うみ

La mer

昭和 54 年 5 月

日仏海洋学会
La Société franco-japonaise
d'océanographie
Tokyo, Japon
日仏海洋学会

編集委員会

委員長
冨永尚英（慶應義塾大学）

委員
居野通平（東京大学） 井上 実（東京水産大学） 森田良美（東京水産大学） 永田 正（東京水産大学） 西村 実（東京大学） 杉沼博雄（静岡大学） 窪木和雄（東京水産大学） 高野豊三（理化学研究所） 予野 明（東京水産大学） 山路 男（東京水産大学） 今村 勝（東京水産大学） 神田昭二（東京水産大学） 半沢正男（宮城海洋気象台） 増田辰雄（東京水産大学） 須留三郎（東京水産大学）

投稿規定

1. 報文の投稿者は会員会員になる
2. 原稿は簡潔においやすく書き、論文を含めて印刷ページで12ページ以内を原則とする。原稿（正1通、副1通）、（〒101）東京都千代田区神田駿河台2-3 日仏学会内 日仏海洋学会編集委員会宛に送ること。
3. 編集委員会は、事情により原稿の内容の加筆訂正を行うことがある。
4. 論文（欧文、和文とも）には必ず約200字の欧文（原則として仏語）の要旨をつけること。欧文論文には欧文の要旨のほかに必ず約500字の和文の要旨をつけること。
5. 論文及び要旨の必要字数に限る。論文はそのまま掲載されるに必要な適正に黒インクで書き、論文の要旨及び表には必ず英語（又は仏語）の説明をつけること。
6. 初校は原則として考書者が行う。
7. 報文には1編につき50部の別刷を無料で考書者に送付する。これ以上の部数に対しては、実費（送料を含む）を考書者が負担する。

Rédacteur en chef
Masahide TOMINAGA (Kagoshima University)

Comité de rédaction
Michihei HOSHINO (Tokai University) Makoto INOUE (Tokyo University of Fisheries) Yoshihi MORITA (Tokyo University of Fisheries) Tadashi NAGATA (Tokyo University of Fisheries) Minoru NISHIMURA (Tokai University) Yoshio SUGIURA (Kagoshima University) Kazunori TAKAGI (Tokyo University of Fisheries) Kenzo TAKANO (Institute of Physical and Chemical Research) Yutaka UNO (Tokyo University of Fisheries) Isamu YAMAZI (Tokyo University of Fisheries) Yutaka IMAMURA (Tokyo University of Fisheries) Kenji KANDA (Tokyo University of Fisheries) Masso HANZAWA (Maizuru Marine Observatory) Tatsuyoshi MASUDA (Tokyo University of Fisheries) Saburo YANAGAWA (Tokyo University of Fisheries)

RECOMMANDATIONS A L'USAGE DES AUTEURS

1. Les auteurs doivent être des Membres de la Société franco-japonaise d'océanographie.
3. Le Comité de rédaction se réserve le droit d’apporter, le cas échéant, des modifications mineures aux manuscrits ainsi que de demander aux auteurs de les corriger.
4. Les résumés sont envoyés par e-mail.
5. Les figures au trait seront tracées à l'encore de Chine noire sur papier blanc ou sur calque. Les légendes des figures et des tableaux sont indispensables.
7. Un tirage à part des articles en cinquante exemplaires est offert gratuitement aux auteurs. Ceux qui en désirent un plus grand nombre peuvent les faire établir à leurs frais.
Moiré の方法による Capillary Wave の測定

高 山 晴 光**, 阿 部 友 三 郎**

Measurement of Capillary Wave by the Moiré Method*

Harumitsu TAKAYAMA** and Tomosaburo ABE**

Abstract: Ripple-damping effect can be considered as one of the causes of slicks. This effect is due to surface films of surfactants. The damping of waves by surfactants has been known since old times. Especially, the damping of a capillary wave is significant. For the purpose of studying the damping effect of the capillary wave, at the first step, the authors examined the properties of regular waves produced by the wave generator in the small scale wave channel. As the wave length of the capillary wave is short and its wave height small, the wave was measured by the moiré method. The method is available to measure the instantaneous horizontal-distribution of the small scale wave height. In our experiments the frequency range of the generated regular waves is 15~100 Hz and that of the wave height is 0.01~0.2 mm. It is found that the calculated damping coefficients for a clean water surface coincide with the theoretical values as shown by LAMB (1932).

1. はじめに

穏やかな天気の日に、海面上などに帯状や斑状の模様が見られることがある。これは、まわりのさざ波立った部分と比較して、なめらかな部分があるため見られる現象で、このなめらかな部分を Slick と呼んでいる。Slick の大きさ、形状は種々であるが、海においては、多くは帯状を呈し、時には長さ数 km に及ぶものも現われることがある。Ewing (1950) らによって、Slick は海産性の表面活性物質による静波作用によって生じると考えられている。また、海中の流動による静波作用によっても生じるという説もある。

これらの静波作用を調べるため、特に周期の短い波について室内実験を行った。本実験では規則波を起し、この波の減衰を調べたのであるが、波高が非常に小さく、周期が短いために従来の容量式波高計では、波高測定が極めて困難である。

そこで、モアレの原理を利用した方法3) により波高測定を行った。

2. 実験装置

本実験に使用した水槽は透明のエボン製で長さ 115 cm、横 16 cm であり、水深は最大 4.5 cm まで調節することが可能である。片方の端の壁面の高さが他より小さくなっており、そこから汚染された表層水を流出することにより清浄水面を作ることが出来る。Fig. 1 はこの実験装置の概略図である。水槽の両面には、反射波を防ぐためにガーゼを用い消失装置を取り付けた。造波装置は、スピーカーの中央コーンに支持棒の一端を接着剤で付け、その他端に支持棒に直角に、すなわち水

* 1979年1月12日受理
Received January 12, 1979

** 東京理科大学理学部、東京都新宿区神楽坂
Department of Physics, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo, 162 Japan

Fig. 1. Schematic diagram of the apparatus.
面と平行になるようにベークラ製の振動棒を付けた。これが丁度水面に触れるようにセットする。このスピーカーには、発振器より增幅器を通して所定の正弦波形を成した入力信号が送られ、この信号がオシロスコープにより、その波形が歪んでいるか否かなどを監視する。水槽の底面には求めた 0.4 mm 間隔の格子（商品名；スクリーン・トーン）を貼り付けておく。その下に下方に光源として 20 W のネガフィルムを貼り、カメラはこれより上方約 30 cm の位置にセットしてある。

モアレによる波高測定の比較のため、従来使用されている抵抗線式波高計を使用した。センサーの部分は、直径 0.2 mm の金線を使用した。また、增幅器として、市場の動歪増幅器を使用した。

3. 実験方法

造波装置により水面上に規則波を起こし、この波を測定した。造波装置の周波数、振幅の安定性は共に良好であったが、振動棒の振幅の最大は 0.4 mm 程度であり、それ以上はスピーカーとの信号波形が歪むため、本実験では、測定水面のとき振動棒の振幅を 0.2 mm 以内で行った。これにより、それ以上の振幅にすると、造波装置により起こされる波が歪むためである。この理由は明白ではないが、波高が大きくなると水槽側面の反射などで横方向の波が生じているようである。しかし、表面活性剤を加えた場合は、さらに振幅を大きくするまで波は歪まない。これによって、水面波の変化が大きくなるが、側壁面からの反射波の影響が少ないためと思われる。

波の測定は、モアレを利用した方法で行った。モアレという言葉の語源は、フランス語で木目とか波模様という意味である。モアレは 2 種類以上の収線を重ねるとときに生じる模様をいう。モアレの現象は日常観察で見られる。レースへのカーテンが重なったときにも見られる。モアレ計測法として、一般に知られている方法は、起伏のある測定面に格子を形成させる。さらに、別の角度から格子を投影すると、その重なりによって物体形状を示す等高線モアレが形成される。この現象を利用し、高さを測定する方法である。ところが、これを水面の起伏測定に応用する場合、光はその水の表面で乱反射をすることがないので、その水面上に明瞭な格子像が得られないため、この方法は、そのままでは使えない。そこで波が起きているとき、表面に起こる屈折を利用して測定を行った。本来のモアレのようにして模様を作るのではなく、水槽の表面に格子を貼り、これを波が存在する場合と、そうでない場合の 2 種類の状態をそれぞれ写真に撮り、得られた両方のネガフィルムを重ね合わせて、引し焼付し、モアレ写真を作成し、これを解析した。

4. モアレによる解析

平行な等間隔の格子を 2 枚重ねると、Fig. 2 下図に示されるような平行で等間隔のモアレができる。これにより波の間隔を各々 P_1, P_2 とし、交差角を θ とするとき、次式 (1) が成立立つ。

\[P_1 \cos \theta = P_2 \] \hspace{1cm} (1)
Moiré の方法による Capillary Wave の測定

また、このとき形成されたモアレ縦の間隔を Fig. 2 下図に示すように D とすると、
\[
\theta = \tan^{-1} \left(\frac{P_i}{D} \right)
\] なる。

水槽の底面にセットされている格子を真上からカメラで撮ると、波がない場合は平行で等間隔の
格子として写る。次に、カメラの撮影角度を所定の高さだけ変え、さらに 1 枚撮り、この両方の場合の
ネガを (1) 式の条件で重ね、引伸し焼付けると、
上述のように間隔の大きな方の格子（カメラと格子の距離を近くして撮影した方）に垂直なモアレ
ができる。Fig. 3 は、このような場合のモアレ写真である。一方、波波置の場合に形成された平
面波を通じて、この格子を撮影すると、水面での屈折のため格子が実際の位置からずれ、間隔の広
い部分と狭い部分が周期的に配列した格子として
写る。これと波がないとき撮ったものを (1) 式
の条件で重ねて引伸し焼付けると、Fig. 4 に示さ
れるような波模様が現われる。

Fig. 2 上図は波を横から見た図で、直角座標系
を考慮、X 軸を波の進行方向に、Z 軸を平均水面
から鉛直上向きにとる。また、Fig. 2 下図のよう
に XZ 平面に垂直に Y 軸をとる。Fig. 2 上図のよ
うに入射角を i とすると、屈折角は i + δ であり、
空気に対する波の屈折率を n とすると、
\[
n \sin i = \sin (i + \delta).
\] （3）式より、
\[
\tan i = \frac{\sin \delta}{n - \cos \delta}.
\] また、tan i は水面の傾きを表すので、
\[
\tan i = \frac{dy}{dx} = \frac{\sin \delta}{n - \cos \delta}.
\] （4）式に、
ここに、η は水面の昇降量である。

一方、Fig. 2 に示すように水面での屈折によっ
て生じる X 方向のずれを ΔX とすると、間隔 P_i
の格子と重ねたときの交点の Y 方向のずれ ΔY と
の関係には、
\[
\Delta Y = \Delta X \cdot \cot \theta
\] （5）式として
の関係がある。格子から水面までの距離を h_1 とす
ると、
\[
\Delta X = h_1 \cdot \tan \delta
\] （6）式より、
\[
\delta = \tan^{-1} \left(\frac{\Delta Y \cdot \tan \theta}{h_1} \right).
\] （7）
\[
\Delta Y = \Delta X \cdot \tan \theta
\]
\[
\Delta Y = \Delta X \cdot \tan \theta
\] （9）

Fig. 3. Moiré in case of still water surface.

Fig. 4. Moiré in case of rippled surface.
となる。そこで、波をX方向に進む正弦波とすれば、

\[\eta = a \sin 2 \pi (f \cdot t - \lambda / \lambda) \] \hspace{1cm} (10)

ここに、a は振幅、\(\lambda \) は波長、f は周波数である。

(8) (9) (10) 式より,

\[\Delta Y = - (2\pi ah(n-1) \cot \theta / \lambda) \times \cos 2\pi (f \cdot t - X / \lambda) \] \hspace{1cm} (11)

となる。すなわち、(11) 式がモアレを表わす式であり、式からわかるように、水面の波と位相が \(\pi / 2 \) ずれた形として現われる。このモアレの振幅を \(Y_0 \) とすれば,

\[Y_0 = 2\pi ah(n-1) \cot \theta / \lambda \]

となり、水面の波の波高2aは、

\[2a = Y_0 \tan \theta \cdot \lambda / \pi h(n-1) \] \hspace{1cm} (12)

となる。

\(Y_0 \) はモアレ写真から直接測定できる。\(\lambda \) はモアレ写真上で測定した波長を次に示される(13)式に代入し求める。これは、水面が格子よりカメラに近いか、モアレ写真上の波長が水面の波長より長く、本実験では、この比が 0.85 であった。

また、使用したカメラのシャッターが、ホーカル・ブレープ・シャッターのため、位置により写る時間のずれが生じ、この補正が必要となる。写真上で波長を \(\lambda' \) とすると、実際に波長 \(\lambda \) は、

\[\lambda = \frac{0.85 \lambda'}{1 + 9.2 \times 10^{-5} \cdot \lambda' \cdot f} \] \hspace{1cm} (13)

となる。ここに、f は周波数である。

\(\theta \) は変差角を直接測定してもよいが、モアレの写真よりモアレ線の間隔を測定し、(2) 式より求める。\(\theta \) を変えることにより波高を自由に変えることができるが、\(\theta \) は(1) 式の条件に合った角でなければならないので、予め波のないときの格子の写真をカメラの撮影高さを種々変えて撮り、格子の間隔の違うネガを種々作っておく。その後、内から適切なものを選んで使用する。このようにして、得られた \(Y_0, \lambda, \theta \) を(12) 式に代入し波高を求めることが出来る。また、本実験では \(h = 50 \text{mm}, n = 1.33 \)（清浄水面のとき）である。

波高を求める(12) 式は \(\delta \) が非常に小さいとし
た近似式であるが、近似を用いずに(7) 式より \(\delta \)
を計算し、(4) (10) 式より波高を計算した場合とのばらつきのグラフが Fig. 5 である。実験が近似を使わ
ない場合で、破線は近似を用いた場合である。

波高 5 mm と 10 mm の場合について示してある。

波高 0.2 mm で、この近似による誤差は、それぞれ 0.1 % である。また、(12) 式は、Fig. 2 に示し
すように、光が鉛直に水面まで進む場合に成り立
つ式であるが、カメラで撮影するときは、カメラの
真下から離れるにつれて、ずれがでてくるため誤差を生じる。この鉛直からのずれした角度が1°の
とき、波高 10 cm、波高 0.05 mm の波の誤差は
0.06 %、5° で 1 % の誤差を生じ、波高 0.2 mm で
1° で 0.1 %、5° で 3 % の誤差を生じる。このため広い範囲の測定が必要なときは、カメラの
撮影高さを変えるだけ事足りる。カメラと格子の
距離が約 30 cm のときは、格子間隔が 0.2 mm
以上のものであれば十分モアレを作成することができ
るが、約 50 cm まで離せると、本実験に使用したカ
メラでは 0.4 mm 以上の格子間隔がなければモア
レを作ることができなかった。

Fig. 6 は周波数 25, 35, 45 Hz のそれぞれの場合
について、波高を種々変えて同一地点での波高
をモアレの方法により算定したものと、抵抗線式

\(\lambda = 10 \text{mm} \)

\(\lambda = 5 \text{mm} \)

\(\delta \) (deg)

Fig. 5. Error by approximation.
Fig. 6. Comparison between the moiré method and resistance-type wave gauge.

