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Geostrophic Current Southeast of Yakushima Island*

Shunji KONAGA**, Katsunobu NISHIYAMA** Hiroshi ISHIZAKI**
and Yoichi HANZAWA***

Abstract: During about 18 years since 1955, the density structure of sea water southeast of
Yakushima Island (section E) was observed at least twice a year mainly by Nagasaki Marine
Observatory. In this paper we attempted to study (1) the deep western boundary current
along the Nansei Shoto Ridge by examining the structure of geostrophic currents across the
section E and (2) the variations of geostrophic transports across the section E in connection
with those of northeastern part of the East China Sea.

Following results were achieved: (1) Near Yakushima Island, geostrophic velocities may
sometimes reach the minimum value at 500 to 600 m level (sometimes negative values), and
below the reference level (taken 800 dbar level) they direct to the same direction as in
surface layers. This may suggest that there exists the deep boundary current and Rossby
wave wakes downstream of the oceanic ridge. (2) When the cold water region was present
in the sea south of Tokai-Do, Japan, there might have been tendencies for the current pattern
to deviate westwards, and for the mass transports to increase across the section PN and to
decrease across the section E. As the southward transports east of Amami-Oshima Island
increase very much in that period, the transports across the section E decrease, inspite of
the transport increase in the East China Sea and so in the Straits of Tokara. (3) Differences
of the yearly mean sea level between Naze and Nishino-omote take nearly the same behavior
as the yearly mean sea level and coastal water temperature at Naze. The increase of the
differences seems to accompany the increase of the mass transports across the Straits of
Tokara. Low temperature and low mean sea level at Naze may probably suggest a cyclonic
circulation around Amami-Oshima Island, and so in the southern part of the Straits of Tokara,
counter currents are intensified, then the transports across the Straits must decrease, and
vice versa in the case of high temperature and mean sea level at Naze. (4) There are con-
siderable discrepancies between the surface current by geostrophic estimations and that with
GEK values in individual cases. But making some temporal averages, a tendency may be
seen that geostrophic velocities are rather strong compared with GEK values near Yakushima
Island and vice versa in offshore region, due probably to the complicated vertical profile of
the geostrophic velocities in nearshore region.
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Fig. 1. Map of the survey area and main
observation lines.
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Fig. 2. Mean geostrophic velocities across the
section E from March 1965 to April 1968.
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Fig. 3. Time series of geostrophic velocities
between (a) Sts. E2 and E;, (b) E; and E;
and (c) Es and E; from 1955 to 1964.
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Table 1. Comparison of geostrophic velocities and surface

1-2 2-3 3-4 4-5 5-6
Period

GEK GEK Geo GEK Geo GEK Geo GEK Geo

kt kt cmst kt cm st kt cm st kt cms”

1956, 6 0.03 0.69 39 0.84 80 0.68 12 0.00 33
1957, 1 —0.24 0.70 75 0.85 20 0.39 78 0.38 30
1957, 8 0.08 0.65 124 0.47 —11 0.19 38 0.71 —15
1958, 1 —0.71 —0.12 24 0.81 74 0.51 21 0.02 0
1958, 6 0.14 0.45 25 0. 66 66 0.55 41 0.45 22
1959, 1 —0.40 —-0.17 10 0.33 4 0.47 19 1.35 77
1959, 6 —0.40 0.04 99 0.27 35 0.42 —68 0.66 7
1960, 2 —0.26 1.12 121 1.02 59 0.42 —12 —0.06 10
1960, 6 —-0.21 —0.05 51 —0.52 —~8 —0.35 -8 —-0.20 17
1961, 4 0.69 1.16 88 0.24 43 0.98 —52 —0.34 —6
1961, 7 — — =13 — —8 — 4 — 3
1962, 2 0.17 1.23 64 0.56 30 —0.06 —14 0.33 1
1962, 4 0.22 0.79 106 0.18 —70 0.04 8 0.14 31
1962, 8 — — 38 — 15 — =33 0.03 8
1963, 2 0.39 0.64 61 0.55 74 0.48 30 0.17 —13
1963, 4 0.33 1.13 62 0. 46 28 0.27 —68
1963, 8 0.55 1.78 106 1.32 35 0.32 -—10 0.39 0
1964, 1 —0.14 0.69 60 0.67 65 0.42 20 0. 46 )
1964, 4 —0.54 —0.61 15 0.47 139 1.87 77 0.83 19
1965, 9 —0.27 —0.38 44 —0.47 21 -0.07 33 —0.36 8
1965, 3 0.18 0.22 -7 —0.03 53 0.53 —12 0.73 23
1965, 5 0.62 1.06 —27 0.02 -—21 —-0.70 —8 —0.79 -8
1965, 7 0.65 1.11 101 0.73 19 0.03 0 —0.39 -3
1965. 8 0.05 0.79 95 0.73 18 0.28 -8 0.35 11
1965, 9 0.25 1.35 145 1.76 91 0.67 48 —-0.20 —35
1965, 11E 0.14 0.84 56 1.38 72 0.94 45 0.60 22
1965, 11L 0.23 0.22 36 0.76 49 1.10 38 0.77 21
1966, 1 0.76 0.64 41 0.35 38 0.17 —2 0.12 2
1966, 3 —0.03 0.75 89 0.76 54 0.32 —12 1.01 39
1966, 4 —0.58 0.48 72 1.50 62 0.47 40 0.25 1
1966, 6 —0.54 1.20 119 0.89 60 0.61 11 0.07 7
1966, 7 —0.60 0.78 57 1.56 131 1.02 39 0.08 -7
1966, 8 —0.74 —0.27 —15 0.47 5 0.81 35 0.50 51
1966, 10 0.59 0.48 56 0.71 89 0.34 9 —0.05 9
1966, 12 0.47 0.78 37 0.63 62 0.35 20 0.05 5
1967, 1 0.13 0.20 27 0.31 2 0.38 54 0.40 23
1967, 3 —0.36 1.03 30 1.69 120 0.95 46 0.69 32
1967, 4 0.13 0.43 35 1.13 94 0.87 11 0.51 —17
1967, 5 —0.39 0.43 s 0.98 57 —0.03 30 -0.12 —12
1967, 7 0.95 1.71 — 1.04 40 0.64 35 0.67 12
1967, 8 —0.29 0.59 36 0.75 35 0.30 14 0.00 32
1967, 10 —0.17 0.04 —11 —0.06 13 0.42 51 0.16 —13
1967, 11 —-0.30 0.50 84 0.98 38 0.51 19 —0.10 11
1968, 2E —0.11 0.07 18 —0.05 -1 0.74 70 0.74 41
1968, 2L —0.45 0.35 51 2.10 119 1.76 28 1.33 24
1968, 4 —0.64 —0.32 76 0.71 58 0.91 38 0.69 12
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velocities with GEK in station pairs across the section E.

