式を使うことは好ましくない。

(51)
日仏海洋学会賞受賞記念講演

おくあみ類をめぐる生物生態に関する研究

根 本 敬 久**

Recherche écologique d'être vivant relatif aux euphausiaceés

Takahisa NEMOTO**

この研究は、私が麟鯨研究所および東京大学海洋研究所において続けました。動物ブランクトン、マイクロネクトンの生態とその捕食者の生態に関する研究の一環として行なわれたものであります。

おくあみ類は現在86種が世界の海洋から報告されています。古くは、1830年代におきあみの一種 Thysanopoda tricuspisdata が Milne-Edwards により報告されていますが、その後この種に関する研究はむしろ諸外国において進められてきたと考えられます。日本においては、ようやく第二次大戦後になって組織的な研究が始まられたと言って良いでしょう。しかし、外洋域のおきあみ類の分布特性や生態に関する広範囲な研究は殆ど行われていないと言えます。おくあみ類の大型種は、ネットに対する逃走等により極めて採集されにくいため、充分な研究が進められなかったということも一つの理由でしょう。

捕食者として重要なひとつの鮮魚類の飼料として出現したおくあみ類の分布状況を整理した結果、南北両極海域のおきあみ類の分布について新しい発見が得られました。即ち、北太平洋北部海域においては、Euphausia pacifica, Thysanoessa raschii, T. inermis, T. longipes, T. spinifera, T. inspinata の6種が出現します。その分布と現場水温、塩分および海の深度の組合せで出現域を区分しますと、低温低塩域に出現する T. raschii は他の Thysanoessa 属4種と異なり、北部北太平洋の浅海の沿岸水に区分される水塊にのみ出現し、T. spinifera は同じく T. longipes, T. inermis T. inspinata よりやや低塩な沿岸水の影響を受け海縁域にまで分布します。しかし太平洋の東側で、北はアラスカ海岸にその分布が限られるため水温は他種に較べて高い値を示し、T. longipes, T. inspinata はより高温の外洋域に分布することが示されます。また、南極洋においては E. superba の北限域が明瞭に示され、この種の大量に分布する海域が南極収束線内の大陸側において、海域毎に局部的な差が見られることがありますでした。

おくあみ類については、その摂取行動、生殖行動と関連して、個体内発生に伴う鈍直行動をとる事で示されます。海洋の深海系に分布する Thysanopoda 属のおきあみ類多種類は、その Furcella 期から成熟期には深海系下部から深海系上部に分布しますが、成体か深海系の中部から下部深海帯に分布し、摂取、生殖行動をとります。おくあみ類はまたその成長段階において周期鈍直移動の範囲が異なることも明らかにされましました。

おくあみ類の生態的特性の中で、その摂取構造と食性は興味ある課題の一つです。特に第二次生産者として重要な Euphausia 属の各種は、浅海系で浮遊捕食するのに適した胸脚および浮遊刺
毛をそなえるのが普通ですが，各齢の長さの割合
および各齢に生える刺毛の長短，その間隔は，
棲息する海域の飼料生物の分布状態に関連して種類
に異なる傾向が認められました。

北極両極の植物プランクトン現存量の多い海域
の *Euphausia* 属の各種は，胸部 6 肢がそれそれぞれ
発達し，篭過刺毛は 5～12 μ 程度の密な間隔で生
えていました。 *Thysanoessa raschii* も同属の中で
一種，高い植物プランクトン現存量を示す海域の
浅海系で捕獲する種類で，同じように 8～11 μ
の密な間隔で刺毛が生えています。これに対して，
より非食性の特徴を示す種では後部の胸脚が退行
し，かつ篭過刺毛の間隔が大きく，刺毛の発達が
弱くなることが示されます。 *Euphausia* 属の最も
有効な篭過器であると考えられる長脚と前脚の
間接捕獲を考えると，2-2 の群に分かれ，*Euphausia*
属のなかの篭過捕食種と亜熱帯域に分布する非食性
の *Euphausia* 属では異なる種間相互成長を示し，
それぞれ現物の捕獲条件に応じた分化が認めら
れます。