波高計で測定したものとの相関を示したものである。実験は参考までに、モアレの方法による波高測定値と抵抗線式波高計によるものが1:1である場合を示している。25 Hzでは、かなり良好な一致がみられるが、35, 45 Hzと周波数が増すにつれて、抵抗線式波高計の方がかなり小さい値を示すようになる。これは、抵抗線式波高計センサーの白金線の部分を水に入れ測定するため、表面張力によりこの部分の水が盛り上がり、この線に付着した部分の形が水面の上昇時と下降時で変わる。周波数が高くなるにつれて、応答性が悪くなる。従って、この影響が顕著になり、波高を実際より小さめに測定してしまうことによるものと考えられる。

表面張力は、波長λ、周波数fより、次のケルビンの式を適用して求めた。

\[\gamma = \frac{f^2}{\rho} - \lambda \cdot \frac{g}{2\pi} \cdot \frac{1}{2\pi} \]

ここで、gは重力加速度、ρは液体の密度である。

Fig. 7 は35 Hzにおけるモアレ写真の例である。

Fig. 7. Examples of moiré photograph at 35 Hz.

5. 表面張力波の解析

Fig. 7 は35 Hzにおけるモアレ写真の例である。撮影条件は、シャッタースピード1/1000秒、F16でフィルムはSSを使用、現像はパインドールにより増感現像を行った。波源は向って左側にあり、上段、中段は清浄水面のときの波高であり、中段の方が上段より平角θが小さい場合で、倍率が大きくなっている。このように波高が高い場合には、θを小さくして倍率を上げると解釈し易くなる。写真中央付近の波高は、上段の場合0.037 mm、中段の場合0.023 mmである。下段の写真は表面活性剤（商品名：ドライウェル）を加えたときのもので、波の減衰が顕著であることがわかる。この場合には、波高がさらに小さいので、倍率をさらに上げてある。上段、中段は表面張力が同じ場合であるので波長も同じであるが、下段は表面活性剤を加えたため表面張力が低下し、波長が短くなっているのがわかる。このときの表面張力は57 dyn/cmである。

Fig. 8 は35 Hzの場合の清浄水面と、表面活性剤を加えたときの波の減衰の様子をモアレ写真より調べ、グラフにしたものである。測定された波高で最も波源に近い位置での波高H₈で、各位置での波高Hを次式元化してある。このときの減衰率は、清浄水面のときが0.04 cm⁻¹、表面活性剤を加えたときが0.26 cm⁻¹である。ここで、減衰率Dは次式で定義されている。

\[H = H₀ e^{-Dx} \]

ここで、H₀はある点での波高で、Hはその点か
Fig. 8. Relation between the ratio \(H/H_0 \) and the distance. The frequency of the wave is 35 Hz.

\(\times \): Observed results in case of clean surface water.

\(\bullet \): Observed results in case of water surface over which surface films of surfactants spread.

Fig. 9. Relation between the damping coefficient and the frequency.

\(\bullet \): Observed results in case of clean surface water.

\(\rightarrow \): Theoretical line based on the theory given by LAMB (1932).

Fig. 10. Relation between the damping coefficient and the frequency.

\(\circ \): Observed results in case of water surface over which surface films of surfactants spread.

\(\rightarrow \): Theoretical line in case of clean surface water.

Fig. 10は実験結果を示すものである。実験値は式（14）により求めた理論直線である。実験値と理論値の差は小となることがわかる。

Fig. 10は表面活性剤を加えたときの減衰率を示したものです。実験値は清浄水でのときの理論直線である。減衰の差が明確にわかる。

6. あたがき
モアレによる波の測定は、抵抗線形式波高計などがみられる水の表面張力によるメノスカス効果、水質変化における電気伝導度の変化などの問題がないため、波高的小さい波についてはかなり精度よく測定でき、しかも高い周波数の波まで測定できる利点がある。また、同一時刻における空間的水位変化がわかり、減衰率を求めるときには非常に有効な方法である。
謝辞
本研究にあたり東京理科大学阿部研究室助手 福地直樹氏、大学院生諸氏 ならびに日本気象協会の森谷誠生氏から得た有益な助言に対し感謝いたします。また、川鍋宏、馬場昭夫両氏には実験など多くの援助を受けた。ここに感謝いたします。

文献
海産繊毛虫類の分離および保存培養に関する検討

久米 恒雄

Examinations of the Isolation and the Stock Culture of Marine Ciliated Protozoa

Tsuneo KUMI

Abstract: Marine ciliated protozoa were isolated by the micropipetting method from sea water samples collected at Tokyo Bay and Aburatsubo Inlet. Examinations of the stock culture of a clone of marine ciliate Uronema sp. were carried out by incubating in four types of culture media. In the peptone sea water medium or in the sea water medium with suspension of a bacterium Pseudomonas sp., the cells of Uronema sp. disappeared within four weeks of culture. However, the use of a biphasic medium of peptone-agar and sea water was successful for the maintenance of the cell density of Uronema sp. at 10^7/ml for more than four weeks owing to organic nutrients exuded continuously from the peptone-agar to sea water. It was inferred that favorable conditions were maintained for the growth of the ciliate near the surface of the peptone-agar.

1. 概 言

近年、原生動物プラクトクが海洋生態系の食物連鎖において果たす役割が重要であることが指摘されている（JOHANNES, 1965; SEKI, 1972; HAMILTON, 1973）。しかし、このプラクトク群集に含まれる繊毛虫類に関する生態学的知見は、有縁目を除いては極めて乏しい。特に無核細胞の繊毛虫類は、化学的固定処理による形状変化を起こしやすいため、その分類、同定および数値が困難であった。また、種々の繊毛虫クローネの単離培養や保存法の検討が不充分であったため、それらの生育状況や正確な形態記載に関する知見も不足していた。このような理由によって、この群のプラクトク群集に関する生態学的研究が遅延していたと考えられる。本研究では、沿岸海水から分離した繊毛虫類を用い、その分離株の保存法に関して若干の検討を行なった。

2. 材料と方法

試料の採取：繊毛虫類の分離用海水試料は、東京湾に陸域および神奈川県沿岸部において採取した。海水試料は塩ビ製ヘッジを用いて採取し、直ちにプラクトク・ネット地 XX13（メッシュ・サイズ 90μ）を用いて潰過し、ポリエチレン容器に移した。

繊毛虫類の分離：遠心分離 操作（1,000 r.p.m. 5分間）により濃縮した海水試料の一部を用い、 PRINGSHEIM (1964) の方法によって遊泳中の繊毛虫類を1細胞ずつ分離し、これらを下記の重層培地中に接種した。これらの接種培地は 20℃に保存培養された。

繊毛虫類の保存培養：分離された Uronema sp. を供試繊毛虫として、下記のベプトン海水培地、細菌懸濁培地および重層培地による 3通りの保存法に関して検討を行なった。これらの培地用海水には、人工海水 ASP12 (PROVOSOLI, 1964) と
Table 1. Composition of the nutrient agar
(1.5%) used for biphasic medium

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacto-peptone (Difco.)</td>
<td>0.001%</td>
</tr>
<tr>
<td>Bacto-yeast extract (Difco.)</td>
<td>0.001%</td>
</tr>
<tr>
<td>dissolved in 80% ASPI2</td>
<td></td>
</tr>
</tbody>
</table>

pH 7.0-7.6

用いた。ペプトン海水は、2216E 液体培地 (CAR-LUCCI and PRAMER, 1957) およびその 10 倍希
倍培地を用いた。

細菌懸濁培地の調整は次の如く行なった。すな
わち、保存細菌株 Pseudomonas sp. を 2216E 液
体培地に接種し、20℃ にて 24 時間振盪培養した
後、菌体は遠心分離操作 (5,000 r.p.m. 5 分間、
4℃) により回収し、腸菌人工海水を用いて 3 回
洗浄をくり返し、腸菌人工海水中に分散させ
た。

重層培地は、約 5 ml の寒天培地 (Table 1) を
中型試験管に分注し、滅菌して冷却後、高層寒天
上に腸菌人工海水を分注して作製した。これら重層
培地は室温に数日間静置した後実験に使用した。

縦毛虫類の数計：縦毛虫培養液の一部を無菌的
に採取し、遊泳細胞の有無を確認した後、UTERMÖHL の固定液 (GUILLARD, 1973) の 1 % 加
え、数時間後、血球算定盤を用いて計数した。

3. 結果および考察

PRINGSHEIM の確立した分離手法は、毛細管
現象を利用した多くの単細胞藻類の分離に適用され
てきた。また、運動性のある細胞を分離するため
に、この方法を改良して遊泳力を弱める BALLANTINE (1953) の 1 % 硫酸アルミナリウム溶液添加法や FAURÉ-FREMÉT (1951) の塩化マグネシウム溶液添加法も報告されている。しか
し、本研究では海水試料を遠心濃縮後、マイクロ
ビペットにより容易に縦毛虫類の分離が可能であっ
た。

4 種の保存培地を用いて細菌 Pseudomonas sp.
を餌料とし縦毛虫 Uronema sp. を培養した場合
、その優劣を比較した結果は Fig. 1 に示す如くであっ
た。ペプトン添加海水と細菌懸濁海水中の縦
毛虫の増殖は約 2 ～ 3 週間は良好であった。しか
し、これらの保存培地では、それ以後の縦毛虫細胞
数が急激に減少するため、この期間内に新しい培
地に植え替を行なう必要がある。このような欠点
を補うため、本研究で採用したペプトン寒天と海
水の重層培地では、Fig. 1 に示されるように、増殖
細胞濃度は前記の保存培地に比べて 1/10 ～ 1/100
程度であったが、少なくとも 4 週間は縦毛虫の増
殖の維持が可能であった。

この培地の海水部分と寒天培地の両相における
pH 変化を B.T.B. を添加して観察したところ、
海水では保存培養期間の経過に伴ない pH が
6.0 前後で低下したが、寒天培地では pH が
7.4 ～ 7.6 に保たれていた。この培養法では下層の
寒天培地から上層の海水上へペプトン成分が少量
ずつ連続的に溶出し、常に一定の栄養分が供給さ
れるため、細菌や縦毛虫の増殖が維持されてお
り、寒天培地の pH は調整時と同程度に保たれ
ているため、海水と寒天培地の界面付近では微生物
の増殖に好適な微視的環境が維持されているもの
と推察される。

謝辞

本研究の遂行にあたり御教示を賜わり東京大
学海洋研究所河野信夫教授ならびに試料採取の協
力を頂いた東京大学理学部附属三崎臨海実験所の

(9)
文献
混合栄養系における纖毛虫、従属栄養細菌および珪藻の相互作用
久 米 恒 雄**

Interactions between a Marine Ciliate, a Heterotrophic Bacterium and a Diatom in Mixed Batch Cultures

Tsuneo KUME**

Abstract: Experiments of batch cultures were made by inoculating a marine heterotrophic bacterium *Pseudomonas* sp. or a mixture of the bacterium and a marine ciliate *Uronema* sp. into axenic cultures of a marine diatom *Skeletonema costatum* at the stationary growth phase to observe the growth dynamics of the diatom and the ciliate for 30 to 65 days. In mixed cultures of the bacterium and the diatom, the growth of the diatom was maintained stationary for two weeks, thereafter sudden degradation of the diatom cells occurred. When a mixture of the bacterium and the ciliate was inoculated to diatom cultures, the diatom density became temporarily low just after the inoculation, but it recovered and became higher than that of axenic culture within two weeks. The growth of the diatom inversely correlated with that of the ciliate. Thus, by feeding the bacteria the ciliates must have a role of promoting the mineralization of organic materials produced by the diatom and regenerating inorganic nutrients for the diatom.