6-7 7-8 8-9 9-10 10-11
GEK Geo GEK Geo GEK Geo GEK Geo GEK Geo
kt cms? kt cms” kt cms™! kt cms” kt cm”
0.31 16 0.19 9 -0.14 6 —0.51 -7 —-0.45 5
0.78 0 0.28 6 0.17 —6 —0.19 -—-20 —0.67 1
0.95 18
—0.34 —14 —0.40 —
0.27 12 —0.17 -3 -0.71 21 —-0.67 —36 —0.27 12
1.49 81 0.25 25 -0.08 —30 0.19 0 0.55 19
0.21 8] —0.43 —11 —0.11 12 —0.13 — -0.27 —
—0.34 —4 —0.51 14
~0.25 2 0.15 4
0.17 1 0.52 7 0.46 4 0.37 13
— 13 — 5 — 9 — —30
1.06 14
—0.10 —4 —0.24 —17 —0.43 -11
—0.22 8 —0.16 12 —0.11 —14 —-0.20 5 ~0.21 2
—0.16 22 0.24 16
—0.45 —11
0.23 22 0.11 —16
0.46 6 —0.30 -—33
— 3
0.28 19
—~0.48 —23
0.07 —25
~—0.36 —28
0.51 11
~0.36 19
—0.18 -2
0.12 12
0.06 —11
—0.19 0
~0.10 -2
—0.54 —21
0.01 11
—0.37 —6
—0.20 —29
-—0.09 23
—0.08 18
—-0.10 -—-11
0.53 0
—0.69 —6
—-1.03 —36
0.00 8
—0.26 —4
0.35 15
—0.17 5
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Table 2. Comparison of geostrophic velocities and surface velocities
with GEK in vicinity of the Straits of Tokara.

Period 1-2 2-3 3-4 5-5 5-6 67 7-8
erio
GEK Geo GEK Geo GEK Geo GEK Geo GEK Geo GEK Geo GEK Geo

kt ems™ kt cms? kt ecms?! kt ecms? kt ecms? kt ems! kt cmst
1956, 6 1.17 5 2.20 54 2.35 37 1.48 63 0.76 90 0.62 53 —0.35 —154
1957, 1 1.01 31 0.61 —8 0.09 46 0.38 0 0.62 19 -—0.01 —10 -—0.33 39
1957, 8 0.06 72 —0.31 46 0.29 71 0.42 67 —0.36 43
1958, 6 0.62 43 0.46 64
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Microbial Flock Produced by the IMAMURA and SuciTA Method*

Kimiaki YASUDA** and Nobuo TAGA**

Abstract: The aim of this investration was to clarify the processes of formation of microbial
flock and qualitative changes in microbial flora in a production tank using the method of
IMAMURA and SUGITA (1972). Flock formation in-the tank is interpreted as a process in
which a part of the phosphate added superfluously as a nutrient is formed into insoluble
phosphate particles by aeration, and then the particles are colonized by bacteria and form a
flock.

The results obtained from bacteriological analyses using four media for bacteria and yeast
isolation indicate that the major components of the microbial flock are yeast and the P strain
which forms a pin-colony. The microbial flora showed great variation, in which several kinds
of genera were predominant early in the culture and then disappeared completely after 56

hours, after which yeast and pin-colony forming bacteria rapidly became dominant. However,
reappearance of Vibrio spp. after 96 hours was observed.

1. Introduction

It is known that suspended organic matter
in seawater is composed of four components;
phytoplankton, zooplankton, bacteria and de-
tritus, However, in the sea, living organisms
form only a small fraction of the particulate
organic material and the major portion _is
composed of dead organic matter. The detritus
which is a product of the destruction of dead
organisms of vegetable and animal origin has
potential value as an energy source for bacteria
and a significant number of animals. Although
free bacterial cells, which are common elements
of all natural waters, are usually considered to
constitute only a minor portion of the food
resources available to marine filter-feeding in-
vertebrates, it is well recognized that the de-
tritus colonized by bacteria are enhanced in
nutritive value (ODUM and DE LA CRUZ, 1967).