飼料の捕食，破砕に用いられる大量は，その捕
獲特性と対応して臼歯部の発達する篭過捕食種
と，切歯部の発達する肉食種とに分かれます，
海洋の鉛直分布と関連して，浅海系に分布する
*Euphausia* 属の向きあい類のうち両極海域に分布
する種は臼歯部が発達し，熱帯域に分布する種は
この程度がやや弱くなる傾向が認められます。ま
た胃内壁に生える刺毛は篭過捕食者において発達
し，特に *E. superba* には刺環と呼ばれる破砕機
構が胃後部に存在しますが，赤道海域付近に分布
する *gibba* 群に属する *Euphausia* 属の各種はこ
の刺環が発達せず，むしろ刺歯のいくつかの刺
に由来して形成されています。

向きあい類の捕食者としては篭過捕食類が最も適
応した一つの生物群であることは論を待ちませ
ん。篭過のうち私が研究した種は大型篭を中心に
10種類が集められました。そのうち，母性帯捕篭
業，沿岸捕篭業によって捕獲されていた種が 6 種
類あり，また研究のために捕獲を許可されたセミ
クジラ *Eubalaena glacialis* が含まれていたことも
幸運であったと申しましょう。

ひげ鱧類の捕食については，まずその捕篭構造を
検討する必要があります。篭過の主な捕篭構造
としては口角の形態，鱧ひげの形態，ひげ毛の性
状，歯の有無，その延長の度合等が重要な形質と
なります。これらの形質の組合せにより，篭過鱧
類の捕篭型が三通りに分けられます。

一つは密な群集をつくって，動物プランクトン，
マイクロクラクターを腹面下降下の水を利用して
群ごと吞み込み，次に口腔内内側に生えた鱧ひ
げによって水と歯を逆さにして水中に送る方法で
す。この型の篭過類としては，シロナガスクジラ
*Balaenoptera musculus*，ナガスクジラ *B. physa-
lus*，ザトウクジラ *Megaptera novae-angliae* が
あります。これらの鱧は長距離にあたり，季節の
に南北に大規模な回遊をする点を注目しなければ
なりません。極海域に回遊，または移動する生物
のうち，鱧類についてはどうかこの点が強調され
ます。

次に，海洋にやや粗な分布を示す動物プランクト
ンを捕食する種が見られますが，篭過鱧の中で
はセミクジラ *Eubalaena glacialis*，ホッキョクク
ジラ *B. mysticetus* がこの群に属すると考えられます。
セミクジラの鱧は，過去の研究結果によれ
ば，かついず類を含む動物プランクトンが主要な
もので，海の潮目に沿ってセミクジラの捕食活
動を観察することも稀ではありません。セミクジ
ラは 1 m 程度で捕食するかといず類，
*Calanus plumchrus* や *C. finmarchicus* を捕食す
ることも可能となります。これ，この型の篭過篭
の回遊の規模は大きいくないことが指摘されます。
捕食される動物プランクトン，マイクロクラク
ターの単位体積当たりの個体数は，生物量の増大に伴
ない減少します。大型の鱧類種は単位体積当たり
の個体数が減少するわけですが，この極端な例とし
ては *M. novae-angliae* に捕食されるメガトウクラ
クやサバの群集をあげることが出来ます。捕食
者の捕篭条件より捕食生物の生態的特性が明らかに
されたことも注目すべき点の一つです。

この二つの型をとる鱧としてはイワシクジラ *B.
borealis* があります。腹部下面の軟が他の *Balaen-
optera* の種が延長せず，また鱧ひげの性状も
B. musculus 等の‘呑み込み型’のひげ鰭と E. glacialis の中間の性質を見せています。即ち、細いひげ毛を持つひげ板はやや長く渦過面積の増大を示し、上頬はやや曲げてセミクラロと同じように連結しており、プランクトンを‘呑し取る’のに役立ちます。かつ色を有効に使うことにより‘呑み込み型’の捕餌をとることも可能です。

南極洋のイワシクジラは、かいあし類やおきあみ類の他に端脚類 Parathemisto gaudichaudii を捕食し、特に南極洋の低緯度においては主餌料となることが示されます。P. gaudichaudii はかいあし類を主に捕食するので、南極洋においては、植物プランクトン→おきあみ (E. superba) →ひげ鰭という最も短かい食物連鎖の他に、

植物プランクトン→かいあし類→端脚類 (P. gaudichaudii) →イワシクジラ (B. borealis)

の食物連鎖が存在することが明らかにされました。この食物連鎖は E. superba により形成される鰭場と異なり、より広範囲の南大洋域に出現しますが、季節的にみてもより広い時期を鰭場として形成すると考えられます。