1. 論 言

海洋における栄養塩の回帰に関する一般的概念は、現場の微生物、特に従属栄養細菌群が分泌する細胞外酵素による有機物の加水分解作用の最終産物としての無機栄養塩が、再び藻類その他の微生物に利用される過程であると観察してきた（Waksman and Renn, 1936†; Von Brand et al., 1937†）。しかし、Rittenberg (1936‡) は、この発想の根拠で、水環境における有機物の分解は殆ど細菌に依存するという点と、土壌微生物学を先駆的に敷衍している点を指摘し、更に細菌のみの分解作用では水環境の有機物分解過程は十分な解釈が成立しないと述べている。一方、Harris (1959§) の研究以来、動物プランクトンの排泄物中の無機成分のみならず、未分解有機物が藻類の増殖に寄与している事実も得られている（Pomeroy et al., 1963†; Barlow and Bishop, 1965‡; Johannes, 1968‡）。特に、有機物の分解活性の上では、細菌のみ的作用に比べ、纖毛虫類の混合系の方がはるかに高い結果が得られている（Johannes, 1965‡）。

本研究では、富栄養化水域に分布する纖毛虫類、細菌および珪藻の 3 者の混合培養を試み、これらの中果変動を観察し相互の増殖作用を解析した結果について述べる。

2. 材料と方法

供試生物: 供試纖毛虫 *Uronema* sp. (U36, U56) および細菌株 *Pseudomonas* sp. (P04) は前報*と同様の保存株を用いた。供試海水珪藻 *Skeletono-
nema costatum は、東京湾湾口部で採取した海水試料中から分離し、ピペット洗浄法**11** によって無菌化した。Guillard の補強海水 f/5 培養液**11** を用いて酸化培養した珪藻は、5 日間同培養液中に前培養した。培養は 20°C、3,000 ルクス蛍光灯照明下にて行なった。

緑色藻、細菌および藻系の 3 者混合培養：珪藻を 3 つフラスコ中に入り培養し、それが定常増殖期に達したのち、洗浄菌体および緑色藻培養液を接種した。この混合培養を 30-65 日間、3,000 ルクス照明下で行なう、無菌的に培養液の一部を採取し、前報と同様の固定および計数法を用いて緑色藻細胞数と珪藻細胞数を計数した。

3. 結 果

1) 細菌と珪藻の 2 者混合培養

定常期に達した無菌珪藻培養液中に洗浄供試菌（約 10^9/ml）を 10 ml 接種して静置培養したところ、Fig. 1 に示す結果が得られた。細菌接種後、約 18 日間珪藻細胞が約 10^9 - 10^10/ml の濃度に維持されたが、その後約 4 週間経過後は 10^6/ml にまで急激に減少した。培養液の pH は珪藻の定常増殖期以後、減少開始までは 8.5 前後であったが、珪藻細胞の減少後は 8.0 付近まで低下することが観察された。

2) 細菌、珪藻および緑色藻の 3 者混合培養

定常増殖期に達した珪藻培養液中に 10 ml の洗浄細菌懸濁液（約 10^9/ml）との緑色藻培養液（約 10^6/ml）を接種し、65 日間静置培養したところ、Fig. 2 および 3 に示す結果が得られた。

両実験とも緑色藻は 10^6 - 10^9/ml の範囲で増減が観察され、pH は珪藻の増減とほぼ並行的に変動するのを観察した。しかし緑色藻と珪藻との増減変動の間には、ほぼ逆の増減関係性が観察され、変に緑色藻の増殖は、珪藻が 10^9/ml 以上に増加している間、または pH が 8.5 以上に保たれている間は、顕著に抑制される傾向が認められた。

次に、定常期に達した珪藻培養液に当初は細菌のみ接種して約 3 週間培養後、更に緑色藻を接種すると、珪藻と緑色藻の増減変動は Fig. 4 に示す動態が観察された。この培養実験においても前記 2 例の場合とほぼ同様な、緑色藻と珪藻との増減変動の間には逆の増減関係性が認められたが、35 日以降の珪藻の増殖と pH の上昇は前記 2 例の場合よりも著しいことが観察された。

4. 考 察

藻類はその活性低下後の自己分解時のみならず、対数増殖期の高活性時においても細菌が有機物を分解する傾向が認められている (FOGG, 1969)**11**。S. costatum は定常の培養状態においては、細胞内有機物を分解する傾向が認められている (HELLEBUST, 1965**11**; IGNITIADES and FOGG, 1973**11**。一方、S. costatum との 2 者培養系における Pseudomonas sp. の増殖は、珪藻の増殖初期にはその抗菌作用によってわずかに抑制されるが、珪藻の定常増殖期以後には細菌の増殖
混合培養系における細胞微生物学。従属栄養細菌および協同の相互作用

Fig. 2. Growth of a diatom *Skeletonema costatum* after the inoculations of a bacterium *Pseudomonas* sp. and a ciliate *Uronema* sp. (U56).

が抑制される傾向は明確には認められないことが報告されている（KOGURE, 1977[16]

現場海水においても細胞プランクトンによる細胞外代謝の観察例が報告されており（ANDER

SON and ZEUTSCHEL, 1970[16]; BERMAN and HOLM-HANSEN, 1974[17]), 細胞外に分泌される炭素

量は、現場海水中の全溶存有機炭素量の 0.1％にすぎないが、分泌量の 50％以上は 20~60μ の

細胞に依存し（WIEBE and SMITH, 1977[18]）。それらは 3μ 以下の微細生物に直接摂取されることが

知られている（DERENBACH and WILLIAMS, 1974[19])。

微視的には、細胞以上の大きさの粒子は固体表面作用によって、周辺の有機物の吸着や濃縮を促

進し、従属の細菌に対する増殖効果をもたらす（ZOBELL, 1943[20]; WIEBE and POMEROY, 1972[1]; JAN

NASCH, 1973[21])。更に、増殖した細菌群は細胞糖類の摂取作用によって個体群活性が高い水準に維持されることが知られている（JOHANNES, 1965[22]; CURDS, 1973[23])。

動物プランクトンの介在する有機物分解過程においては、それぞれの体積の減少に比例して物質

量あたりの分解速度が高まる傾向が認められ、数十μ の細胞類では 0.2~0.3 時間で細胞内リン

含有量と同程度のリンが体外に放出される（JOHANNES, 1964[24]; 一方、*Zostera marina* の

分解実験では、細菌のみを加えた区分に比べ、織毛類や鞭毛藻類の混在した区分の方が、分解が

(13)
Fig. 3. Growth of a diatom *Skeletonema costatum* after the inoculations of a bacterium *Pseudomonas* sp. and a ciliate *Uronema* sp. (U56).

促進される結果が観察されている（HARRISON and MANN, 1975**）。

本研究の実験結果から、塩藻によって生産された有機物を細菌が利用して増殖し、この菌体を捕食する線虫類が有機物の無機化あるいは栄養塩類の回帰を、細菌と共働的に促進することにより、再び栄養塩類を利用する塩藻の増殖を促進すると、3者の生物間の相互作用の存在が示唆された。

謝辞
本研究を遂行するにあたり、実験用塩藻株を提供して下さった東京大学海洋研究所木暮一啓氏に謝意を表する。

文献
6) BARLOW, J.P. and J.W. BISHOP (1965): Phos-
Fig. 4. Growth of a diatom Skeletonema costatum after the inoculation of a bacterium Pseudomonas sp. with the additional inoculation of a ciliate Uronema sp. (U36) at the 20th day of incubation.

Interrelationship of a Marine Ciliate and a Marine Heterotrophic Bacterium in Continuous Culture Systems*

Tsuneo KUME**

Abstract: Culture experiments of a marine ciliate Uronema sp. and a heterotrophic bacterium Pseudomonas sp. were made in three types of continuous culture systems to clarify the prey-predator relationships of bacteria and ciliates in the marine environments. In mixed culture systems, periodical antagonistic relations of the microbial populations were observed in the culture vessels adjusted to the dilution rate (D) of 0.95, 0.0125 and 0.0083 hr⁻¹. Amplitudes of the oscillation in the microbial growth were lower at lower dilution rate in the culture systems, and the amplitude was one order of magnitude for the bacterium and within one to two orders of magnitude for the ciliate. In the separated systems, the antagonistic relations were observed six days after the inoculation of ciliates in the mixed culture vessels adjusted to the dilution rate of 0.05 and 0.0083 hr⁻¹, and the amplitude of the oscillation was within one order of magnitude. Formations of the microbial flocs were remarkable during the growth of ciliates which may induce microbial production of the mucous substances. The floc formation possibly inhibits the feeding of the ciliates on bacteria and promotes the growth of the bacteria in the flocs; i.e., this process might be responsible for the antagonistic oscillation in the growth of the bacteria and ciliates.

1. 結言

海産繊毛虫類の分布や増殖を律する生物的要因のうち、直接、飼となる細菌群の質的および量的変動が最も重要であるといわれる (LACKEY, 1967)。しかし、細菌と繊毛虫類の2者のみの増減変動に関する生態学的知見は、Gauseの研究以来、主として捕食・被食関係を解析するモデル実験によって得られたものが多くなかった (MURDOCH and OATEN, 1975)。

従来の研究で多く採用されてきた回分培養法は、栄養基質が消費され尽くし、代謝産物の蓄積が続く繊時的変動のある閉鎖系であるために、微生物相互の増減関係を解析する手法としては有効性が低い。微生物の分布する環境は開放系であって環境要因が々々個々と変化する。従って、微生物相互の変動関係を観察するためには、繊時的変動要因が指摘可能である連続培養法を採用することによって、相互の変動関係を現象環境に近似化した実験において可能となることが推測される (JANASCH and MATELES, 1973)。

本研究においては、従来の回分培養法ばかりでなく、3通りの連続培養法を採用し、現象海水から分離した細胞株を飼料として、繊毛虫クローン株を培養し、有機物濃度と栄養基質供給速度の変化に対応する両微生物の増減変動を実験的に観察した。
2. 材料と方法

供試微生物：繊毛虫保存株 Uronema sp. (U36) および細菌保存株 Pseudomonas sp. (P04) は前報①と同様のものを用いた。

微生物の計数：各培養容器より無菌的に採取した培養液試料は前報①と同様の方法を用いて計数し、細菌数については細菌計数盤を用いて行なった。

培養装置：本研究では、通常の回分培養法、静置式混合連続培養法（Fig. 1）、往復振盪式混合連続培養法（Fig. 2）および二段分離式連続培養法（Fig. 3）の4通りの培養法を採用した。回分培養法では栄養水と栄養子によって混合しつつ培養を行なった。静置式混合連続培養法では、適宜な水準に排出口を設け、定量ポンプの速度を調整することによって一定量の供給液を供給し、栄養水の栄養子により混合しながら培養液の栄養水が内圧によって排出されるように設定した。往復振

Fig. 1. Static mixed continuous culture system.

Fig. 2. Shaking mixed continuous culture system.

Fig. 3. Double stage continuous culture system.

Fig. 4. Fluctuations of the growth of a ciliate Uronema sp. (U36) and a bacterium Pseudomonas sp. (P04) in the static batch culture with 0.05% peptone-seawater.
連続培養系における海藻縫毛虫と従属栄養細菌の相互関係

項目IIに設定した。製造と隣接は静置式と同様に行なった。
縫毛虫および細菌の培養：回分培養法と混合連続培養法では、接種前に縫毛虫は3日間、細菌は一昼夜にわたり、それぞれ前培養を行なった。前分離式連続培養法では、上記と同様に前培養した両微生物を下段容器に接種して一昼夜培養し、他方、前培養した細菌を上段容器中に接種したのち、それぞれをさらに一昼夜培養してから培地の供給を開始した。培養は10℃において行ない、培養器内の希釈率は培養容量と培地中供給速度の調節によって一定に保った。

3. 結果
1) 回分培養系における縫毛虫と細菌の個体群変動

0.01%ペプトン海水中では、両微生物の接種後、7日間は細菌と縫毛虫との間には逆の増減変動関係が認められたが、7日以後14日目までは、両者は並行な増減振動をする傾向が認められ、培養初期の1/10程度に個体数が減少した（Fig. 4）。

培養初期には培養液の温度は極めて高く、培養時間の経過に伴ない温度が徐々に低下することが肉眼的に観察された。また、顕微鏡下の観察により培養初期には数十μmの大きさのフロックが多量に形成されたが、培養日数の経過と共に、これらのフロックが徐々に大形化し、その数が減少する傾向が認められた。

2) 混合連続培養系における縫毛虫と細菌の増減変動

静置混合連続培養系における縫毛虫と細菌の増減変動は、希釈率 D=0.0125（hr）で、0.01%ペプトン海水中では、細菌は1×10^8～10^9/mL、縫毛虫は1×10^3～10^5/mLの濃度範囲で振動が観察された。

Fig. 5. Fluctuations of the growth of a ciliate Uronema sp. (U36) and a bacterium Pseudomonas sp. (P04) in the static mixed continuous culture system adjusted to the dilution rate D=0.0125 hr^{-1} and supplied with 0.01% peptone-seawater.

Fig. 6. Fluctuations of the growth of a ciliate Uronema sp. (U36) and a bacterium Pseudomonas sp. (P04) in the static mixed continuous culture system adjusted to the dilution rate D=0.0083 hr^{-1} and supplied with 0.01% peptone-seawater.
Fig. 7. Fluctuations of the growth of a ciliate *Uronema* sp. (U36) and a bacterium *Pseudomonas* sp. (P04) in the static mixed continuous culture system adjusted to the dilution rate D=0.0083 hr⁻¹ and supplied with 0.1% peptone-seawater.
微生物の増殖の間にやや明瞭な増減拮抗関係が認められた（Fig. 10）。
これらの連続培養系における懸濁菌と細菌の混合培養器内では、ペプトン濃度の多少にかかわらず明瞭なフロック形成が観察され、概して培養液の密度はペプトン濃度に比例して高まるが、フロックの大きさはペプトン濃度に従い逆比例する傾向が、培養液の顕微鏡下の観察によって認められた。

4. 考察

海洋の微生物間における捕食・捕食関係を解明するために採用した3通りの連続培養系による実験の結果、いずれの場合においても懸濁菌と細菌との増殖の間に増減拮抗関係が観察された。しかし、従来の方式の回分培養系においては、このような拮抗関係は明瞭に認められなかった。このこととは、回分培養法においては栄養基質の消費や代謝産物の蓄積によって、増殖液の物理・化学的条条件が瞬時に変化し、捕食・捕食関係の動態や微生物自体の代謝変動が、差別化するためと推察される。しかし、連続培養法においては定常的に栄養基質の供給が行なわれているため、増殖液中の物理・化学的変動要因が拮抗され、微生物個体群密度の定常状態を維持することが容易となり、回分培養法に比べて増殖速度も高くなる（SCHLEGEL and JANNASCH, 1967a)。

本研究の混合連続培養系においては、基質濃度の増加に伴ない細胞収量が高まる傾向が認められたが、低希釈率の場合には細菌密度が低下し懸濁菌密度が高まる傾向が認められた。このことは低希釈率においては懸濁菌の流失がより少なく、細菌を捕食して増殖することが有利となり、同時に残存細胞濃度が低下するためと推察される。上記の現象は二段分離式連続培養系の下段培養器内に
Fig. 10. Fluctuations of the growth of a ciliate \textit{Uronema sp}. (U36) and a bacterium \textit{Pseudomonas sp}. (P04) in the double stage continuous culture system, adjusted to the dilution rate D=0.0083 hr$^{-1}$ and supplied with 0.01% peptone-seawater.