As part of the trend towards maximum
utilization of energy sources, studies on the
utilization, for mariculture feed purposes, of
the residues from alcoholic fermentation of
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** Ocean Research Institute, University of Tokyo,
Minamidai 1-15-1, Nakano-ku, Tokyo, 164 Japan
Present address of K. YASUDA: Water Research
Institute, Nagoya University, Chigusa-ku, Nagoya,
464 Japan

rice or domestic refuse have been started in
Japan. Bacteria or protozoa added to the
residue activate nutrient regeneration, and en-
hance the nutritive value, and it can then be
used as food for rotifers, prawn larvae, juveniles
of fish, etc. These studies are based on the
accomplishments of IMAMURA and SUGITA
(1972), who succeeded in maintaining large
numbers of prawn larvae on artificial microbial
flock produced by their method. We also
believe that microbial flock of a higher trophic
level such as a mixture comprising bacteria,
unicellular algae and protozoa is an excellent
food for the early stages of marine animals.
As for the constituent microbes of the micro-
bial flock produced by the method of IMAMURA
and SUGITA, however, as yet little is known
of the kinds of bacteria or other organisms
present and the processes of formation of the
flock.

The purpose of the present investigation was
to clarify the process of flocculation and changes
in microbial flora in the production tank. These
experiments were carried out at the Tamano
Marine Station, Japan Fisheries Farming As-
sociation (JFFA), during the period from June
to October, 1978.

2, Materials and methods
Production method of microbial flock Experi-
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ments on microbial flock production were
carried out using equipment of the Tamano
Marine Station (JFFA). The plant consisted
of 2,000/ capacity cylindrical twin production
tanks, mixers, thermostats, and aeration pipes.
2,000/ of coastal seawater were added to the
tanks with nutrients in the following concent-
rations; glucose 1.5g, ammonium sulfate 0. 18
g, and K;HPO, 0.065 g in 1,000 m/ seawater.
Water temperature was maintained at 31+1°C,
and aeration and agitation were carried out
simultaneously. Every 24 hours, 200/ of culture
water was removed and replaced by an equi-
valent volume of seawater, and nutrients were
added in the amounts described above.

Counts and identification of microorganisms
To identify the microbial flock constituents,
bacteriological analyses were carried out using
four kinds of medium. These media were: 1)
Medium PPES-II (TAGA, 1968); 2) 10 times
diluted PPES-II medium 3) GY medium com-
posed of glucose 5.0g, Polypeptone 5.0g,
Bacto-yeast extract 1.0g, and Bacto-agar 15.0
g in 1,000 m/ aged seawater at pH adjusted to
4.0; and 4) MY medium composed of Mart
extract 5.0g, Polypeptone 1.0g, Bacto-yeast
extract 1.0 g, and Bacto-agar 15.0g in 1,000
m/ aged seawater at final pH adjusted to 4.0.
These media were considered to be useful for
reflecting as far as possible the microbial flora
in the tank. Incubations were carried out at
20°C in the dark for 5-7 days.

~When continuously analysing changes in vi-
able cell numbers and floral composition in the
production tank, isolation and viable counts
were standardized using only Medium 2216 E
(OPPENHEIMER and ZOBELL, 1952). Viable
counts were expressed as colony forming unit
(c.f.u.) by the spreading method (BUCK and
CLEVERDON, 1960). The isolates were incubat-
ed for 5-7 days at 20°C and simultaneously
identified to genus level using the scheme of
SHEWAN et al. (1960). Total counts of micro-
organisms were measured by the method given
by HOBBIE ez al. (1977).

Analyses of environmental elements Four
hours before and four hours after the addition
of nutrients measurements of the seawater and
culture water were carried out by the following

methods: pH; temperature; dissolved oxygen
(DO) by the WINKLER method; nitrite and
ammonium by the method of STRICKLAND and
PARSONS(1972); dissolved organic carbon(DOC)
by the method of MENZEL and VACCARO
(1964); and particulate organic carbon (POC)
and nitrogen (PON) by the method of SHARP
(1974). The levels of dissolved nitrogen found
in the present study are expressed as the equiva-
lent pg-at. NH3;-N// and NO,-N/I, and the
levels of DOC, POC and PON expressed as
the equivalent mg C// and mg N//, respectively.

3. Results

Changes of environmental elements As seen
in Fig. 1, pH in the tank showed a rapid rate
of decrease from 8 at the start of culture to 4
at 32 hours, after which it gradually increased
and remained at around 5. DO fell rapidly to

~almost -undetectable levels by 16 hours, and
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Fig. 1. Changes in pH, temperature, dissolved

oxygen (DO), nitrit¢ (NOz-N) and ammonium
(NH;-N) in the microbial flock production tank.
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although at 24 hours a temporary increase was
observed, after 34 hours it continued at un-
detectable levels. The concentration of NH;3-IN
throughout the experimental period ranged be-
tween 10'-10% yug-at/l as it was gradually ac-
cumulating due to the ammonium sulfate added
as nutrient every day. NOs-N was present in
low concentrations ranging between 0.1-0.5 pg
~at/l until 80 hours, while after 96 hours the
concentration increased and was accompanied
by the reappearance of Vibrio spp. in the
culture water.

On the other hand, as shown in Fig. 2, the
concentration of DOC gradually increased up
to 152 hours from undetectable levels to 2,500
mg C/I, and POC held constant after 72 hours
at 300-400 mg C/I. The ratio of POC to PON
ranged between 5. 5-6.0.

Bacteriological identification of microbial flock
It is necessary, when isolating, to use the most
suitable medium in order to understand the
character of microbial flock. The information
from viable counts and isolates using the four
madia are shown in Table 1 and Table 2.
Viable counts on the PPES-II medium were
approximately 100 times as high as those on
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0 812432 4856 7280 96104 120128 144152
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Fig. 2. Changes in dissolved organic carbon
(DOC), particulate organic carbon (POC)
and the C/N ratio in the microbial flock
production tank.

Table 1. Viable counts of microorganisms, counted
on different media, in the production tank of
microbial flock (Tamano Seedling Production

Plant).
Media Viable counts (c.f.u./ml)
PPES-II 4.4x10°
1/10 PPES-II 8.0x10°
GY 3.9x108
MY 3.3x10°

Table 2. Comosition of microorganisms isolated
by two kinds of medium.