イワシクジラは、南極洋への回遊の時期が他のシロナガスクジラやナガスクジラよりも遅く、南極洋の言わば秋期に回遊が見られますが、これは端脚類による鰭場の形成を結びつけるようです。また、シロナガスクジラ、ナガスクジラ等、大型ひげ鰭類の減少に伴ない、イワシクジラの回遊の時期が早くなり、かつ摂飼行動圏がより南まで及びることが示された点も注目しなければなりません。

今後の研究課題においては引き続き大型動物プランクトン、マイクロネクトオンの生態に関する研究が大切であると考えられます。おきあみ類のみならず、おきあみ類、かいあし類、いか類、魚類等を含めて、生態系におけるこれらの生物群の中での総合的な解析が重要と考えられます。特に海洋の深海系におけるマイクロネクトオンの動態について研究を続けていきたいと考えます。

今回、日仏海洋学会賞を頂きましたことを機会に、これらの課題につきさらに努力を続けて参りたいと考えております。引き続き会員の皆様方の御指導をお願い申し上げます。
学 会 記 事

1. 昭和53年6月28日、東京農産大学において、編集委員会が開かれた。
2. 昭和53年6月29日、東京農産大学において評議員会が開かれた。
   1）会務報告、編集報告が行なわれた。
   2）昭和52年度の収支決算および昭和53年度の予算案が審議された。
   3）学会賞受賞者として根本敬久氏が推奨され、受賞者として決定した経過が報告された。
   4）昭和53年度学会賞受賞者推薦委員会15名を下記のとおり選出した。
   監部周三郎、片野裕道、石野重、今村、豊、宇野寛、草木孝也、安藤春一、杉関吉雄、高野健三、多賀信夫、根本敬久、星野通平、松本治、丸茂隆三、森田実美
3. 昭和53年6月29日、日仏学会乾議会において、第19回総会が開かれ、次の報告並びに審議が行われた。
   1) 昭和52年度の会務並びに会計報告が行われた。なお、別表の52年度収支決算が承認された。
   2）編集委員会から学会誌第15巻の編集過程報告が行われた。第15巻は総ページ数217ページで、その内訳は原著論文14編（和文8、英文6）、資料1編、記念講演1編、その他学会記事などである。
   3）学会賞受賞者として根本敬久氏が決定に至る経過が報告された。
   4）昭和53年度の予算案について審議の結果、別表6とおり承認された。
   5）昭和53、54年度の評議員が選出された。（本誌169ページの評議員の名簿を参照）
昭和53年度収支決算

<table>
<thead>
<tr>
<th>項目</th>
<th>収支額(円)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>前年度繰越金</td>
<td>22,630</td>
<td></td>
</tr>
<tr>
<td>会 費</td>
<td>1,167,500</td>
<td></td>
</tr>
<tr>
<td>賛 助 会 費</td>
<td>425,000</td>
<td></td>
</tr>
<tr>
<td>賛 助 費</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>学 会 誌 売 上</td>
<td>108,150</td>
<td></td>
</tr>
<tr>
<td>広 告 料</td>
<td>220,000</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>1,963,280</td>
<td></td>
</tr>
</tbody>
</table>

支出

<table>
<thead>
<tr>
<th>事 項</th>
<th>支出額(円)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>学会誌等印刷費</td>
<td>1,720,400</td>
<td></td>
</tr>
<tr>
<td>送 料 通 信 費</td>
<td>142,810</td>
<td></td>
</tr>
<tr>
<td>編 集 費</td>
<td>3,150</td>
<td></td>
</tr>
<tr>
<td>事 務 費</td>
<td>34,000</td>
<td></td>
</tr>
<tr>
<td>交 通 費</td>
<td>15,640</td>
<td></td>
</tr>
<tr>
<td>会 議 費</td>
<td>31,400</td>
<td></td>
</tr>
<tr>
<td>次年度繰越金</td>
<td>15,880</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>2,085,880</td>
<td></td>
</tr>
</tbody>
</table>