させても同様に観察され、しかも低希釈率では細毛虫の増減振幅が小さくなる傾向が認められた。

HAMILTON and PRESLAN (1970)aは、\textit{Serratia marina} sp を細菌揚料として \textit{Uronema sp}. を混合連続培養した結果、繊毛虫が増殖可能な細菌密度は 104/ml 以上であり、希釈率 D=0.15 (hr$^{-1}$) で流出が始まるが、一定状態では繊毛虫の細胞体積と細菌密度との間には、相関が認められたことを報告している。一方、CURDS and COCKBURN (1971)7 は活性汚泥に関する一連の研究の中で二段分離流連続培養系において \textit{Klebsiella aegyptiaca} を細菌揚料として \textit{Tetrakymena pyriformis} を培養し、両者の増減変動を観察した結果、繊毛虫の捕食率は、その細胞体積および増殖速度と正の相関が認められることを報告している。しかし、ASHBY (1976)9 は同様の培養系を用い、\textit{Vibrio sp}. を細菌揚料として \textit{Uronema sp}. を培養した結果、繊毛虫の捕食率と細胞体積との間に逆相関が認められたことを報告している。

連続培養系における増減抵抗関係は、繊毛虫の捕食率や増殖率に依存するばかりでなく、捕食者である細菌群の存在様式にも依存することが推察される。HARRIS and MITCHELL (1973)9 は、細菌の凝集化またはフロック形成が細菌捕食や、パラプロフェージに対する防御作用ばかりでなく、外毒素や酸素に対する抵抗作用やエネルギー源の保存やイオンの濃縮・拡散の促進作用をもたらすために、細菌の増殖を有効にし込むことを報告している。フロック形成物質の起源については、繊毛虫に取り込まれたブロックが多種類に合成され、細胞内で代謝物として分泌されフロックの母体を形成することが知られている (CURDS, 1963)10。

フロック形成の原因となる細菌相互の付着作用は細胞表面の荷電状態、pH、Eh、温度等の物理的因子や粘液物質の生成、多糖類やセメント物質の分泌、成長阻害因子および凝集作用物質等の生化学的側面のみならず (ALEXANDER, 1964)11, 細菌自体の表面構造、特にグラム陰性菌のように細胞表面を包み込むようカプセル状構造体と部分看状構造や線毛形成等にも依存することが示唆される (FRIEDMAN et al., 1969)12. しかもフロック形成に伴なう付着過程は、物理的接触による可逆的段階から、炭化水素と結合した蛋白质様物質の間の化学的不可逆的段階を経て、微生物自体が分泌する酸性多糖類が作用する段階へ進行することが示唆されている (FLOODGATE, 1972)13。

本研究において観察された繊毛虫と細菌との周期的増減抵抗関係は、細菌のフロック形成や繊毛虫の捕食を弱めると共に、残存細菌の再増殖を可能にするものであると推察される。このような増減抵抗関係は BUNGAY and BUGNAY (1968)14 の報告にもあるように、捕食過剩により被食者が減少し、若の供給が停止するために捕食者自体の減少を招き、この間に被食者の再増殖が起こり、再び捕食者の餌となる程度の量に達する結果であると推察される。さらに、被食者に比べて捕食者の増減振幅が大きく、しかも同一の連続培養系では低希釈率の系や高濃度有機物の系において、捕食者の増減振幅が小さい傾向が認められた。このような増減抵抗現象は、連続培養槽内の個体群変動が栄養質質の滞留時間や品質濃度に依存するこ
と（Tsuchiya et al., 1972(39)）ばかりでなく、希釈率の增加に伴なって振動回数が増加し、至適希釈率を超えると振動回数が減少すること（Curds, 1971(40)）や、あるいは希釈率の増加によって栄養基質の滞留時間が微生物の世代交代時間よりも短くなるに伴なって、培養槽内の微生物の増殖が追いつけずとなり培養槽外へ流失すること（Tempest, 1970(41)）等に起因することが推察される。

文 献
4) 久米恒雄 (1979): 海産微生物類の分離および保存培養に関する試験. うるし, 17, 62-64.
Seiche Motions Induced by Wind in the Ushigomebori Moat

Akio Yanai** and Tomosaburo Abe***

Abstract: This paper discusses the wind and the characteristics of seiche from observation data on seiche produced by wind blowing on a shallow water of a rectangular moat. By focussing attention on variable wind velocity, the relation between the wind and wave height of seiche, produced by power of wind corresponding to the fluctuating predominant frequency, was inferred by the conception of forced oscillation. Concerning the seiche produced by wind alone, the data obtained did not conflict with the above method of conception. The study showed that in order to produce seiche with higher mode it was necessary for the wind velocity fluctuation to have greater intensity than that producing seiche with lower mode, and that the form of seiche produced would not be characterized by only the magnitude of the wind velocity.

1. Introduction

The Ushigomebori moat, which forms a part of the Edo**** Castle's outer moat, is nearly rectangular and the depth of the shallow water can be assumed to be constant. The moat is medium in size between water tank in a laboratory and natural lakes or bays. Therefore, the geophysical phenomena occurring in the moat provide many interesting problems.

Phenomena occurring in the Ushigomebori moat have been already reported by MORITANI and ABE (1972, 1973, 1978) as the seiches produced by earthquakes and by sudden change in the shape of the moat. From the observation data of change in direction and velocity of wind and water level compiled from January to June 1971, the present treatise attempts to discuss the characteristics of the seiches which were considered to have clearly been produced by wind alone.

2. Fundamental Equation on Seiche Caused by Wind

Rectangular coordinates are taken as shown in Fig. 1. When the length of the moat is indicated by the letter l, its width by a, average depth by h, and x-component of the speed of current by u, the equation of motion can be written as:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{\mu}{\rho} \frac{\partial^2 u}{\partial x^2},$$

where P is pressure, ρ is density of water, and μ is coefficient of viscosity of the water. The equation of continuity, when ζ represents elevation of water due to the seiche, can be written as

$$\frac{\partial \zeta}{\partial t} = -\int_{-h}^{0} \frac{\partial u}{\partial x} \, dz.$$

When atmospheric pressure is represented by P_0, $P=P_0+g(\zeta-z)$. The surface condition is

* Received February 1, 1979
** Mejirio Gakuen Women's Junior College, 4-31-1, Nakaosha, Shinjuku-ku, Tokyo, 161 Japan
*** Faculty of Science, Science University of Tokyo, 1-3, Kagurazaka, Shinjuku-ku, Tokyo, 162 Japan
**** Edo is the ancient name of Tokyo City.
Seiche Motions Induced by Wind in the Ushigomebori Moat

Given by

\[\frac{\partial u}{\partial z} = X(x, t), \quad z = 0 \]

where \(X(x, t) \) is the tangential stress per unit surface of water due to wind blowing in the positive \(x \)-direction (e.g., WADACHI, 1938). The bottom condition is given by

\[\frac{\partial u}{\partial z} = 0, \quad z = -h. \]

Therefore, the equation (2) can be written as:

\[\frac{\partial^2 X}{\partial t^2} = -\frac{1}{\rho} \frac{\partial}{\partial z} \{ X(x, t) \} + gh \frac{\partial^2 X}{\partial x^2}. \quad (3) \]

Assuming that the term on the right-hand side of equation (3) and \(\zeta(x, t) \) can be separated into time dependent function and space dependent function, the equation can be expressed as;

\[-\frac{\partial}{\partial t} \{ X(x, t) \} = \sum_{i=1}^{m} B_i(t) \chi(x), \quad (4) \]

\[\zeta(x, t) = \sum_{i=1}^{m} \alpha_i(t) \chi_i(x). \quad (5) \]

Using these equations and solving equation (3) on the condition that initially \((t=0) \alpha_i(t)=0\) and \(\frac{d\alpha_i}{dt} = 0 \), the following equation can be derived:

\[\zeta(x, t) = \sum_{i=1}^{m} \frac{x_i}{\rho k_i} \int_0^t B_i(t) \sin k_i(t - \eta) d\eta. \quad (6) \]

Equation (6) has the form of the equation representing the output of the oscillatory system, for a similar example, the characteristics of wind vane (YANAI, 1978).

If the wind speed fluctuates with predominant frequency \(\omega_i \), the input of the oscillatory system is expressed by

\[X(x, t) = -C_i \sqrt{\frac{2}{al}} \cos \frac{k_i}{\sigma} x \cos \omega_i t. \quad (7) \]

Assuming that this is applied on the oscillatory system, the value of the elevation of water \(\zeta(x, t) \) can be expressed as:

\[\zeta(x, t) = \frac{C_i}{\rho} \sqrt{\frac{2}{al}} \cos \frac{k_i}{\sigma} x \]

\[\times \left\{ \frac{1}{k_i^2 - \omega_i^2} \cdot \frac{k_i}{\sigma} (\cos \omega_i t - \cos k_i t) \right\}. \quad (8) \]

Fig. 2. The elevation of water level estimated for each frequency of the seiche motion which is induced by the purely random wind. The solid lines represent \(\zeta \) with several \(k_i \) and the dotted line that when space and time parameters changed simultaneously. \(\omega_i \), eigen-frequency of the seiche; \(k_i \), the parameter of spatially variable wind speed.

If the wind changes its energy partition to have the predominant frequency corresponding to the seiche's uni-nodal frequency \(\omega_i \) over the whole area of the moat, the moat will be subjected to a forced oscillation to produce a predominant oscillation with the frequency of \(\omega_i \). So long as the seiche is considered to be a forced oscillation by the wind, the production of bi-nodal and tri-nodal seiches must contain corresponding forced frequencies of \(\omega_2 \) and \(\omega_3 \).

Fig. 2 shows the variations of water elevation which were approximately estimated under the condition: \(\cos (k_i/\sigma) = 1 \) in equation (8) and \(C_i \) is constant with any \(i \) in equation (7). In this figure, the elevation of uni-nodal seiche is taken as the unity and then the solid lines represent \(\zeta(x, t) \) for several \(k_i \) while the dotted line represents \(\zeta(x, t) \) when space and time parameter changed simultaneously. The uni-nodal oscillation period is most likely to occur while it becomes less likely as the number of node increases.

3. Study on Observation Records

The wind velocity was measured by a 3 cup anemometer with electrical counter and the wind direction by a wind vane. These instruments
water level meter wind meter

USHIGOME-BORI MOAT

Fig. 3. Schematic form of the moat and the locations of the instruments.

Fig. 4. Records of the water level and the wind speed.

were placed together with other meteorological instruments in a shelter located at the middle of the moat. The level of the water surface was recorded by a float type water level meter. Fig. 3 shows the location of the instrument shelter as well as the rectangular shape and size of the moat. The main factors causing the occurrence of the seiche in this moat are change in atmospheric pressure, earthquake, increase and decrease of water in the moat, and wind.

Among the records obtained from observation during 180 days, the seiche caused by a mechanism other than wind was removed, then the object of the present discussion was limited to the cases where the direction of the wind was constant. Moreover, analyses were made from the following 4 patterns:

(a) The seiche in which the uni-nodal was most prominent.
(b) The seiche in which the bi-nodal was most prominent.
(c) The seiche in which the tri-nodal was most prominent.
(d) The seiche in which all nodals were prominent.

Fig. 4 shows the results of these 4 patterns. Since the length of the moat is 610 m and the average depth of the water about 1.0 m, the fundamental period of the uni-nodal oscillation will be computed about 6.5 min by using the Merian’s formula. Accordingly, the frequencies of uni-nodal, bi-nodal and tri-nodal oscillations become $\omega_1=2.57 \times 10^{-3}$ Hz, $\omega_2=3.08 \times 10^{-3}$ Hz and $\omega_3=6.16 \times 10^{-3}$ Hz respectively.

The average velocities of the wind in the above-mentioned 4 cases are 1.9 m/s for a, 1.8 m/s for b, 2.4 m/s for c and 2.0 m/s for d. There are no direct relations between the occurrence of seiche and the magnitude of the average velocity of the wind but rather between the seiche and the variation of the wind, namely the change of the wind velocity with time.

4. Result of Analysis

Fig. 5 shows the spectrum analysis of the data on water levels for each case. The letter a, b, c and d correspond to the 4 cases shown in this figure. This shows the respective predominant oscillations of the seiches at the particular time.
Seiche Motions Induced by Wind in the Ushigomebori Moat

Fig. 5. The spectra of the four patterns of seiche motions.

Fig. 6. The wind speed variation near the resonant frequency in each seiche motion. The values at fundamental frequency have been used as the unity.

The characteristics of intensity of wind speed fluctuation which produced seiches of 4 patterns are shown in Fig. 6. This figure shows that the form of seiche is derived from the wind structure, e.g. in bi-nodal seiche the intensity of wind speed fluctuation is relatively high at the frequency ω_2.

5. Conclusion

It is concluded that the seiches observed in the moat on windy days were generated by a resonant mechanism between characteristic free oscillation of the water and periodic fluctuation of the wind. In this case the wind must blow continuously for fairly long interval.

The statistical structure of the wind blowing over the surface of the moat will be ergodic, that is to say, it is more convenient to use space parameter instead of time parameter in equation (7). It is believed that qualitative conclusion can be attained on the close relation between the variation of wind velocity and the frequency of seiche.

Acknowledgement

The authors wish to express their appreciation
to Mr. N. MORITANI, Tokyo Center, Japan Weather Association, to Prof. M. TOMINAGA of Kagoshima University for many significant suggestions and to members of the Abe Laboratory in Science University of Tokyo who took part in the observation.

References

牛込瀬における風による静振運動

矢内秋生, 阿部友三郎

要旨: 水深の浅い瀬面上を吹く風によって生じた静振の観測データから, 風と静振の形体の特徴を調べ, それらについての討論を行った。

風の息に注目することにより, 風の卓越周波数の息に相当する power によって生じた静振の波高と風との関係が, 強制振動の考え方から予想された。風のみによって生じた静振に関しては, 上記の考え方と矛盾しないデータを得た。すなわち, 高周波数の静振が起こるための風速変動の強度は, 低周波の静振の場合より大であることが必要であった。また, 生じた静振の形体は, 風速の大小だけでは特徴づけられないことが示された。

(28)
Characteristics of the Currents over and near the Submarine Col at the Mouth of Kagoshima Bay, Particularly Short Period Fluctuation of the Currents

Masahito Sakurai**

Abstract: Currents and temperature measurements were made on the submarine col in the mouth of Kagoshima Bay during the periods of August 2-3 and December 4-7, 1976. During August 2-3 the sea water temperature decreased almost linearly from the surface to the bottom. During December 4-7, a linear gradient of temperature was found in the lower layer on which lay the homogeneous upper layer of 60 m thick. In both cases of observations, the semi-diurnal tidal period predominated in the fluctuation of currents. However, during December 4-7 the resultant flow oriented to a fixed direction with the speed of some 7 cm/sec, the mean currents in the upper homogenous layer directed off the bay. On the contrary, the mean currents of the lower thermocline layer directed to the interior of the bay. The Richardson number was considerably large; therefore the stratification was stable. Accordingly, the motion of internal waves propagating in the shallow water on the col might not give rise to vertical mixing. From the measurements of temperature in the downstream side of the col, it seems that the water was well mixed vertically as compared with those on the col. This mixing is considered to have been caused by the unstable lee waves which might be realized by slow currents on the col as observed here.