Media Microbes isolated Isolation rate

PPES-II Bacterial strain (P) 98.6 %
Bacterial strain (B-9) 0.3%
Others 1.1%

MY Yeast 100 %
Others 0%

the diluted medium. Although small differences
in viable counts between the GY medium and
the MY medium were observed, the micro-
organisms forming colonies on these media were
almost all yeast. From the above results, it is
apparent that the major components of the
microbial flock are yeast and the P strain which
is a pin-colony forming bacteria.
Changes of microbial flora
Fig. 3, trends in viable counts were completely
contrary to those of pH, in the early period of
culture. This phenomenon is a result of a rapid
increase of viable cells caused by nutrient
addition and a temporary decrease caused by
Total counts of bacteria

As shown in

rapid pH decrease.
and yeast, after rapid multiplication in the early
period of culture, were nearly constant at 10%-
109 cells/ml and 107-10% cells/m! respectively,
although a slight variation was observed. The
slight increase in total counts of bacteria ac-
companied by reappearance of Vibrio spp. is
worth noting.

On the other hand, microbial flora showed
great variation. Several kinds of genera which
were predominant in the early culture dis-
appeared completely after 56 hours, after which
yeast and pin-colony forming bacteria rapidly
became dominant. However, the reappearance
of Vibrio spp. after 96 hours is very interesting:
It seems likely that some relationship exists
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Fig. 3. Change in microbial population, enumerat-
ed by viable count (c.f.u./m) and total count
(T.C.), and of microbial flora in the process
of microbial flock production.
Vi, Vibrio spp.; Ps, Pseudomonas spp.; Ac,
Acinetobacter spp.; Sta, Staphylococcus spp.;
Pin, pin-colonp forming bacteria.

between: this reappearance and the slight pH
increase after 96 hours. It goes without saying
microbial flock abounding in Vibrio spp. should
not be used as food for larvae of seedling
animals (YASUDA and TAGA, 1980).

4. Discussion

It is probable that the great differences in
viable counts between the PPES-II medium
and the diluted medium are due to the P strain.
Since the environment of the production tank
is one of high nutrition and low pH, the P
strain adapted to such an environment can not
form a colony on a low nutritive medium.
However, neither could the P strain form a
colony on the GY medium nor on the MY
medium, which are similar to the culture en-
vironment in having high nutrition and low pH.
A possible explanation is that the pH of the
medium was too low. SIEBURTH (1968) sug-
gested that the immedicable circumference of
particulate organic matter in seawater is usually

kept weakly alkaline by production of NH;-N
by the decomposition of protein. Thus, it is
believed that the extremely thin circumference
of the particles, even though the pH of the
culture water was too low for the P strain,
was kept weakly alkaline by the above-mentioned
process. Accordingly, the P strain could suc-
cessfully multiply in the tank. .

Though the rapid pH .decrease in the early
period showed that the glucose added as a
nutrient was decomposed into acids by the
multiplying microorganisms, the phenomenon
of the pH remaining constant after 32 hours.
may be due to a balance between ammonium
sulfate, which was added intermittently as a
nutrient, and the acids being produced. And
although the rapid DO decrease in the tank
was due to consumption during the multiplying
of aerobic organisms, it is possible that the
temporary increase of DO observed at 24 hours
was due to a violent variation in microflora
and decrease in the viable cell count between
16 hours and 32 hours, and consequent slowing
down of the rate of DO comsumption. Although
the NH3-N concentration remained at a high
level, the NO;-N concentration was low. This
may have been caused by either a slowdown
in the progress of nitrification, due to a lack
of ferric ion (SPENCER, 1956), or the presence
of highly concentrated organic matter. A third
alternative is that nitrite in the tank may have
been prevented as a result of the uptake of
ammonia in preference to nitrite by the multi-
plying bacteria (BROWN et al., 1975).

On the other hand, that the DOC gradually
accumulated due to an excess supply of nutri-
ents, is indicated by the POC concentration
remaining constant after 72 hours. In comparing
the periods of rapid increases in total counts
of microorganisms and concentration of POC,
the former was from the start of culture to 16
hours, while the latter was from 24 hours to
56 hours. The above phenomenon may provide
an explanation for the observation that a part
of the phosphate added
nutrient was formed into insoluble phosphate
particles by aeration, and then the particles
were colonized by bacteria to form organic
particulate matter (ZOBELL, 1943; BARBER,

superfluously as a
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1966; MARSHALL et al., 1971). In comparing
the C/N ratios of particulate matter obtained
in these experiments and other data (MANN,
1972), it can be seen that the major portion of
the particles was composed of bacteria.

The difference between the total counts and
‘the viable counts was small at 8 hours but
‘then increased dramatically. until total count
was ten times that of viable count and this
state continued. Thus one possible explanation
for the difference is that, in the early experi-
mental period, bacteria capable of forming a
colony on the 2216E plate were dominant,
whereas after 16 hours, several kinds of bacteria
which had not colonized the plate, became
dominant with the decrease in pH in the tank.
Though after 56 hours yeast and pin-colony
forming bacteria were abundant on the plate,
it is considered that the bacteria might have
specific heterotrophic metabolisms making us
impossible to keep and store them. Futher-
more, following the reappearance of Vibrio
spp. after 96 hours, food value rapidly deter-
iorates. Therefore, for microbial flock produced
by the method of IMAMURA and SUGITA, to
stabilize the food value, pH in the tank should
be controlled by the addition of a suitable
quantity of nutrients. If this is done, the re-
-appearance of Vibrio spp. will be prevented.
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A Short Review on the Primary Productivity in
Different Parts of the North Pacific Ocean*

Shun-ei ICHIMURA**

Résumé: Les renseignements qui sont fournis par diverses sources sur la variation saisonniére
de la productivité primaire dans les endroits differents de 1’Océan Pacifique du Nord ont été
revus. L’aspect général sur l'efficacité d’utilisation de 1’énergie radiants par phytoplancton
est présenté. Des investigations importante ont été effectuées dans les endroits étudiés. Des
différences significatives ont été relevées dans le cycle saisonnier de la productivité aussi

bien que dans l’efficacité photosynthétique.