6) 昭和53年度学会賞受賞者は根本敬久氏が選出について報告があった。
4) 総会終了後、引き続き学会賞の授与が行われた。
昭和53年度学会賞受賞者：根本敬久氏（東京大学海洋研究所）、受賞者：おきあみ類をめぐる生物生態に関する研究（業績「推薦理由書」参照）。会長か
5. 講演終了後懇親会が開かれ盛会であった。
6. 昭和53年6月29日、30日の両日、日仏合同会議室において、昭和53年度「日仏海洋学会学会研究発表会」が次のとおり開かれた。
6月29日（木）
午前の部
1. 岩崎地震および人為的放水により誘起された牛込懸流の静態……………森谷誠生（気象協会）
　　阿部幸三郎（東京大・理）
2. 潮による牛込懸流懸移層の下限について一観および平面的な静態と懸移層の変動……………矢内秋生（日本学術振興会）
　　阿部幸三郎（東京大・理）
3. 懸濁水中の岩を流れる特徴に発生するSlickの解析
　　Moineの方法によるCapillary Waveの解析………………………高山真光、川崎宏
　　阿部幸三郎（東京大・理）
4. 氷の淵と魚の遊泳行動…………井上實、有元貴文
　　大西達夫（東京大）
5. 多要素流体計の数値実験と観測データ
……………………………………………川崎守武（海洋研究開発機構）
午後の部
6. 千曲川川平の海潮的生と光合成活性
………………………大蔵英雄、有賀光雄（東京大）
7. 美濃部の海水プランクトン……………村野正昭（東京大）
　　千葉雄勢（東京大・水産実験所）
8. フィオシアンによる藻類の生産性指標に関する研究………………………関文夫、皆原豊
　　（筑波大・生物科学研究科）
9. 中規模変化に伴う海洋資源の発生について
……………………………………………………富永政英（筑後島大・工）
第19回総会
学会賞授賞
学会賞受賞記念講演
オキアミ類をめぐる生物生態に関する研究
………………………………………………根木貴久（東京海洋研究）
6月30日（金）
午前の部
10. 飛砂現象に関する研究→砂粒子の終端速度を推定する方法……………新井正一、内村二重
　　原島近夫、阿部幸三郎（東京大・理）
11. 海水の層化性に及ぼす海藻抽出物質の影響および層化構内の環境……………森幹樹
　　矢部俊信、阿部幸三郎（東京大・理）
12. 安定海水流動の乱れ機構→16 mm Filmによる現場事例の解析……………小林貴、松本喜明
　　阿部幸三郎（東京大・理）
13. ヨーロッパにおける捕獲漁業、特にマグロ類の諸問題について……………宇野寛（東京大）
午後の部
14. 新潟地方における海水漂着動物の騒音計測の観察
………………………太田義治（新潟大・理、地学実験所）
15. ナンギョクオキアミ大形成群の種別の移動について
………………………神田健二、高木孝彦、関崎二（東京大）
16. 孤立島周辺の流れの場と温度場の乱れ
　　伊豆大島の場合について…………石野誠、大塚一志、篠崎健、関崎二（東京大）
17. 暴風波近傍の挙動と波浪……………小島俊二、西山裕之（気象研）
特別講演
海消丸のナンギョクオキアミ調査航海について
（編集使用）……………………………神田健二（東京大）
7. 新入会員（正会員）

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>総合者</th>
</tr>
</thead>
<tbody>
<tr>
<td>飯沼正人</td>
<td>東京大学海洋科学部</td>
<td>宇野寛</td>
</tr>
<tr>
<td>加藤義一</td>
<td>東京大学海洋環境工学科</td>
<td>松本浩</td>
</tr>
<tr>
<td>加納敬</td>
<td>東京大学海洋環境工学科</td>
<td></td>
</tr>
<tr>
<td>永沼尚子</td>
<td>東京大学海洋科学部</td>
<td>丸茂隆一</td>
</tr>
<tr>
<td>沢田英治</td>
<td>東京大学海洋科学部</td>
<td>元田光</td>
</tr>
<tr>
<td>藤森時代</td>
<td>東京大学海洋環境工学科</td>
<td></td>
</tr>
</tbody>
</table>

（受入会員）

<table>
<thead>
<tr>
<th>氏名</th>
<th>住所所在地</th>
</tr>
</thead>
<tbody>
<tr>
<td>藤本幹</td>
<td>代表取締役</td>
</tr>
</tbody>
</table>

退会者
正会議員 松平隆男、中野周、未永雄泰、浜上安治
退去 渡辺貞太郎

8. 会員の住所変更

<table>
<thead>
<tr>
<th>氏名</th>
<th>新住所</th>
</tr>
</thead>
<tbody>
<tr>
<td>佐野 昭</td>
<td>神奈川県川崎市横浜区</td>
</tr>
<tr>
<td>松本 勝</td>
<td>横浜市中区</td>
</tr>
<tr>
<td>高橋 正</td>
<td>東京大学海洋科学部</td>
</tr>
</tbody>
</table>