1. まえがき
鹿児島湾は近年人口増による生活用水の需要増加、赤潮発生による養殖魚の被害、水銀汚染魚の問題が生じており、特に湾中央部での汚水の沈積が心配されている。鹿児島湾は南北に75 km、東西の最大幅が約21 kmの細長い湾である。また、Fig.1の海底地形によると、この湾は長さ約20 kmの湾口海棠の腕及ぶ松島以南の湾中央部と西松島水道で結ばれた松島以北の海域に分けることができる。湾中央部では深さ200 mを越え、湾口付近では100 mより浅く、湾外に向かって再び200 m以深となっている。従って、湾内外の海水交
換はこの鞍部によって妨げられる可能性がある。

高橋等（1974）によれば、他の海水交換は恒流
によりおよそ110日を要する。一方、恒流とは別
に局所的な変動により海水交換、海水混合が促進
される可能性もあり、それは河口鞍部が重要な
役割を果たしているのではないかと考えられる。例
えば、河川沿いの流れ、流出流が鞍部を乗り越え
る場合に、躍層が存在しているときには内陸波が
生じ得る。また、河川沿いの海流は伝播してモー
ドの変換が行われる可能性もある。さらに、躍層が
海底付近にあるときには shearing が大きくなって内
陸波の達波が生じ、鞍部の海水と混合して流速を
乱しつつ鞍部を乗り越えることも考えられる。も
し、流れが遅ければ lee wave が発達して、河口
などの未安定化濃度が促進される可能性もある
（冨永, 1976）。このような鞍部による影響があ
いかもしれないか、我々は手始めに鞍部上での
流れの観察がどのようなものであるかを知るた
めに、周期的水温、流速の連続観測を行ったの
で、その結果を報告する。

2. 観測方法および観測項目

鞍部上における短周期変動を知るため、成層の
発達している8月に1回、混合が進行していると
思われる12月に1回の観測を行った。8月の観測
は鉛直3層に流速計を設置し、12月は鉛直2層
（A点）と水平に約3km離れた鞍部の斜面上
（B点）で1層流速観測を行った。ただしB点では
水深と流向しか得られなかった（Table 1 参照）。

得られた流速と流向のデータから東西成分と南北
成分に分け、その変動を比較、検討した。

Table 1. Observations in the present study.

<table>
<thead>
<tr>
<th>Period of observation</th>
<th>Depth</th>
<th>Sampling interval</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 2-3, 1976</td>
<td>40 m</td>
<td>12 sec</td>
<td>Current velocity was not available.</td>
</tr>
<tr>
<td></td>
<td>54 m</td>
<td>12 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67 m</td>
<td>36 sec</td>
<td></td>
</tr>
<tr>
<td>Sta. A</td>
<td>45 m</td>
<td>22 sec</td>
<td></td>
</tr>
<tr>
<td>Dec. 4-7, 1976</td>
<td>100 m</td>
<td>22 sec</td>
<td>Current velocity was not available.</td>
</tr>
</tbody>
</table>

Fig. 2. Vertical profiles of temperature, salinity and density in August.
図3. ドプテラムの変動、特に但周期変動について

Fig. 3. Vertical profiles of temperature, salinity and density in December.

図4. 40mと67mの温度と流速変動

Fig. 4. Temperature and current velocity fluctuations recorded at intervals of 5 min. in 40 m and 67 m depth.

東西成分（流の横断方向）では上下層とも変動が小さく、周期変化はみられない。特に上層はほとんどが西向き成分となっている。また、東西成分の変動で上下層が大きく違うのは、2日19時から22時までの3時間で完全な逆位相になっている。

流速ベクトルの最大は、上層で24.7 cm/sec、下層で19.8 cm/secで、流速そのものはあまり強くはなかった。平均流では、上層が321°方向3.2 cm/sec、下層が84°方向0.1 cm/secとなり、上下層とも流入方向であるが、値そのものの
は小さく、特に下層ではほとんど0に近い。
次に、流向については22秒毎のデータすべてを16方位に区分して頻度を表わした（Fig. 5）。
これによると、上下層とも流出率は180°～200°の間で一致しているが、流入は上層が340°～0°、下層が0°～22°であり、上下層で20°近くずれている。図の通り下層は完全な往復運動をしているが、上層は西寄りに偏っている。

水温では上層が2℃の間で変化し、周辺の変動はきさがみられるが、下層ではほとんどない。頗著な変動は、8月2日14時から17時の南流時に下層では平均より1.5℃程度水温上昇がみられる。上層でもやはり平均値よりも高いが目立つ程ではない。これは涌出水の暖水が涌水へ流出していたものと思われる。

3）12月の流速・水温の短周期変動

12月の観測の場合はFig. 6に5分毎の時間変動を示している。潮汐周期が卓越しているのは8月の観測と同じであるが、著しく異っているのは上層（45m層）の東西成分はすべて西向きであり、下層（100m層）ではすべて東向きになっている。また、南北成分では上層で南向きが多く、下層で著しく北向きを示している。変動は下層の方が振幅が大きい。

流速ベクトルの最大を示するのは、上層で220°方向21cm/sec、下層で19°方向33.4cm/sec、また平均流では上層が250°方向6.9cm/sec、下層が37°方向7.3cm/secであり、平均流の大きさは上下層で同程度である。しかし、方向は上層で流出、下層で流入となっている。

Fig. 7にそれぞれの層の流速頻度図が描かれているが、これによるとA点上層は主に南西方向に、下層は北西西方向にピークがある。B点（100m層）はA点下層と同じく、ほとんどが流入方向であるが、主に2方向に分かれている。つまり一方は北東～東北東に、他方は100°近くのずれをもって北西西方向である。この北西西方向への流れはA点下層には全く存在せず、むしろ上層に存在している。このことは、A点下層の流速がB点に到着する前に地形の影響で変形されたのか、あるいはA点上の流入水が斜面を下りてB点100mに達した可能性を考えられる。しかし、これだけの資料から

Fig. 6. Temperature and current velocity fluctuations recorded at intervals of 5 min. in 45 m and 100 m depth at Sta. A. Temperature was obtained only in 100 m at Sta. B.
4. 解析

前述したように、駆除上では8月は海面から海底まで躍層、12月は2層の海であったが、密度の分布から流速計設置水深のVaisala振動数を

\[N^2 = -\frac{g}{\rho} \frac{\partial \rho}{\partial z} \] (zは上向き正)

により計算し周期に対して、8月の40m層において5.2分、54m層で3.7分、67m層で5.8

分、そして極大は75m層の7分であった。12月のA点では45m層は等質層の中であったが、100m層は8.5分、B点では8.7分であったので、

これらの周期以上の内部波が存在することは可能である。

一方、22秒毎のデータをB-T法によりスペクトル解析したものをFig. 9〜Fig. 12に示す。これによると8月の水温変動のパワースペクトルレベルの違いがみられ、40m、50m、67m、75mの順に小さくなっている。また、40m層では8〜9分、54m層では4.6分、67m層では6分にピークが

Fig. 7. Histogram of current direction in December at Stas. A and B. N indicates the number of data.

Fig. 8. Space trajectories of water in 45 m and 100 m at Sta. A in December.

Fig. 9. Power spectra of temperature fluctuations in August.
ビーグみられる。水温と流速の7分後前のピークは Väisälä 振動に非常に近い値である。

上述した8月と12月のスペクトルでピークのあった周波については、主な振動方向を知るため、それぞれの層における各要素、南北成分、東西成分、水温度の相互の組合わせて関連度関数、位相差を求めた。その結果、2月と5月と6月の組合わせについてもほとんどの場合、関連度が信頼限界以下であって振動の方向を推定することができなかった。ただし12月のA点下層において、南北成分と東西成分の間に6分、15分の周期とも関連度が0.4であった。信頼限界が0.09なので有意であると思われる。位相差は両周期ともほとんどなかった。これら12月の築層におけるエネルギー密度は南北成分が東西成分の6倍で2倍、15分では2.5倍であったので、その振幅は1.5倍程度になる。位相差はないので、以上の周期の主たる振動は南北東-南南西方向となり、これは湾の短軸方向である。

図示解析によると半日周期波が日周周期波よりも卓越していたが、その長軸の方向もこの結果と同じであった。更に平均値でも前述したように37°方向であったので、方向は一致していた。この短軸方向の振動が何に起因するものかは断定できないが、観測層が海底の中であったので内部波の可能性もある。

次に地直方向の変動のスケールを知るために、上層と下層の関連度を2月につけ調べたが、

Fig. 10. Power spectra of north-south component fluctuations in August.

Fig. 11. Power spectra of temperature fluctuations in December.

Fig. 12. Power spectra of north-south component fluctuations in December.
組合わせも有意な値が得られず、鉛直方向の変動は小さいものであったと思われる。

5. 検討

水温のエネルギー密度が Väisälä の周期以上に集中しているようにみえるので変動が内部波によってなされるときと、鞍部上では鉛直 shear が大きくなってしま波がおこり混合される可能性がある。そのためには層の安定、不安定が問題になる。

鉛直方向の shear による安定性を見積るため、平均流速を使ってリチャードソン数（R_i）を計算した。

$$R_i = N^2 / (\partial U / \partial Z)^2$$

12月の場合、45 m 層の平均流は 6.9 cm/sec、100 m 層が 7.3 cm/sec で、方向は上下で逆である。このことにより 2 層の海を考え、深さ 100 m - 45 m = 55 m で $\partial U = 14$ cm/sec とすれば、分母は $2.55 \times 10^{-2} \text{ (sec}^{-2})$ となる。分母の Väisälä 振動の 2 乗は $1.372 \times 10^{-4} \text{ (sec}^{-2})$ より

$$R_i \approx 21.1$$

となる。同様にして 8 月は

$$R_i \approx 337$$

となる。$R_i \geq 1/4$ は安定であるから、shear による不安定はない。

次に鉛直方向の流れの shear が最も大きいと考えられる観測中の最高流速を示す時を選んでリチャードソン数を求めるとき、12月は 5 日 16 時頃で、下層で大きさ 33.4 cm/sec、19° 方向、このときの上層は 8.6 cm/sec で、282° 方向を示し、流れの向きは逆であった。このとき

$$R_i \approx 2.4$$

であった。8 月は 3 日 9 時頃で、上層が大きく 24.7 cm/sec、350° 方向、下層は 11.1 cm/sec で、10° 方向で、上下層とも流入方向を示し、

$$R_i = 19.8$$

となって、最大流速を示す時においても shear による不安定はなく、層は安定している。このためいったん起きた内部波はなかなかくずれないし、短周期の内部波があっても発達し難く、上下の混合には大きく貢献しているとは考えられない。

ところで、12月の場合、A 点と B 点は湾口の鞍部に対して潮汐時には lee side になる。流れは弱いので lee wave が発達する down stream 側にあたる斜面の B 点付近で上下の変動をおこし、不安定にすることも考えられる。この観測からだけでは実証できないが、たとえば A 点と B 点で等温層に 20 m 近くの差があり、斜面上の B 点がより強く混合されていること (Fig. 2 および 3 参照)。あるいは、水温流速記録から潮汐時を中心に 3 時間の平均水温を計算すると A 点下層が 17.3°C、B 点が 17.7°C となり、0.4°C 程 B 点が高いことになることなどから、lee wave による混合が成されているのかもしれない。試みに lee wave の安定不安定を見積るため、LONG (1955) および BAINES (1977) の方法に従って

$$K = ND / \pi U$$

$$H = zh / D$$

N: Väisälä 振動数
D: 鞍部をはずされた場所の水深
h: 鞍部の高さ
U: 流速

に、この観測からの値

$$N = 1.23 \times 10^{-2} \text{ (sec}^{-2})$$

$$D = 200 \text{ m}$$

$$h = 100 \text{ m}$$

$$U = 30 \text{ cm/sec}.$$ と代入してみると、

$$K = 2.59$$

$$H = 1.57$$

となる。同様にして、8 月の場合は $K = 4.75$、$H = 1.57$ であって、BAINES の図によれば満月とも不安定領域である。しかし、これらのことは更に観測を重ねて理論と比較していく必要があると思われる。

6. 要約

鹿児島湾口鞍部において、8 月と 12 月を行っ
た流速連続観測を中心に短周期の変動を述べたが、両月の特徴を比較しながらまとめると以下のようになる。

（1）縦部上では、8月は表面から海底まで躍層の中であり、12月は60m以深から海底まで躍層になっていた。

（2）8月、12月とも流れは遅く、最高でも30cm/sec程度であった。方向については、8月は潮汐による往復運動をしていたが、12月は上層が流出、下層が流入で逆になっていた。

（3）Väisälä 周期は5～8分位の間にあり、パワースペクトルもその辺にピークがみられた。それ以上の周期における内部波が存在したと思われるが、リチャードソン数により安定しているので混合には貢献しているとは考えられない。

（4）12月の場合、A点とB点で満潮は平均水温で0.4℃、鉛直方向の等温層に20mの差があり、LONG のモデルを利用すると両とも不安定領域になりlee waveの可能性が考えられる。しかし、このことはもっと観測を重ねていかなければならないと思う。

今回は短周期の変動にしぼって報告したが、観測は8月と12月の2回のみであり、縦部上の変動から海水交換、混合過程をすべて解析することはできない。今後さらに観測を重ね、変動の実態を把握していく予定である。

謝辞

本研究にあたり討論及び御指導下さった鹿児島大学工学部富永政英教授、同じく前田明夫助教授に深く感謝の意を表します。また、観測に御協力下さった鹿児島大学南星丸及び、東京大学海洋研究所淡青丸の乗組員の方々に感謝致します。

文献

1) 高橋淳雄、茶原正昭 (1974): 鹿児島湾における汚染進行に関する海洋自然環境について、鹿児島湾水域環境調査報告書、pp. 84.
2) 富永政英 (1976): 海洋波動第11章 内部波、共立出版(東京)、pp. 528-569.
A Study on the Structure of Fish Schools in *Rhodeus ocellatus* and *Moroco steindachneri* by the Photographic Observation*

Makoto INOUE**, Eiichi HASEGAWA** and Takaumi ARIMOTO**

**

Abstract: In order to observe the structure of fish school in three dimensions, two cameras were set above and beside an aquarium of 2.5×1.0×0.5 m. *Bitterling, Rhodeus ocellatus*, and minnow, *Moroco steindachneri* were used in the observation. It was necessary to correct the distance of fish on photography because of the parallax of camera and the refraction of water. This correction was calculated by the original method, in which the average error was 3.0% of the body length of the aimed fish.

The results obtained are as follows: 1) The schooling concentration of bitterling became close according as the number of individuals increased, whereas the reverse was true of minnow. 2) The degree of parallel orientation of bitterling was higher than that of minnow, and it was proportional to the swimming speed in bitterling. 3) The external structure of schools in both species was similar to their body forms; bitterling is compressiform and minnow fusiform. 4) When compared at 18.6 and 27.0°C, the schooling concentration of bitterling became sparse at higher water temperature.