1. Introduction

During the last two decades the primary
productivity of the North Pacific Ocean has
intensively been studied and a large amount of
data has been collected. Most of researches
have, however, been made as a part of general
survey or during restricted period of the year
and the data are widely scattered geographically
and seasonally. Seasonal data are essential for
the regional comparison or precise estimation of
annual primary production but satisfying data
are lacking at present except a few areas. In
this paper, the available information related to
seasonal variations of primary productivity in
different parts of the North Pacific, where
relatively long term studies have been made, is
reviewed and a general picture on the geo-
graphical differences of primary productivity is
presented.

2. Subarctic North Pacific Ocean

The primary productivity in this region has
been measured sporadically by a number of
investigators and the total primary production
has been summarized by GESSNER (1959),
GRAHAM and EDWARDS (1962) and SANGER
(1972) including an excellent review of KOB-

* Received May 15, 1979
Partly presented at the 13th Pacific Science
Congress, Vancouver, British Columbia, Canada,
1975.

** Institute of Biological Sciences, The University
of Tsukuba, Sakura-mura, Ibaraki, 300-31 Japan

LENTZ-MISHKE (1965). Primary production per
unit water column indicates a great variation
according to locations. High daily integrated
primary production of 630 mg C/m?® was measur-
ed in the east of Bower Bank in Bering Sea
and a low value of 160 mg C/m? was in the
central Subarctic Domain. The primary pro-
ductivity of the mid subarctic region of the
North Pacific was estimated by KOBLENTZ-
MISHKE (1965) as 100-150 mg C/m?/day or 35-
55 g C/m?/year in the transitional areas of the
southern Subarctic. Recently, PARSONS and
ANDERSON (1970) have made a large scale
studies of primary productivity in this area in-
cluding a complete transect of the subarctic
North Pacific. With their studies it has become
possible to extend our knowledge on the primary
production processes in the subarctic Pacific.
According to ANDERSON and MUNSON (1972),
the primary productivity for water column
showed a little geographical changes over large
areas except the near coasts of North America
and Japan, and in the area near the Aleutian
Islands. Greatest concentration of chlorophyll
a occurred in general during May or somewhat
later, and primary productivity increased with
time over most areas. The waters along the
coast near the Aleutian Islands showed a large
increase during April or earlier, whereas waters
of the Western Gyre and the Alaskan Gyre
showed the high productivity during the months
of May and June.

Central Subarctic Domain: In this region, the

(23)
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year-round surveys were made only in a few
areas. One was made at a position 50°N, 145°W
(Ocean Station ‘““P’’) by MCALLISTER et al.
(1960) and the other was several cruises made
by LARRANCE (1971). Fig. 1 shows the 6 year
mean annual cycles of primary productivity and
phytoplankton standing stock in euphotic zone
at Station P. Primary productivity increased
gradually from lower value of 30 mg C/m?/day
in January to a maximum of 350 mg C/m?/day
in July, then decreased gradually to 20 mg C/m?
/day in November, and remained at that level
in December. Mean production for the year
was about 48 gC/m?. This value is fairly lower
than that of KOBLENTZ-MISHKE (1965). The
results obtained by LARRANCE (1971) in the
mid-Subarctic Pacific are presented in Fig. 2.
As can be seen, chlorophyll concentration
changed only slightly except in March, when
chlorophyll was high during the early part of
the plankton bloom. The lack of large seasonal
change in chlorophyll concentration accorded
fairly well with the result of ANDERSON and
MUNSON (1972) in the oceanic area of the
northeastern Pacific.
winter showed a low value of 74 mg C/m?/day.
It increased significantly in March and a value
of 272 mg C/m?/day was more than three times
as high as in February.

Primary productivity in
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Fig. 1. Seasonal changes in phytoplankton bio-
mass and productivity at Ocean Station “P”’
in the northeast Pacific Ocean. (Redrown from
MCALLISTER, 1969.)

InMay, productivity ~

decreased slightly to 246 mg C/m?/day and it
was relatively steady at intermediate levels
throughout the summer. Annual primary pro-
duction in this area is about 80 to 100 g C/ma?.
These estimated values are considerably higher
than 55 to 91gC/m? by KOBLENTZ-MISHKE
(1965).

The northeast North Pacific Ocean: Seasonal
variation of primary productivity in this region
has been studied by two groups, the Nanaimo and
the Seattle. The results obtained by PARSONS
et al. (1970) in the Strait of Georgia are shown
in Fig. 3. The standing stock of phytoplankton
in the first 20m as measured by chlorophyll
began to increase in March and reached a maxi-
mum during May. After that it decreased from
July through winter. A large increase of
primary productivity occurred from February
and the maximum appeared in May. A pro-
nounced decrease in productivity from June
throughout August was accompanied by a
marked drop in nutrients in the water column.
The annual primary production of the Strait of
Georgia was approximately 120 g C/m?.