(56)
9. 交換及び索引図書
   1) 研究実用化報告 27(3, 4, 5)
   2) 面麺海洋気象台、海上気象報告 第34号
   3) 英国産業ニュース 5, 6, 7号
   4) 滝賀大学教育学部、湖沼実験施設論文集 No. 17
   5) 海洋産業研究資料 9(2, 3, 4)
   6) 漁業 第55号
   7) 日本海区水産研究所、研究報告 第29号
   8) 海洋時報 第9号
   9) 農業土木試験場技報 (D) 水産土木 第20号
   10) 宇佐脳海実験所、研究報告 24(1~2)
   11) 広島日日新聞報 No. 67~70
   12) 国立科学博物館研究報告 A類 (動植物) 第24号
   13) 横浜市博物館研究報告 (自然科学) 第2号
   14) 横浜市博物館資料集 第4号
   15) 魚研通信 第315号
   16) 釜山水産大学、海洋科学研究所、研究報告 第10巻
   17) 水産試験研究機関、海洋観測資料 昭和48年度
   18) Science and Pêche N° 273:275
   20) Ina gazette N° 21, 22
   21) Annales Hydrographiques 5(747)
   22) Bulletin d’Information N° 113
   23) American Museum Novitates N° 2641
   24) CSK Newsletter, No. 52
   25) Biology of The Commercial Fishes in The Inland Reservoirs of The North European Pare of The OSSR Teritory Vol. 32
   26) Mechanization and Automation of Fishery Problems of Rational Exploitation of Fishes Vol. 39
   26) Revue des Travaux de L’institut des Peches Maritimes Vol. XIV

日仏海洋学会賞受賞優秀者推薦理由書
氏名: 根本敬久 (東京海洋大学海洋研究所）
題名: おきあみ類をめぐる海洋生物についての研究
推薦理由: おきあみは、海洋生物の一種であるが、その生態、生物学、生態学的な特性などについて詳しい研究を進め、さらにそれが生物多様性を高める役割を果たしている。研究者としての敬久氏の業績は高く評価される。

学会賞受賞優秀者推薦理由書
委員長: 柳下孝也

主要論文
FGGE (First GARP Global Experiment; 1978年12月1日～1979年11月30日）期間中に予定されている海洋調査計画の報告について。

FGGE（First GARP Global Experiment; 1978年12月1日～1979年11月30日）期間中に予定されている海洋調査計画の報告について、多くの海洋学研究者が、IOC（政府間海洋学委員会）事務局長からの依頼文書および同封された「Projected Observational Plans Form」の記入用紙を受け取ったとと思います。

依頼文にも書いてあるように、本来はこの種の事務は国際海洋資料交換（IODE）組織を通じて行われるべきものでありますが、既にFGGE期間に入りつつ時間の余裕がないため、取り急ぎ直接研究者個人宛に依頼されたものであるあります。ここに国際海洋資料交換国内調査員の立場から本件への御協力をお願いするとともに、本件に関するガイドを述べたいと思います。

IOCの依頼文書の主旨は次のとおりです。

FGGE期間中に予定されている海洋調査計画を同封のフォームに記入し、米国のNOAAにあるRNODC-FOY（FGGE実施中の責任国立海洋資料センター）へ早急に送付されたい。これはRNODC-FOYに譲られた次の二つの業務

(1) 『全球的な海洋学データ目録』の作成
(2) 『全球的な海洋気候データベース』の作成

の目的のためのものである。

本目録は、FGGE期間中に観測された総括の海洋学データ（生物、化学、物理、地質）の案内役を果たすものである。RNODC-FOYは記入された「Projected Observational Plans Form」から本目録を編集公刊する。その初版は1979年2月と予定されている。なおこの目録は観測終了後に観測データ項目の明細を示す『海洋調査報告（ROSCOP）』の送付によってチェックされることになっている。

「全球的な海洋気候データベース」は、FGGE期間中に観測されたすべての利用可能データ（塩分、水温、海流、海面水位、海面波、海面変形、溶存酸素）により作成される。これらのデータを各アジア国家から海洋観測機関に提出し、国際海洋資料交換を経由して国際海洋資料交換（IODE）に送付される。各アジア国家から海洋観測データは国際海洋資料交換（IODE）に送付され、国際海洋資料交換（IODE）に送付される。