* 1979年2月23日受理
Received February 23, 1979

** 東京水産大学, 東京都港区港南 4-5-7
Tokyo University of Fisheries, Konan 4-5-7, Minato-ku, Tokyo, 108 Japan

1. 実験方法

実験に使用した水槽は2.5×1.0×0.5 mのプラスチック水槽で、水面から1.35 mの距離と、側
面から1.50mの距離にそれぞれカメラ1台ずつをセットした。カメラのレンズはいずれも焦点距離50mm、f1.4である。カメラの上に40Wの蛍光灯1本を直ちに照明した。なお、上方および側方にセットしたカメラの光軸が水槽の底面および側面と交差する近傍に、写真から実際の長さへの換算をするため、基準となる長さ既知の黒テープを貼った。実験装置をFig.1に示す。

実験に供した魚種は主としてパラタナゴRhopodusocellatusで、魚種による相違をみるためにアブラハヤMoroco steindachneriを用いた。この両魚種は水槽内で随時群れを形成して遊泳する。パラタナゴは時期を変えて2度入手した。1978年4月入手のものは実験時の平均体長6.2cmないし6.7cmで、同年10月入手したものは実験時の平均体長は5.2cmであった。アブラハヤは1977年4月に入手し、その実験時の平均体長は8.6cmであった。何れも60×30×45cmの水槽で育育しながら実験に供した。

実験当日は、午前中に給餌をせず、12時に実

Fig.1. An experimental tank and the position of cameras. Dotted line shows optical axis of a camera and black plate is a correcting criterion.

Fig.2. Fish school of minnow (M. steindachneri). Above; from above. Below; from the side.

Fig.3. Fish school of bittering (R. ocellatus). Above; from above. Below; from the side.
Fig. 4. Frequency distribution of the angular deviation from fish to their nearest neighbors.

Fig. 5. Frequency distribution of the distance from fish to their nearest neighbors.
駆水槽に移し約30分の週間時間ををおかた後実験を開始し、カメラ視野内に魚羣が通過することに2台のカメラのシャッターをトリガー使用して同時作動させた。パラタナゴとアブラハヤの群れの写真の例を Fig. 2 と Fig. 3 に示す。
なお、写真による映像の解析は水の空気に対する屈折やカメラのぼらの圧力の影響を考慮して行ったが、その方法については末尾に述べる。

2. 結果及び考察
実験I パラタナゴの群れ形成個体数と群れ構造
パラタナゴの群れ構造が群れ形成個体数によってどのように変化するのかを次の実験により調べた。
飼育水槽より実験水槽へパラタナゴを4、8、16尾の群として移し、それぞれの場合の頭位交角、個体間距離、密度を比較した。測定に使用した上方および側方からの写真の枚数と測定ベクトル数は、4尾の群れが24組で96尾、8尾の群れが15組で120尾、16尾の群れが14組で224尾である。実験期間中の水温は18.6℃で、供試魚の平均体長は6.2cmで6.4cmである。頭位交角とは最も接近した2個体がつくる角度のことで、個体間の平行性を知る目標となる。個体間距離は魚の吻端からその最も近い個体の最も近い個体で測定したSYMONSの例があるが、個体間距離は誘引力の目安となることを考えて、魚相互の目と目との距離で測定したCULLENらの例にならい、隣接する個体相互の吻端間の距離をもって示した。密度は群れを形成する魚1尾当たりが占有する容積の容積に魚体の体側をかけた数値で表わした。以下これを密度指数と呼ぶ。頭位交角、個体間距離および密度指数についての詳細は解析方法の項で述べる。

頭位交角および個体間距離の測定結果を Fig. 4 と Fig. 5 に示す。これらの図から個体数が増加するほど群れの平行性は高まり、各個体間の距離は縮まる傾向がうかがわれる。密度指数は4、8、16尾の順に0.026、0.032、0.051となり、個体数が増加するほど密になっている。すなわち、個体数の増加は個々の魚の誘引力の増加を促進していることがわかる。群れの誘引力が強まるほど、その群れを形成する個々の魚の行動により強い統一性が生じ、群れ全体としての行動にも一定した方向性を生ずることになり、平行性が増加することは必然的であるように思われる。

実験II アブラハヤとパラタナゴの群れ構造の比較
魚種による群れ構造の外観および内部構造の相違をみるために、アブラハヤを用いて実験し、実験Iのパラタナゴの結果と比較を行った。
アブラハヤの場合、8尾を実験水槽に移し観察したところ、常時8尾の群れを維持し続けることを確認した。その中の数尾は時々群れを離脱するため測定に用いた群れ形成個体数は一定せず、撮影した5組の写真を3および4尾の群れ、5尾の群れ、6尾の群れ、7および8尾の群れの4種類に分けて解析した。写真の各組数は順に5、7、10および5組である。実験水温は15.2℃で、供試魚の平均体長は8.6cmであった。
群れ形成個体数の増加に伴う密度指数とX、Y、Z軸方向への群れの広がり方をまとめたのが Table 1 である。この場合、X、Y、Z軸は次のように定め、群れは水槽の壁面に沿って遊泳することから壁面と平行な群れの進行方向をY軸とし、壁面と

| Table 1. Relation among the number of fish in a school, the density of the school and the extent of fish school in three dimensions. |
|-----------------------------|-----------------------------|
| Number of fish item | 4 | 8 | 16 | 3-4 | 5 | 6 | 7-8 |
| Index of density | 0.026 | 0.032 | 0.051 | 0.060 | 0.020 | 0.031 | 0.018 |
| X cm | 8.3 | 8.5 | 9.1 | 4.7 | 7.8 | 8.0 | 9.6 |
| Y cm | 21.6 | 27.8 | 41.9 | 41.1 | 56.2 | 52.3 | 60.5 |
| Z cm | 5.2 | 6.3 | 5.2 | 3.2 | 6.0 | 4.9 | 7.2 |

(40)
Fig. 6. Frequency distribution of the angular deviation from fish to their nearest neighbors.
 ○—○: Bitterling, 8 fish.
 •—•: Minnow, 8 fish.

Fig. 7. Frequency distribution of the distance from fish to their nearest neighbors.
 ○—○: Bitterling, 8 fish.
 •—•: Minnow, 8 fish.
A: Horizontal plane with bitterling (4 fish).
A': Vertical plane with bitterling (4 fish).

B: Horizontal plane with bitterling (8 fish).
B': Vertical plane with bitterling (8 fish).

Fig. 8. Frequency distribution of the nearest neighbors, projected into the horizontal plane relative to a fish oriented in the direction shown, but with its head at the center of the
C: Horizontal plane with bitterling (16 fish).

C': Vertical plane with bitterling (16 fish).

D: Horizontal plane with minnow (8 fish).

D': Vertical plane with minnow (8 fish).

and the vertical plane of symmetry of the fish. The distribution must be imagined circle. The circle corresponds to a frequency of 20 observations.
直角の群れの左右方向をχ軸、群れの上下方向をζ軸とした。この表に見られるようにパラタナゴとは逆にアブラハヤでは群れ形成個体数が多いほど薄い群れとなった。パラタナゴでは、群れの広がり方は群れ形成個体数の増加に従ってγ軸方向、すなわち、群れの進行方向に延長を著しくするが、χ、ζ軸方向は余り変動が見られない。Fig. 6に見られるように、頭部交角はパラタナゴで10ないし12度、アブラハヤで5ないし6度に出現頻度のピークが現われている。また、Fig. 7に見られるように、個体間距離はパラタナゴで4ないし6cm、アブラハヤで12ないし13cmに出現頻度のピークが現われている。すなわち、パラタナゴに比べアブラハヤの方が群れの平行性は高く、個体間距離は両魚種の平均体長（パラタナゴ=6.2cm、アブラハヤ=8.6cm）を考慮してもアブラハヤの方が大きいことがわかる。

ここで、両魚種の群れ形成についての問題点を2つに分けて考える。1つはアブラハヤとパラタナゴの群れ構造の相違点、他の1つは個体数の増減と群れ構造の外観上の変化である。最初の問題点、すなわち、群れ構造の相違点は両魚種の体形的特徴に関係して相違しているようである。体高と体長の比はパラタナゴでは2:3、アブラハヤで1:7であり、前者は鱗状、後者は扇状と呼ばれるものである。Table 1において、γ軸方向の群れの広がりを1とした場合、χ軸およびζ軸方向の広がりはパラタナゴ8尾の群れで0.31と0.23、アブラハヤの総計で0.14と0.10となり、相対的にみた場合、群れの外観構造はその群れを形成する魚種の体形を反映しているようである。

また、両魚種ともにχ軸方向よりζ軸方向、すなわち、上下方向より左右方向に幾分大きく広がる傾向をみせることは、各個体の相互視認に基づく位置選択の結果であろう。

次の方題点は個体数と群れ構造との関係である。この点について個体相互の位置関係をさらに詳しく知るために、隣接する個体相互がどのような位置を占め得るかを上方および側方から調べ、まとめたのがFig. 8である。図中、魚の向きは群れの進行方向を表し、ある魚に対してその上に隣接する魚が水平方向あるいは垂直方向に何度の方向に位置するかを表わすヒストグラムになっている。なお、この方法はCULLENらの方法を参考にした。群れ形成個体数4, 8, 10尾それぞれの水平および垂直方向の図を同時に考えると、空間的位置関係としても考えることができる。そのように考えた場合、群れ形成個体数の増加に伴う個体間の位置関係の分布状態は球状に傾向があるように思われる。α、γ、ζ軸方向に同数ずつ分布すると考えると、群れの外観上パラタナゴの群れがγ軸方向に長い構造をもつことから、χ軸およびζ軸方向に魚が集中することになる。これは個体数の増加に伴う群泳乱流の増大の影響を後続魚が避けるための位置選択によるものである。また、パラタナゴとアブラハヤそれぞれ8尾の群れの場合に見られるように、アブラハヤは個体相互が進行方向に進によって位置することが多いのに対し、パラタナゴは対角線上ないしは左右方向に位置することが多いようである。これはアブラハヤのような扁平形に比較し、パラタナゴのような側面形は遊泳乱流が大きく、そのことからも生息する個々の魚の位置選択によるものであろう。

実験III パラタナゴの群れ構造におよぼす水温の影響

環境水温の群れ構造におよぼす影響について調べるため、1978年5月2日に観察した18.6°Cでのパラタナゴ8尾の群れ構造では、同年7月6日に観察した27.0°Cでの同魚種、同尾数の群れ構造とを比較した。実験は水温の自然上昇を持って行われた。なお、27.0°Cでの測定に使用した写真は20組、測定対象となった尾末個体数は160尾であり、平均体長は6.7cmであった。

頭位交角についてはFig. 9からわかるように、水温の高低に関わらず、測定尾数の約45%は4ないし14度の範囲に属し、頭位交角の相違はみられなかった。同様にFig. 10から、個体間距離についても測定尾数の約50%は4ないし7cmの範囲に属し、相違は認められなかったが、個体数頻度のピークは僅かに高温で個体間距離が大きくなり、また魚の分散が多く見られる。密度指数に関して
群れ構造の光学的測定とその解釈

Fig. 9. Frequency distribution of the angular deviation from fish to their nearest neighbors.
○——○: Bitterling (8 fish) at 18.6°C.
●——●: Bitterling (8 fish) at 27.0°C.

Fig. 10. Frequency distribution of the distance from fish to their nearest neighbors.
○——○: Bitterling (8 fish) at 18.6°C.
●——●: Bitterling (8 fish) at 27.0°C.

は、18.6°Cの場合0.032、27.0°Cの場合0.027と、高温で密度が低くなった。

実験に先立ち実験水槽内の水は十分に暖気を施したので、その時の水温条件で飽和酸素量（18.6°C: 9.08 mg/l, 27.0°C: 7.86 mg/l）になっているとみなすことができ、水温の上昇によって13%のDO減少が認められ、パラナダゴ群の高温での分散はMcFARLAND and MOSSの次の説をあらわすことができる。すなわち、「魚群の構造は環境水の溶存酸素量の低下と関わりをもって変化する。すなわち、群れ内部における酸素

Fig. 11. Relation between the swimming speed and the angular deviation from fish to their nearest neighbors.
○——○: Bitterling (8 fish), average body length 6.5 cm.
●——●: Bitterling (8 fish), average body length 5.2 cm.
消費が群れを形成する個々の魚に影響を及ぼし、その結果生ずる個々の魚の反応行動が魚群の構造を変化させる。こうした個々の魚の反応行動は、魚群を形成する個体と、それをとりまく群れ環境との間の安定性を維持しようとする適応行動である。パラタナゴの棲息可能水温域は比較的広いが、本実験での個体間距離の高密度の増加及びその値の分散、密度指数の高密度での減少など、水温変化が群れ構造に及ぼす影響は明らかで、それは溶存酸素量に影響されたものと思われるが、詳細は今後の実験で明らかにしたい。

実験IV パラタナゴの群泳速度と群れ構造
パラタナゴ8尾を使用し、その群泳速度と群れ構造の関係を観察した。カメラ視野の一定間隔を先頭魚が横切るのに要する時間をストップウォッチを用いて測定し、群れの遊泳速度として算出した。また、同時に写真撮影も行った。平均体長6.5cmの群れの測定に使用した写真は32組、測定対象となった延べ個体数は256尾。実験水温は22.5℃であり、平均体長5.2cmの群れの場合はそれぞれ28組、224尾、17.9℃であった。

Fig. 11 は、平均体長6.5cmと5.2cmとの群れについて、その群泳速度と頭位交換を示したものです。平均体長6.5cmの群れでは逆泳速度（体長の2ないし3倍cm/sec）以下で数値の分散がかなり見られるが、両方の場合とも指数曲線的な関係で群泳速度が速いほど群れの平行性が高まる傾向をみせている。群れを維持するためには、各個体が目標とする個体への追従を余儀なくされ、速度が増加するほどその方向性も一定するからであろう。しかし、その平行性も直接的に増加しないのは何故であろうか。個体間の距離が関与しているかどうかをみるために、同じ群れについてその群泳速度と個体間距離の関係について調べたところ、群泳速度が変化してもその群れを形成する個体間距離は4.0ないし6.5cmで、ほぼ一定していた。すなわち、群泳速度の増減は個体間距離に何ら影響をおよぼさないことがわかる。個体間距離を一定に保持しようとする魚の行動は、とくに直線視覚目標との関係を想起させる。井上・黒岩71によると、「魚の追従行動は前方視、側方視に拘らず、両眼に刺激を受けている場合に最も生じやすい」という。すなわち、群れを形成する各個体は一定状態で群れ内の視覚目標とする他の個体に追従しようと努めるであろう。その時個体相互の位置は、完全に平行な位置よりも少々鈍角的な位置を占めた方が両眼に刺激を受けやすいことを考えれば、上記の現象は納得されるであろう。