160~180 W
48°N

~
o
T

w
o
T

Alaska Stream

CHLOROPHYLL-a mg /m
s 3
T T

o
® o
F
%

(=3
[<2]
T

(@]
~
T

o
N
T

o

PRODUCTIVITY gC/m’/day

FI.MIAMJWAISIOINTD

Fig. 2. Seasonal changes in chlorophyll @ concen-
tration and primary productivity in the mid-
subarctic Pacific Ocean. (Based on the data
provided by LARRANC, 1971.)
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Fig. 3. Seasonal changes in chlorophyll @ concen-
tration and primary productivity in the Strait
of Georgia. (Based on the data provided by
PARSONS et al., 1970.)

ANDERSON (1964) studied the seasonal and
areal distributions of phytoplankton standing
crop and primary productivity in waters off the
Washington and Oregon coasts. Fig. 4 was
reconstructed from the data presented by him.
Each curve indicates the seasonal changes of
primary productivity at approximately single
station in three different major hydrographic
regimes; oceanic water, coastal upwelling and
plume. Primary productivity was low in winter
and it did not exceed 0.1 gC/m?/day in all
regions. During the spring, productivity in-
creased markedly to 0.3 to 0.5gC/m?/day in
oceanic water and 0.4 to 0.9gC/m?/day in
plume. At this time, high values as high as
1.8 g C/m?/day were found in upwelling water.
During June and July, except in upwelling, the
productivity in both oceanic and plume areas
dropped to lower levels and persisted to August.
Upwelling area reached maximal values of
greater than 2.5 g C/m?/day in July and showed
a striking drop in August.
during the summer were somewhat less than
0.2 g C/m?/day. Summer decrease was followed
by a drop to less than 0.1gC/m?/day in all
waters by December.

Typical values

The seasonal pictures
derived from these data were roughly the same
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Fig.4. Seasonal changes in primary productivity
off the Washington and Oregon coasts. (Based
on the data provided by ANDERSON, 1964.)

to those in the Strait of Georgia and also in
open oceans of the temperate zones. Using
these data, ANDERSON (1964) estimated annual
primary production in this region as 60 g C/m?
in the plume and oceanic waters and 150 g C/m?
in upwelling area. In a more recent study
(ANDERSON, 1972), these values were corrected
to 125 g C/m? and 300 g C/m?, respectively, by
considering the contribution of
chlorophyll maximum and excretion of organic
matter during photosynthesis to primary pro-
duction. Annual cycle of the primary production
in the area off Oregon was also measured by
SMALL et al. (1972) and the results were quite
similar to those of ANDERSON (1972).

Bering Sea: The most intensive seasonal studies
in Bering Sea have been made by MCROY et
al. (1972).
February, March and July at numerous stations.
Summer measurement in the region near the
Aleutian Islands showed the surface productivity
of 2.2 to 165mgC/m?/day. At the Bering
Strait they reported a very high summer pro-
ductivity of 410 mg C/m?®/day and the integrated
value of 4g C/m?/day. Winter measurements
were made at the eastern Bering Sea. In this
region, the productivity of surface water under
It ranged from 0.2 to 4 mg

sub-surface

Measurements were made during

ice was very low.
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C/m?®/day and the integrated production varied
from 7.6 to 70 mg C/m?/day. If it is assumed
that the active photosynthetic season in Bering
Sea is about 7 months, the annual production

would be 80 g C/m?.

3. Northwestern North Pacific Ocean

The northwestern North Pacific Ocean in-
cludes three different marine environments.
Namely, they are the Oyashio Current, the
Kuroshio Current and the western central
Pacific water. The primary productivity of this
region has been investigated by several workers,
but most of them are concentrated in the
summer season and the data on the seasonal
variation are very few. SAIJO and ICHIMURA
(1960) reported that the rate of production in
summer is 0.3 to 0.4 g C/m?/day for the Oya-
shio Current, 0.1 to 0.2gC/m?/day for the
Oyashio Extension, and less than 0.1gC/m?/
day for the Kuroshio. According to the esti-
mation made by KOBLENTZ-MISHKE (1965), the
average annual primary production is 164 g C/m?
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in the Oyashio Current and 50 to 100 g C/m?
both in the Kuroshio Current and the Kuroshio
Extension.

The seasonal variation of primary productivity
in the northwestern North Pacific Ocean was
reported by TANIGUCHI and KAWAMURA (1972)
at a station in the southern front of the Oyashio
and by SHIMURA and ICHIMURA (1972) at a
station in coastal water of the Kuroshio.

The Oyashio Current: Fig. 5 shows the results
obtained by TANIGUCHI and KAWAMURA (1972).
Productivity increased rapidly in March and
reached the highest values with a range of 1.0
to 2.0 g C/m?/day by the end of April, then
decreased to 0.4gC/m?/day in late summer.
The lowest productivity was measured in winter.
The ratio of mean spring to summer daily
productivity reached 3.3. TANIGUCHI (1972)
calculated the annual primary production in the
Oyashio Current to be 156gC/m? This is
identical with the value estimated by KOBLENTZ-
MISHKE (1965).

The Kuroshio Current: Seasonal cycle of pri-
mary productivity in the Kuroshio Current is
shown in Fig. 6. This was obtained at a station
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Fig. 5. Seasonal changes in chlorophyll a concen-
tration and primary productivity at a station
in the Oyashio region. (Data from TANIGUCHI
and KAWAMURA, 1972.)
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Fig. 6. Seasonal changes in chlorophyll @ concen-
tration and primary productivity at a station
in the Kuroshio region. (Data from SHIMURA
and ICHIMURA, 1972.)
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in the coastal water adjacent to the Kuroshio
Current off the midcoast of Japan (SHIMURA
and ICHIMURA, 1972). The amount of phyto-
plankton as measured by chlorophyll 2 varied
from 20 to 60 mg C/m? throughout the year
with a seasonal maximum in May. The highest
values were measured during April and May,
and the lowest in November. The primary
productivity showed the highest value of 0.8g
C/m?/day in early summer, subsequently it
decreased with the progress of season and by
November it dropped to the lowest value of
0.2gC/m?/day, and was relatively steady at
the same level throughout the winter. Pro-
ductivity increased significantly in March. The
annual primary production in the water column
was about 120gC/m? This value accords
fairly well with that of the Washington coast
reported by ANDERSON (1964) and with 100 to
150 g C/m? in the Kuroshio region by ARUGA
and MONSI (1962).