RNODC-FOYは更に2年以内にデータベースを作成し、完成した海洋観測データセンター（海洋学）へ送付し一般利用者の便に供する。

FGGEを成功させる為には、これら海洋データ目録とデータの提供に関しての協力いかんにかかってい

以上が依頼の主旨ですが、本件に関連して二、三の要望を述べます。

1. 『Projected Observational Plans Form』の送付方法
（下記（a）、（b）いずれの方法でも結構です。）

(a) 海洋資料センター経由
必要事項記入後、海洋資料センターへ送付ください。
センターメテー事項チェックの上、一括して RNODC-FOY へ送付します。

(b) RNODC-FOY へ直接
直接 RNODC-FOY へ既に送付されたものがまだ
今後送付予定のものは、今後のフォローのために、そ
のコピーをお手数をおかけしますが、宛名はフォロ
に記入されております。

2. 記入フォームの記載内容について次の事項が不明確なので RNODC-FOY へ照会したところ、記入フォーム 5、6 の Processing Center は、普通は第一次処理を行う調査機関を、12）Residence of final data では、普通は海洋資料センターに記入することと
は、従って 12）は下記のように記入して下さい。

JAPAN OCEANOGRAPHIC DATA CENTER
Hydrographic Department, Maritime Safety Agency
No. 3-1, Tsukiji 5-chome, Chuo-ku, Tokyo, 104
（PHONE 03-541-3611）

3. 記入フォームへの登録基準については、毎年海洋資
料センターより提出されている国内海洋調査計画の中
の DNP（観察された国内計画）が当然この登録に含まれ
ます。更に以下のスケジュールについても可能な限り登
録されるようお願いします。

また昭和54年4月以前の調査計画がまだ不確定の場
合はとりあえず3月までのものを記載し、4月以降の方
は確定次第報告するようにした方が良いと思います。

4. 今後の業務について

今回登録されるクルーズの海洋調査報告（ROSCOP）は、観察終了後できるべく速かに、また検査するデータは観測終了後もかくも2年以内、出来れば1年半以
内に海洋資料センター送付をお願い致します。

5. その他

IOC もの依頼文書が個人宛になっているため、該当機
関の一覧調査航海について重複して RNODC-FOY へ
送付されるおそれがありますが、海洋資料センターへ
送付される場合は同調査しますが、直接 RNODC-FOY へ送付される場合は、機関内に重複を
防ぐための調査がなされるようお願いします。

記入紙が不足の場合は、コピーしていただくか当
センターへ請求して下さい。

海洋資料センター（国際海洋資料交換国内調整員）
二 谷 顕 男
贊助会員

旭化成工業株式会社
株式会社内田老鶴園新社 内田悟
大金製作所
株式会社 オーシャン・エージ社
株式会社 大林組
小樽船用機械株式会社
株式会社 オルガノ
株式会社 海洋開発センター
協同低湿工業株式会社
協和商工株式会社
小松川化工株式会社
小山池田
三信船舶電気株式会社
三洋水路測量株式会社
シュナイダー財団横浜駐在事務所
昭和電装株式会社
新日本製紙海洋株式会社
株式会社 松見精機
東亜建設工業株式会社
東京工材株式会社
株式会社 東京久保
東京製繊総合ロープ株式会社
株式会社 東邦電設
中川防錆工業株式会社
株式会社 ナック
日本アクアラング株式会社
日本海洋産業株式会社
日本テトラポッド株式会社
社団法人 日本能率協会
日本プロレスコンクリート株式会社
深田ナルページ株式会社
藤田 深
藤田 峯雄
フランス物産株式会社
古野電気株式会社
丸文株式会社
三井海洋開発株式会社
吉野計器製作所
株式会社 離合社
株式会社 夏部計器製作所