Fig. 12. Frequency distribution of the angular deviation from fish to their nearest neighbors.
○——○: Bitterling; all fish are male.
実験 V バラタナゴの雌雄関係と群れ構造

前回までの実験では、雄のみから成る群れを観察したが、長田・西山による、バラタナゴは繁殖期に雌雄間で特異なつなわばり行動が見られるという。従って、本実験では実験で使用した雄ののみから成るバラタナゴ8尾の群れと、雌雄同数ずつ（2尾：♂♀=4：4）から成る群れとの、群れ構造の比較を試みた。

Fig. 12 と Fig. 13 は頭位交角および個体間距離について比較したグラフである。頭位交角については、何れも10と12度に出現頻度のピークが現れ、雌雄関係による影響は認められない。個体間距離については、雌のみから成る群れでは4.11.6cm、雄性4尾ずつの群れでは3.3cmにそのビーグがあり、両群に差異が認められる。雌雄の群れの平均体長は6.2cm、雌雄4尾ずつの群れの平均体長は5.2cmであり、個体間距離に見られる差異の群れの雌雄間の影響が現れたものと考えるより、供試魚群の体長が群れ構造に影響をおよぼすという VAN OLST and HOUNTERの発表のように、供試魚の平均体長の差が個体間距離の差となって現れたと考える方が妥当であろう。

解析方法

魚群中の先頭魚の距離を三次元空間での原点とし、魚群を形成する全ての個体の距離および尾端の座標を求める。

個体間の距離はピタゴラスの定理から \((x_a - x_b)^2 + (y_a - y_b)^2 + (z_a - z_b)^2)\)。ただし、\(n\)は先頭魚から数えて\(n\)番目の魚。また、個体の距離と尾端の座標をそれぞれ \((x_i, y_i, z_i), (x_2, y_2, z_2)\)とすると、この個体を有向線分とみなし方向余弦は \(\frac{x_2 - x_1}{r}, \frac{y_2 - y_1}{r}, \frac{z_2 - z_1}{r}\)。ただし、\(r\)は個体の全長である。こうして求めた2個体の方向余弦を \(i, m, n\), \(i', m', n'\)とした場合、この2個体が空間的に近くならる角度 \(\varphi\) は、\(\varphi = \cos^{-1}\left(\frac{r^2 + mm' + nn'}{2rr'}\right)\)。この式から2個体の平行性を知ることができ、これを頭位交角と呼ぶ。群れの密度を知る目安として、群れの形および魚体形を積円体とみなし、群れの中で1尾が占める体積をその個体の体積の比を考え、これを密度指数とする。積円体の体積は \(\frac{4}{3}\pi abc\)。ただし、\(a, b, c\)は積円体の中心を原点とみなしの場合の \(x, y, z\)軸それぞれ \(1\)の切片であるから、\(a = \frac{x}{2}, b = \frac{y}{2}, c = \frac{z}{2}\)を代入 \((x, y, z\)はそれぞれの方向の群れの広がりを表す）すると、\(\frac{\pi xyz}{6}\)が群れの体積となり、群れの中で1尾当たりが占め体積は群れ形成個体数を \(n\)とすると \(\frac{\pi xyz}{6n}\)となる。\(x = x_1, y = y_1, z = z_1, n = 1\)。群れの体積を \(\pi xyz\)とおくと、\(\frac{\pi xyz}{6n}\)は1尾の魚体積となる。よって、密度指数は \(\frac{\pi xyz}{6n}\)で表わされる。

上方からの写真で水平方向、側からの写真で垂直方向の距離をノギスを使用して \(\frac{1}{20}\)mm 単位まで測り、カメラの光軸付近に置いた長さ既知のテープの写真上の長さから \(cm\) 単位の実際の距離に換算した。ただし、光軸から離れるほど誤差および水の屈折の影響が大きくなるため、比較的広範囲にわたった群れの場合、誤差の補正が必要となる。

1. 視差（parallax）

側からの写真で座標の補正方法を解析してまとめる以下のようにある（Fig. 14）。

Fig. 13. Frequency distribution of the distance from fish to their nearest neighbors.

○——○: Bittering; all fish are male.

(47)
a. 先頭魚が後続魚よりカメラに近い時:
後続魚の写真上の位置が光軸より上(下)の場合
写真で求めた y 座標 + \(\alpha \beta \gamma / \alpha' \)。

b. 先頭魚が先頭魚よりカメラに近い時:
後続魚の写真上の位置が光軸より上(下)の場合
写真で求めた y 座標 - \(\beta \gamma / \alpha' \)。

上方からの座標 y の補正方法を解説してまとめると以下のようになる。

a'. 先頭魚が後続魚よりカメラに近い時:
先頭魚の位置が後続魚より光軸に近い(遅い)時
および後続魚が光軸を挟んで先頭魚と反対側に
位置する場合、写真で求めた y 座標 + \(\beta \gamma / \alpha' \)。

b'. 後続魚が先頭魚よりカメラに近い時:
先頭魚の位置が後続魚より光軸に近い(遅い)時
および後続魚が光軸を挟んで先頭魚と反対側に
位置する場合、写真で求めた y 座標 - \(\beta \gamma / \alpha' \)。

ただし、\(\alpha, \alpha' \): カメラから原点までの距離
\(\beta, \beta' \): 原点から後続魚までの距離
\(r, r' \): 光軸から後続魚の写真上の位置
までの距離

2. 屈折 (refractive index)
屈折率 n の液体の液面下 h の深さにある物体を
鉛直と \(\theta \) の角をなす方向から見る時、物体はどのような
位置にあるように見えるかを Fig. 15 を参考に解いてみる。

\[
\cos \rho = \sqrt{1 - \sin^2 \rho} = \sqrt{1 - \sin^2 \theta / n^2} \quad (1)
\]

\[
\tan \rho = S / h \quad . \quad S = h \sin \rho / \cos \rho
\]

(1) より

\[
S = \left(\frac{h}{n} \right) \sin \theta \left(1 - \frac{\sin^2 \theta}{n^2} \right)^{-1/2} \quad (2)
\]

図のように x, y 軸をとると、\(QP \) を延長した直線
\(PA' \) 上の点 \((x, y)\) について、

Fig. 14. Diagram of correcting Z and X by the photo as taken from the side (a) and above (b).
CA : Camera.
OA : Optical axis.
PH : Photograph.
LF : Leading fish.
FF : Following fish.
PF : Position of following fish on a photo.

Fig. 15. Diagram for correcting the influence of refraction.
(S−x)\cos \theta + y\sin \theta = 0. \quad (3)

少しづれた光線 Q'P' を延長した直線 \(P'A' \) 上の点 \((x, y)\) については、
\[
(S+\delta S−x)\cos (\theta+\delta \theta)+y\sin (\theta+\delta \theta)=0.
\]
すなわち、
\[
(S+\delta S−x)\cos \theta−y\sin \theta = 0. \quad (4)
\]
光線は両直線の交点 \(A' \) から来るように見えるが、\(A' \) の座標は式 (3)，(4) を同時に満足する \(x, y \) で両者を連立させて解くと、
\[
x=S−\delta S \cos \theta, \quad y=−\delta S \cos \theta \cos \theta, \quad (5)
\]
\[
\frac{\delta S}{\delta \theta} = \frac{\delta S}{\delta \theta} = \frac{\cos \theta}{n\cos \rho} = \frac{h}{n}\cos \theta \left(1−\frac{\sin^2 \theta}{n^2}\right)^{-1/2}. \quad (6)
\]
(2), (6) と (5) に入れると、
\[
x=−\frac{h}{n}\left(1−\frac{1}{n^2}\right)\sin \theta \left(1−\frac{\sin^2 \theta}{n^2}\right)^{-1/2} \quad (7)
\]
\[
y=−\frac{h}{n}\cos \theta \left(1−\frac{\sin^2 \theta}{n^2}\right)^{-1/2}. \quad (8)
\]
(8) の深さで水平に（7）の距離だけ手前の位置にあるように見える。\(^{(10)}\)

次に入射角 \(\theta \) の求め方である。カメラの光軸から個体までの距離を \(r \)、水面からカメラまでの距離を \(\tau \) とすると、
\[
\tan \theta = \frac{\eta}{r+(-y)}, \quad \eta = (\tau+(-y))\tan \theta.
\]
(8) より
\[
\eta = (\tau+\frac{h}{n}\cos \theta \left(1−\frac{\sin^2 \theta}{n^2}\right)^{-1/2})\tan \theta. \quad (9)
\]

文 献
7) 井上 夷、黒岩広治 (1975): 魚の視覚運動反応における相関刺激の効果、日水誌, 41: 191-1227.
10) 後藤憲一、山本邦夫、神谷 健 (1967): 詳解物理学演習、上巻、共立出版(東京)、p. 353-354.
宇野寛教授のフランス叙勲

Nomination de M. Prof. Y. Uno au Chevalier dans l'Orde des Palmes Académiques

日仏海洋学会常任幹事東京水産大学教授宇野寛博士は、今年2月14日東京都港区南麻布のフランス大使官邸で教育功労勲章シュヴァリエ章のオーレーブルナボテ大佐の授賞式に出席し、授賞式が開催されました。

昨年10月14日付で国際教科文機関ならびに国際文教機関を通じて、この贈呈式の通知が寄せられ、教授の受賞の回答に応じて、当社の挨拶が寄せられました。

昨年11月27日に軽症仏大使の訪日要請によると、この叙勲の理由は、日本の科学研究機関にいて、特に教育に関する研究に携わってきた教授の努力が顕著と認められたためです。

宇野教授は早々から今日まで日本水産大学訪問研究員、同研究学生あるいは日仏水産大学訪問研究員を多数受け入れ、フランスの科学技術の向上に寄与されてきたことにも伴せて高い評価を受けたことは想像に難くありません。

授賞式当日は、朝までの雨も止まり、まだ雷雨らしい東京の冬として素晴らしい好天に恵まれ、レジオンドヌール章等の授賞式の前には、多くの招待者の祝賀があちこちに残るなか、教授の賜物を受けました。

ドゥ・ドゥ大使は、教授夫妻の前で、大略次のような祝辞を述べました。まず学歴を紹介されたのち、水産増産学の多大な功績を讃えて、今日までの研究活動のなかでの教授とフランスとの高い結び付きを強調されました。宇野教授の海洋科学領域での日仏交流促進が高評価を与えられたのです。

「日仏海洋学会常任幹事として、フランスからの給付留学生や国立海洋開発センター（CNEXO）あるいは国立高等農業研究所（INRA）からの科学研究奨学金を受入れに親身の労を惜まなかったばかりでなく、日本の水産増殖研究を前提として進めることで、日仏相互協力の推進にもともと効果的な成果を挙げました。

「日本の研究者を短期間を問わずフランスに送られたことも教授の功績として見逃せません。フランス政府給付留学生選抜研究の審査員として日本の若手科学者を審査するために駐日大使館科学部の多大の協力を寄与されました。」

「宇野教授自身も研究の目的で何度か渡仏されました。その間の数年は長いとは言えますが、この十年間毎年のようにフランス海洋科学者の知友と交流を深めております。ここで特に申し上げるわけではないが、昭和4年1月22日付けの日本科学技術庁省の報告書に記載されているように、フランスは日本に関して、古巧にも重要な役割を果たしたものです。」

「ここに教育においてのフランス政府はこの贈られた研究者を高く評価するばかりでなく、フランスのこともかわめて忠実な友人の一人に深い敬意を表します。」

「宇野教授は、フランス国政府の名において、貴校に教育功労勲章シュヴァリエ章を贈ります」

引続き教授から謝辞が次のように述べられました。

「駐日フランス大使ドゥ・ドゥ大使、私はただいま花見川から教育功労勲章シュヴァリエ章を贈られ、深く感謝いたします。本日の受賞にご参加をいただき、大使閣下並びに関係各位に厚く御礼申し上げます。

「私が水産学生海洋学の分野で貴校と親交を得たのは1971年以来のことです。それから今日まで、貴校が多くの水産科学者を日本に送ってみると同時に、日本からも私が含まれる多くの研究者が渡仏するのに関係しましたが、これらの交流を通じて、仏日相互の水産科学技術の交流にききのきき小出を尽くしてきたつもりであります。

「近年にわたり栽培漁業の分野で貴校の水産科学者が世界的に優れた研究結果を挙げ、あるいは研究計画を立案されるようになりましたことは、もし仏日相互協力が実現することができるならば、これほど望ましいことはありません。

「私は本日の授賞式を歓迎して、仏日両国の研究者がさらに緊密な連携により、海洋生物資源の有効利用につ

(50)
にして先駆的な研究を遂めるために、今後とも一層の努力をお約束するとともに、引き続き学術的支援をお願いいたします。本日は誠に有難うございました。

授業式が済みまして、大学夫妻をはじめ同シャンペンの杯を乾し、乾杯は一層盛り上がりました。

なお日仏海洋学会顧事久保田教授をはじめ次人数名の発言により、翌2月15日宇野教授夫妻をお招きして喜びを分かちました。参列者は東京水産大学長佐々木忠義博士及びフランス大使館科学参事官ダニエル・ジャコフ夫妻をはじめ旧くから教授と親交がある学界など各界の数十名に及びて盛大でした。

日仏海洋学会は創立以来20年を経て、よいよ盛況を迎えようとしています。この数年間に会員のなかから海洋物理学と水産増殖学の両分野でフランスからの叙勲者2名を生んだことになります。このことはとりもなおさず本学会の活動が国際的に高く評価されたことであって、全会員の栄誉として誠にご同慶の至りであります。

（高木和徳）
学会記事

1. 昭和54年2月5日、東京水産大学において、編集委員会が開かれた。
2. 昭和54年3月30日、東京水産大学において、編集委員会が開かれた。
3. 新入会員

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>紹介者</th>
</tr>
</thead>
<tbody>
<tr>
<td>鈴木 道夫</td>
<td>東京大学・漁業生産学科</td>
<td>神田 勇二</td>
</tr>
<tr>
<td>杉村 元三</td>
<td>和歌山県水産試験場</td>
<td>佐々木忠義</td>
</tr>
</tbody>
</table>