4. Tropical Waters

Primary productivity in tropical waters of the
Pacific Ocean has been studied by a number of
investigators, but the seasonal variation is still
not known at all in oceanic waters. SOURNIA
(1969) assembled nearly a hundred references
from all regions of tropical seas and realized
that the seasonal variation of primary produc-
tivity is nearly absent in the offshore tropical
He also reported the annual variations
of species composition and of primary produc-
tivity in neritic waters. Same conclusion has
been noticed by KOBLENTZ-MISHKE (1965) in
the tropical Pacific Ocean. However, it has
never been detected completely because data
are insufficient to separate the seasonal cycle
from other sources of variations. Receﬁtly,
OWEN and ZEITZSCHEL (1970) and BLACKBURN
et al. (1970) examined the suggestion that the
annual cycle of primary production in the
tropical oceanic region may be negligible or
non-existent, by using data from year-long series
of measurements in an offshore area of the
It is apparent that the
maximum chlorophyll values appear in the
known upwelling areas and they are most pro-

ocean.

eastern tropical Pacific.

nounced at the equator off the American coast.
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Fig. 7. Seasonal changes in chlorophyll @ concen-
tration and primary productivity in the oceanic
eastern tropical Pacific. (Based on the data
provided by OWEN and ZEITZSCHEL, 1970 and
by BLACKBURN et al., 1970.)

The distribution pattern of primary productivity
consists of a maximum to the south of southern
Mexico, Guatemala and Costa Rica and north
of 7°N latitude, and offshore minima are found
between them. Fig. 7 was reconstructed from
their data on chlorophyll @ and primary produc-
tivity in the western area of the eastern tropical
Pacific.
period over a wide range of latitude and longi-
tude. The standing stock of chlorophyll @ varied
slightly with season in much the same phase
at all locations. Namely, a maximum occurred
in the period of April or September and a
minimum in October or January, differing by a
factor of less than 2. Primary productivity was
maintained at a fairly low level and did not
change noticeably with season. The maximum
production was found at all longitude in the
period May-April and a second peak was in
September. The principal minimum occurred
in July or November. The maximum/minimum
ratio ranged significantly from 2.5 to 3.5. Aver-
age values of the daily primary production were
from 127 to 318 mg C/m? with a mean of 205 mg
C/m? over the region studied and the annual
production was estimated as 75 g C/m?. OWEN
and ZEITSCHEL (1970) noted that the primary
productivity in this region exceeds the value
obtained by JITTS (1969) in the Indian Ocean by

Values are averaged for each cruise
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Fig. 8. Geographical distribution of the daily

primary production in the western tropical
Pacific and adjacent seas. (Based on the data
by TANIGUCHI, 1972, SOROKIN, 1973 and
Ocean Research Institute, University of Tokyo,
1975.)

some 64 % and lies close to be 72 g C/m?/year
by MENZEL and RYTHER (1960).

The tropical western Pacific: Primary produc-
tivity of this area has been measured by several
investigators at rather
throughout the year. Fig. 8 shows the primary
productivity of the equatorial region in the
western Pacific measured by SOROKIN (1973),
TANIGUCHI (1972) and our group. The primary
productivity in the equatorial region is appreci-
ably higher than that of waters to the north
and south of the equator. The daily production
was found to be 0.3 to 0.4g C/m? in the South
Equatorial Current and 0.2 to 0.3g C/m? in the
South Equatorial Counter Current. The values of
0.04 to 0.15gC/m?/day were also measured in
the North Equatorial Current. TANIGUCHI (1972)
estimated tentatively the annual primary pro-
duction as 106 g C/m? in the South Equatorial
Current and 70 g C/m? in the Equatorial Counter
Current. It is a matter of course that no
computation of annual primary production can

scattered intervals

be made without knowing the seasonal changes.
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Fig. 9. Seasonal changes in primary productivity
in the subtropical Paciﬁc. (Based on the data
provided by TANIGUCHI, 1972 and Ocean Re-
search Institute, University of Tokyo, 1975.)

However, it will be possible to derive a brief
picture from existing materials collected by
some investigators. Fig. 9 was constructed from
the representative data obtained by TANIGUCHI
(1972) and by our group (Ocean Research Insti-
tute, University of Tokyo, 1975) in the subtropi-
cal waters between 22° and 23°N along 126°E.
Productivity was almost uniform throughout the
year and considerably low, usually ranging be-
tween 0.05 to 0.1 g C/m?/day. The magnitude
calculated from this
curve, came to the value of about 40 g C/m? in
the North Equatorial Current.

of primary production,

5. Photosynthetic energy efficiency of phyto-’

plankton production

The efficiency of photosynthetic utilization of
radiant energy in phytoplankton production
was calculated. In this case, the production
is the diel net photosynthetic production and
the matter losses by excretion and nocturnal
respiration are not taken into account. Radiant
energy used for the calculation is that presented
by the in parallel with their
measurement of productivity. The amount of
photosynthetically active radiantion (PHAR)
is assumed as 50% of the total incident

investigators

energy on the sea surface and a suitable al-
lowance is made for the reflection of sun light
on the sea surface. A factor used for the con-
version of assimilated carbon to caloric value
is 10 kcal per gram carbon. As an example,
the results calculated from the data reported by
PARSONS et al. (1970) in the Strait of Georgia
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Fig. 10. Seasonal changes in photosynthetically
active radiation (PHAR), net primary pro-
duction and photosynthetic efficiency of radiant
energy in the Strait of Georgia. (Data from
PARSONS et al., 1970.)