東京都千代田区有楽町 1-1-2 三井ビル
東京都千代田区九段北 1-2-1 鳳谷ビル
東京都港区新橋 3-1-10 丸藤ビル 社団法人 海洋産業研究会
東京都千代田区神田英士代町 11-2 第1東英ビル
東京都千代田区神田司町 2-3
小樽市築内地 3-4-3
東京都文京区本郷 5-5-16
東京都港区赤坂 1-9-1
東京都千代田区神田佐久間町 1-21 山田ビル
東京都豊島区目白 4-24-1
東京都江戸川区松島 1-342
東京都文京区本橋 6-15-10 英和印刷社
東京都千代田区神田 1-16-8
東京都港区新橋 5-23-7 三栄ビル
東京都港区南青山 2-2-8 DFビル
高輪寿司井町 1079
東京都渋谷区東 1-19-3 青山ビル
横浜市鶴見区鶴見町 1506
東京都千代田区四番町 5
東京都中央区築地 4-7-1 第三ビル
東京都中央区日本橋 3-1-15 久栄ビル
東京都中央区日本橋室町 2-6 江戸ビル
東京都杉並区寄居 1-8-9
東京都千代田区神田銀座町 2-2-2 東京建物ビル
東京都港区西麻布 1-2-7 第17美和ビル
東京都杉並区方南町 2-4-7 第2細野ビル
東京都新宿区西新宿 2-6-1 新宿住友ビル
東京都港区新橋 2-1-13 新橋富士ビル 9階
東京都港区芝公園 3-1-22 協栄ビル
東京都中央区日本橋本石町 1-4
東京都千代田区神田曙町 1-9-1 天理教ビル 8階
東京都新宿区四谷 3-9 光明堂ビル 株式会社ビデオプロモーション
東京都江東区砂 1-3-25 株式会社 中村鉄工所
東京都千代田区神田小川町 3-20-2 増進ビル
東京都中央区八重洲 4-5 藤和ビル
東京都中央区日本橋大伝馬町 2-1-1
東京都千代田区霞ヶ関 3-2-5 霞ケ関ビル 3002号室
東京都北区西ヶ原 1-14
東京都千代田区神田銀座町 1-10-4
東京都文京区向丘 1-7-17

（60）
クライナ サイドスキャン ソナーシステム

本システムは小型曳航体・ケーブル・記録器から構成されます。
①小型曳航体は航行中の（小型）船船から水中に吊り下げられ、超音波を左右両方向に水平方向より10°下に向けて発射します。反射エコーは曳航体内部のプリアンプで増幅されたケーブルを通して船上に伝送され記録されます。海底地形の特徴を迅速かつ明瞭に判別できます。
②記録器の可動部はシンプルで魚探やPDRのようなペンが付いていません。耐久性、信頼性が向上しています。
③記録は見やすく片方のチャンネルを反転する必要がありません。曳航体の位置（0 m）の記録は左、右両チャンネルの中央になり、距離が増すにつれて記録は左チャンネルは左に、右チャンネルは右に移動します。
④記録器、曳航体は軽量で可搬でき、ケーブルは、アーマードケーブル（破断荷重 5 ton）と軽量のウレタン外装ケーブル（破断荷重 2.8 ton）が用意されています。
⑤曳航体特性 XDCR 波数数 100 kHz、パルス幅 0.1 msec、出力 128 dB re 1 µ bar/1 m
実験データ
この記録は昭和54年2月3日に東京湾を曳航して実測したもので。記録紙中央の線は曳航体の位置を示し左右海中の地形・突起物や縄留物を写し出します。このデータでヒトデ状の物は縄留中のブイ（公害資源研究所）のアンカーを写し出されたもので、この外海底物の記録写真は多数あります。御必要に応じて提供致します。
長期捲自記流速計  (NC-II)

本流速計は海中に設置し、内蔵した記録器に流速流向を同時に記録するプロペラ型の流速計で約20日間の記録を取る事が出来ます。但し流速は20分毎に3分間の平均流速を又流向は20分毎に一回、共に棒グラフ状に記録しますから読取が非常に簡単なのが特徴となって居ります。

プロペラはA、B、C三枚一組になって居り
A(弱流用)………1m/sec
B(中流用)………2m/sec
C(強流用)………3m/sec

弱流ペーパーに依る最低速度は約4cm/secです。

フーレ型短期捲自記検潮器  (LFT-III)

営業 品 目
段階 抵 抗 式 波 高 計
ケーブル式 波 高 計
フーレ型 検 潮 器
小野 流 速 計
自記 水 位 計
港 施 型 土 压 計
理研式 水 中 カ メ ラ
その他 海洋観測諸 計 計