4. 会員の住所・所属の変更

<table>
<thead>
<tr>
<th>氏名</th>
<th>新所属・新住所</th>
</tr>
</thead>
<tbody>
<tr>
<td>小竹 勇</td>
<td>仙台市太田町2-2-23</td>
</tr>
<tr>
<td>三井海洋開発</td>
<td>千代田区一ツ橋2-3-1 (小学館ビル)</td>
</tr>
<tr>
<td>日本海洋産業</td>
<td>千代田区神田錦町1-19</td>
</tr>
<tr>
<td>森谷 誠生</td>
<td>本郷区井草2-15-1</td>
</tr>
<tr>
<td>宮崎 千博</td>
<td>渋谷区旧旧1,000</td>
</tr>
<tr>
<td>杉浦 吉雄</td>
<td>東京大学海洋学部</td>
</tr>
<tr>
<td>永本 貫</td>
<td>霞ヶ関台1-15-1</td>
</tr>
<tr>
<td>東大・海洋研</td>
<td></td>
</tr>
</tbody>
</table>

5. 交換及び寄稿図書

1) 広島日論協会報 No. 72
2) 理研通信 第322、323号
3) 理化学研究所、科学講演会記録 第1回
4) 海洋時報 第12号
5) 研究実用化報告 28(1,2)
6) 岸戸内海栽培漁業改良技術開発事業 マダイ苗総合報告書 昭和53年度
7) 保育水産事業調査報告書 昭和62年度
8) 海洋産業研究資料 10(8)
9) 海洋法関係図書目録 1
10) 第Ⅲ回海洋シンポジウム報告書 (深海底とその資源) 1978年
11) 海洋汚染防止法制の比較研究 第1号
12) 英国産業ニュース 3, 4月号
13) 魚塩海洋気象台案報 No. 196, 197
14) 日本海洋学会論文集 第60号
15) 淡水区水産研究所 研究報告 28(1,2)
16) アユに関する文献集1 1950～1978年

Bシリーズ No. 15

お知らせ

海洋生物の行動、生態、汚染に関する国際会議案内

1980年5月5日～10日、仏国Concarneauで、仏海生物学会主催の第1回「海洋生物の行動、生態、汚染に関する国際会議」(First International Conference on the Behavior of Marine Animals, Ecology and Pollution)が開催されます。これについての御問合せは、文部省学術会議室に御願いします。
学会記事

日仏海洋学会役員
顧問
ユーブール・プロッシュ ジャン・デルサルト
ジャック・レブルー アレクス・ドランダール
ベルナル・フランク
名誉会長
ミシェル・ルージェ
会長
佐々木忠義
副会長
黒木敏郎、園巻秀明
常務幹事
同部友三郎、宇野 英、永田 正
庶務幹事
三浦昭雄
幹事
石野 敦、井上 実、今村 豊、岩下光男、川原田 祐、神田真二、柴田義一、草下孝治
斎藤幸一、佐々木幸康、杉浦義雄、高木和雄、高野建二、辻田正美、山根繁三、村田良美、山中誠之助
(五十音順)
監事
久保田 顕、岩崎勇人
評議員
青山恒雄、赤松秀雄、秋山 勉、阿部宗明、阿部友三郎、斎藤幸一、有賀譲陽、石野 敦
石渡正典、市村俊英、井上 実、今村 豊、入江敬之、岩崎秀人、岩下光男、岩田憲幸、宇田隆隆、宇野 英、大森正夫、小室正和、大村芳雄、岡部史郎、岡見 愛、松浦敏郎
加藤重一、加納 敬、川合義夫、川上太夫
川村輝尚、川原田 祐、神田真二、柴田義一、草下孝治、楠 宏、園巻秀明、久保田 顕、黒木敏郎、小川則美、小林 博、小牧勇義、西条八束、斎藤幸一、斎藤行正、佐伯和昭、坂本太郎、佐々木忠義、佐々木幸康、猿橋隆子、柴田志司、下村敏正、庄司大太郎、杉浦義雄、関 文威、多賀信夫、高木和雄
高野建二、高橋峰雄、高橋 正、谷口 信、田本忠司、田村 保、千葉次夫、下田時美、寺木俊彦、篠羽良明、皆永政英、鳥谷鉄也、中井善二郎、中野英人、永田 正、永田 豊、奈须郁二、奈須陸幸、西沢 敏、新田寛雄、根本敬久、野村 正、半沢正男、半沢久恒、橋口明生、菱田耕造、日比谷 京、平野善行、深沢文雄、深澤 信、福島久雄、田 秀哉、星野正和、増田圀郎、増田昇良、松村 哲、松崎政一、丸原隆三、三浦昭雄、三宅泰雄、宮崎千博、宮崎雅正、村野正明、元田 茂、森川千郎、森田良美、森安茂雄、安井 正、柳川三郎、山路 男、山中誠之助、山中一郎、山中 一、吉田多馬夫、渡辺晴一
(五十音順)
マルセル・ジュグリス、ジャン・アンティール、ロジェ・ペリカ

贊助会員

旭化成工業株式会社
株式会社内田老舗建材株式会社 内田業
株式会社 オーシャン・エージェント
株式会社 大林航
小樽造船所 電気株式会社
株式会社 オールガノ
株式会社 海洋開発センター
社団法人 海洋産業研究会
協同 低温工業株式会社
協和商工株式会社
小松川化工機株式会社
小山 三
三信船舶電気株式会社
三洋水路測量株式会社
シュナイダー財団恒東航空事務所
昭和電装株式会社

東京都千代田区有楽町 1-1-2 三井ビル
東京都千代田区九段北 1-2-1 蜂谷ビル
東京都千代田区神田寺前 11-2 第1 東京ビル
東京都千代田区神田寺町 2-3
小樽市色内町 3-4-3
東京都港区本郷 5-5-16
東京都港区赤坂 1-9-1
東京都港区新橋 3-1-10 丸亀ビル
東京都千代田区神田佐久間町 1-21 山田ビル
東京都葛飾区廿四 4-24-1
東京都江戸川区松島 1-342
東京都文京区木場町 15-15-10 美和印刷社
東京都千代田区神田 1-16-8
東京都港区新橋 5-23-7 三栄ビル
東京都港区南青山 2-2-8 DFビル
高松市寺町 1079

(53)
東京都世田谷区玉川 3-14-5
横浜市鶴見区鶴見町 1506
東京都千代田区四番町 5
東京都中央区日本橋 3-1-15 久栄ビル
東京都中央区日本橋室町 2-6 渋谷ビル
東京都杉並区宮前 1-8-9
東京都千代田区神田銀幕町 2-2-2 東京建物ビル
東京都港区西麻布 1-2-7 羽鳥ビル
神奈川県厚木市森水 2229-4
東京都新宿区西新宿 2-6-1 新宿住友ビル
東京都港区新橋 2-1-13 新橋富士ビル 9階
東京都港区芝公園 3-1-22 協立ビル
東京都中央区日本橋本町 1-4
東京都千代田区神田錦町 1-9-1 天理教ビル 8階
東京都新宿区四谷 3-9 光明堂ビル 株式会社ビデオプロモーション
東京都中央区四砂 1-3-25 株式会社 中村鉄工所
東京都千代田区神田小川町 3-20-2 増納ビル
東京都中央区八重洲 4-5 藤加ビル
東京都中央区日本橋大塚馬町 2-1-1
東京都千代田区霞ヶ関 3-2-5 霞ヶ関ビル 3002号室
東京都中央区かどどき 3-3-5 かどどきビル 新木地邸
東京都中央区西ヶ原 1-14
東京都千代田区神田銀幕町 1-10-4
東京都文京区向丘 1-7-17

(54)
Exploiting the Ocean by... T.S.K.
OCEANOGRAPHIC INSTRUMENTS
REPRESENTATIVE GROUPS OF INSTRUMENTS AND SYSTEMS

ディスクトップコンピュータを組込んだ
新しいケーブル式STDシステム

機能
○リアルタイムに出来ること
- 生データのCRTによるデジタル表示
- 生データのCRTによるグラフィック表示
- CRTの表示をプリンターによりコピーを取る
- カセットテープに生データを記録する

○カセットテープの処理により出来ること
- 生データをレコ, Dosat, 音速等の算出
- 生データをプロッターに出力する
- 算出データをCRT, プロッター, プリンターに出力する

株式会社 鶴見精機
1506 Tsurumi-cho, Tsurumi-ku, Yokohama, Japan 〒230 TEL: 045-521-5252
CABLE ADDRESS: TSURUMISEIKI Yokohama, TELEX: 3823750 TSKJPN J
OVERSEAS FACTORY: Seoul KOREA
IWAMIYA INSTRUMENTATION LABORATORY
長期捲自記流速計
(NC-Ⅱ)

本流速計は海中に設置し、内蔵した記録器に流速方向を同時に記録するプロペラ型の流速計で約20日間の記録を取る事が出来ます。但し流速は20分毎に3分間の平均流速を20分毎に一回、共に棒グラフ状に記録しますから読み取り非常に簡単なのが特徴となっています。

フース型長期捲自記検潮器
(LFT-Ⅲ)

ブロペラはA、B、C三枚一組になって居り
A（弱流用）………1m/sec
B（中流用）………2m/sec
C（強流用）………3m/sec

融流ペラールに依る最低速度は約4cm/secです。

協和商工株式会社
INDUCTIVE SALINOMER MODEL 601 MK IV

海水の塩分測定の標準器として、既に定評のあるオート・ラブ 601 MK III の改良型で、小型・軽量・能率化した高精密塩分計です。試料水を吸上げる際、レベル検出器により吸引ポンプと攪拌モーターとが自動的に切換えられます。温度はメーター指針により直示されます。

測定範囲 0〜51 % S
感度 0.0004 % S
確度 ±0.003 % S
所要水量 約 55 cc
電源 AC 100 V 50〜60 Hz
消費電力 最大 25 W
寸法 52(幅)×43.5(高)×21(奥行)cm

営業品目
転倒温度計・水温計・湿度計・
水深計・探泥器・塩分計・
水中照度計・測度計・S-T計・
海洋観測器・水質公害監視機器

株式会社 渡部計器製作所
東京都文京区向丘1の7の17
TEL（811）0 0 4 4 （代表）113

Murayama
水中濁度計
水中照度計
電導度計

電気村原電機製作所
本社 東京都目黒区五本木2-13-1
出張所 名古屋・大阪・九州
海洋環境調査
海底地形地質調査
●水質調査・プランクトン底棲生物
調査・潮汐・海潮流・水温・拡散・
波浪等の調査（解析・予報）
●環境アセスメント・シミュレーション
●海底地形・地質・地層・構造の調査・水深調査・海図補正測量

三洋水路測量株式会社

〒 東京都港区新橋5−23−7（三洋ビル）
☎ 03-432-3971-5

〒 大阪市中央区中之町3−4−2（鴻之ビル）
☎ 06-355-880-7000

〒 北九州市門司区長崎町3−321（大分銀行ビル）
☎ 093-321-382-4

〒 岡山市東区西条2−8−18（大阪生命保険ビル）
☎ 086-221-778-5

〒 神奈川区川崎市川崎市中央区大岡東2−19（プレナント札幌）
☎ 041-231-347-7

総代理店 有限三井物産株式会社

は無限の可能性に挑戦する

●海辺電子機器
●航海計器
●海洋開発機器
●航空機用電子機器
●各種制御機器
●コンピュータ端末機器
●各種情報システム
最高の品質 信頼のブランド
aqua-lung®

France. Italy. Australia. U.S.A.

日本アクアラング株式会社
本社・東京支社：東京都中央区築地2-4-7 （第2新勲ビル） 〒104 TEL.(03)321-8441
本社・神戸支社：神戸市兵庫区元町通2丁目1-8 〒652 TEL.(078)681-3201
九州支社：福岡市中央区博多3丁目7-5 〒810 TEL.(092)541-8907-751-0715
横浜営業所：横浜市中央区野毛2-129 〒232 TEL.(045)231-3021
名古屋営業所：名古屋市東区築地町3-14 〒466 TEL.(052)291-5016
大阪営業所：大阪市西区九条通1丁目5-3 〒550 TEL.(06)582-5609
四国営業所：高松市瑞江町4丁目36-9（高松商銀内） 〒760 TEL.(087)51-8853

アクアラングは日本においては当社が専用使用権を有している国際的商標です。商標登録「aqua-lung」登録番号 第494877号、商標登録「アクアラング」登録番号 第494878号

東京支社住所変更 関東支社：〒243 神奈川県厚木市松永 2229-4 TEL.0462-47-3222
第17巻 第2号

目次

原著
Moiréの方法によるCapillaryWaveの測定………………………………真山昭光, 阿部友三郎 55
海産錦毛虫類の分離および保存培養に関する検討…………………………………久米恒雄 62
混合培養系における錦毛虫、従属栄養細菌および菌藻の相互作用……………………久米恒雄 65
連続培養系における海産錦毛虫と従属栄養細菌の相互関係……………………久米恒雄 71
牛込藻における硝による藻類変動（英文）……………………………………足利秋生, 阿部友三郎 78
鹿児島湾口鉱部における流況変動の特徴, 特特に短周期変動について……………桜井仁人 83
パラタナゴおよびアブラハの群れ構造の光学的測定とその解釈……………………井上幸, 長谷川英一, 有元貴文 91

雑録
宇野冨教授のフランス叙勲………………………………………………………104

学会記事……………………………………………………………………………106

Tome 17 N° 2

SOMMAIRE

Notes originales
Measurement of Capillary Wave by the Moiré Method (in Japanese)
………………………………………………………………………………………Haramutsu TAKAYAMA and Tomosaburo ABE 55
Examinations of the Isolation and the Stock Culture of Marine Ciliated Protozoa (in Japanese)
………………………………………………………………………………………Tsuneo KUME 62
Interactions between a Marine Ciliate, a Heterotrophic Bacterium and a Diatom in Mixed Batch Cultures (in Japanese)
………………………………………………………………………………………Tsuneo KUME 65
Interrelationship of a Marine Ciliate and a Marine Heterotrophic Bacterium in Continuous Culture Systems (in Japanese)
………………………………………………………………………………………Tsuneo KUME 71
Seiche Motions Induced by Wind in the Ushigomebori Moat—Akio YANAI and Tomosaburo ABE 78
Characteristics of the Currents over and near the Submarine Col at the Mouth of Kagoshima Bay, Particularly Short Period
………………………………………………………………………………………Masahito SAKURAI 83
A Study on the Structure of Fish Schools in Rhodeus ocellatus and Morocho steindachneri by the Photographic Observation (in Japanese)
………………………………………………………………………………………Makoto INOUE, Eiichi HASEGAWA and Takafumi ARIMOTO 91

Miscellanées
Nomination de M. Prof. Y. UNO au Chevalier dans l’Ordre des Palmes Académiques 104

Procès-Verbaux 106