協和商工株式会社

東京都豊島区目白4丁目24番地 1号
TEL (952) 1376代表 〒171
AUTO-LAB PORTABLE S-T BRIDGE
Model 602

オート・ラブ誘導起電式精密塩分計に引続いて、
開発された温度と塩分の現場測定用の可携型海
洋測器です。温度、塩分ともダイアルで直接出
来、簡便で堅牢しかも精度度なソリッドステー
トのユニット結合構造の最新計器です。

温 度 ： 0～35℃ 積度 ±0.1℃
塩 分 ： Scale 1. 0～32 %S 積度 ±0.1%S
Scale 2. 32～42 %S 積度 ±0.03%S

電 源 ： 電池 9V，200時間使用可能

製造品目

転倒温度計 各種
電気式水温計 各種
採水器・海洋観測機器
気象用・理化学用温度計
サーモレンジャー 温度調節器

日本およびアジア総代理店

株式会社 渡部計器製作所
東京都文京区向丘1の7の17
TEL (811) 0044 (代表) 113

（カタログ発希望の方は請名御申し上記の上御請求下さい）
海洋環境調査
海底地形地質調査
●水質調査・プランクトン底棲生物
調査・潮汐・海潮流・水温・拡散・
波浪等の調査（解析・予報）
●環境アセスメント・シミュレーション
●海底地形・地質・地層・構造の調
査・水深調査・海図補正測量

三洋水路測量株式会社

東京都港区新橋5-33-7（三洋ビル）
☎03(320)2477

大阪市西区中野町3-6-2（金長ビル）
☎06-655-7020

北九州市門司区港町3-32-3（大和銀行ビル）
☎093-320-8828

福岡市atement区2-8-15（三洋生命株式会社）
☎092-272-9355

神戸市中央区元通東1丁目109（フレンチビル）
☎078-261-3747

三井物産株式会社

は無限の可能性に挑戦する

●漁港電子機器
●航海計器
●海洋開発機器
●航空機用電子機器
●各種制御機器
●各種測定機器
●各種情報システム

古野電気株式会社

本社/東京都港区新橋5-33-7（三洋ビル）
☎03-320-2477

支社/東京都中央区八重洲4-1-3（和光ビル）
☎03-320-2477

九州事務所/福岡市中央区元通東1丁目
☎092-272-9355

三井物産株式会社

外洋における海洋調査
メタルック
熱溶融型接着剤ですから、溶剤や水を含まないので乾燥の必要がなく、
瞬時に接着します。
ポリエチレン、アルミ箔等にも良く接着します。

ポリロック
含浸、注型、充填用として使用される接着性と作業性の良好なシーリング材です。

ポリワックス
ワックスを主成分とし、各種ポリマーをブレンドした防湿、密封用のシーリングワックスです。

東京工材株式会社
東京都中央区築地 4-7-1 TEL (542) 3361 (代)
定価 ¥950

編集者 富永政英
発行者 佐々木忠義
発行所 日仏海洋学会
財団法人 日仏会館内
東京都千代田区神田駿河台2-3
郵便番号: 101
電話: 03(291)1141
振替番号: 東京96503

印刷者 小山春三
印刷所 英和印刷社
東京都文京区本駒込6-15-10
郵便番号: 113
電話: 03(341)6500
第 16 巻　第 3 号

目　次

原著
海溝の成因（英文）……………………………………………………………………………星野通平 111

オオフアシheimer, Haliothis tuberculata LINNÆUS の増殖に関する生物学的
および生態学的研究 I. 初期発生および稚貝の成長（英文）………………………………小池原之 124

状態方程式の近似の度合が海洋大循環の数値解に及ぼす影響（英文）…………高野健三 147

日仏海洋学会賞受賞記念講演
おきあみ類をめぐる生物生態に関する研究…………………………………………根本国久 162

学会記事…………………………………………………………………………………………165

Tome 16　N° 3

SOMMAIRE

Notes originales

Origin of Trenches ..........................Michihei HOSHINO 111

Biological and Ecological Studies on the Propagation of the Ormer,
Haliothis tuberculata LINNÆUS
I. Larval Development and Growth of Juveniles……………Yasuyuki KOIKE 124

Effect of the Approximation to the Equation of State for Sea Water
on the Model General Circulation………………………………Kenzo TAKANO 147

Conférence commémorative

Recherche écologique d'être vivant relatif aux euphausiacés (en japonais)……Takahisa NEMOTO 162

Procès-Verbaux ..........................165