are presented in Fig. 10. It will be seen that
PHAR on each square meter of the surface
fluctuates between 40x10%* and 300x 10*g. cal
per day and that the energy content of photo-
synthetic products of phytoplankton ranges
from 2x10% to 5x10°g. cal per day. Thus the
photosynthetic efficiency ranges from 0.05 to
0.339%. In this way, the photosynthetic ef-
ficiency was calculated for different regions of
the North Pacific and the results are presented
in Table 1. In the subarctic Pacific region, the
photosynthetic efficiency was found to be 0.10
to 0.559, for the neritic waters and 0.05 to
0.25 9% for the oceanic waters. The efficiency
in the northwestern Pacific regions was 0.15 to
0.74 9% for the Oyashio Current and 0.15 to
0.30 9 for the Kuroshio Current. The efficiency
of 0.03 to 0.11 % was obtained for the central
Pacific water. The photosynthetic efficiency in
the tropical and the subtropical Pacific was
rather lower than that in the northern North
Pacific Ocean. It ranged from 0.05 to 0.12%
in the Equatorial Counter Current and 0.02 to
0.079%, throughout the year in the North
Equatorial Current. In both productive areas
of the South Equatorial Current and upwelling
regions of the tropical eastern Pacific, the ef-

Table 1. Photosynthetic utilization of radiant
energy at different parts of the North
Pacific Ocean

Regions Efficiency (%)

Subarctic region
Strait of Georgia 0.05 -0.33
Washington & Oregon coasts

Oceanic water 0.05 -0.25
Upwelling water 0.08 -0.48
Plume water 0.10 -0.36
Mid subarctic region 0.05 -0.15
Bering Sea 0.005-0. 40
Alaska Streem 0.03 -0.55
Northwestern Pacific
Oyashio Current v 0.15 -0.74
Kuroshio Current 0.15 -0.30
Western Central Pacific water 0.03 -0.11
Tropical & Subtropical Pacific
North Equatorial Current 0.02 -0.07
Equatorial Counter Current 0.05 -0.12
South Equatorial Current 0.15 -0.20
Tropical Eastern Pacific 0.10 -0.16

ficiency increased slightly to the values of 0.10
to 0.20 %.

Conclusion is that the photosynthetic utili-
zation of radiant energy in the North Pacific
Ocean ranges from a lower value of 0.02% to
a high value of 0.74 9.
ficlency is probably measured in the eutrophic
coastal waters.

However, higher ef-
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Recent Mariculture Technique in Japan*

Yutaka UNO** and Tkuo HAYASHI**

The changes in annual catch by fisheries type
during the last ten years in Japan are shown
in Fig. 1.

Japan’s fisheries continued to develop steadily
with production reaching 9,909 million tons in
1971. The catch level of 10 million tons was
achieved in 1972, and maintained from 1973-75.
Comparing 1976 production with 1966’s, pro-
duction increased by about 1.5 times or 3.55
million tons during those ten years (Table 1).

Production by shallow sea culture is about
9.8 9% of the total in quantity and about 19.0 %
in value. Production by culture in shallow

million tons

12r

- Inland fisheries & culture

10

T

Maricul ture,

Offshore fisneries

r Coastal fisheries

Distart water fisheries
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Fig. 1. Changes in annual fisheries catch by
type of fisheries (Japan Fish. Ass., 1977).

Table 1. Quantity and value by type of fisheries
Quantity: metric tons; value: million yen (1976)

Fisheries Type, Quantity Value

Distant waters 2, 948,990 520,930
Offshore waters 4,656,193 662, 830
Coastal waters 2, 000, 100 586, 480
Mariculture 849, 909 293, 340
Inland fisheries & culture 200, 711 122, 560
Total 10, 655,903 21,861, 140

* Received September 21, 1979
** Tokyo University of Fisheries, Konan-4, Minato-
ku, Tokyo, 108 Japan

coastal waters mainly consists of yellowtail,
Kuruma shrimp, oyster, scallop, pearl oyster,
Nori (Porphyra), Undaria etc., and annual
production for the same period is shown in
Tables 2 and 3. Quite a few species of aquatic
animals are commercially cultivated. Among
them, production by culture of yellowtail, oyster,
pear] oyster, scallop, Undaria and Nori has
been stagnant, because of the narrowing down
of the culture grounds due to pollution and
reclamation of the foreshore, in spite of the
continued development of culture techniques for
these species. Production of Kuruma shrimp,
abalone and red sea bream has been increasing

Table 2. Major species for mariculture
Fin-fish
Yellowtail
Red sea bream Pagrus major
Black sea bream Acanthopagrus schlegelii
Jack mackerel

Seriola quingueradiata

Trachurus japonicus

Caranx Caranzx delicatissimus

Puffer Fugu rubripes

Filefish Stephanolepis cirrhifer

Sea bass Lateolabrax japonicus

Parrot fish Oplegnathus fasciatus

Flatfish Paralichthys olivaceus
Shellfish

Spiny lobster Panulirus japonicus

Blue crab Neptunus trituberculatus

Kurum shrimp Penaeus japonicus

Ascidian Halocynthia roretzi
Scallop Patinopecten yessoensis
Opyster Crassostrea gigas
Pearl Pinctada martensii
Abalone Haliotis discus hannai,
H. discus discus,
H. gigantea, H. sieboldii,
H. diversicolar aquatillis
Algae
Nori Porphyra tenera, P. yezoensis
Undaria Undaria pinnatifida
Laminaria Laminaria japonica
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Table 3. Mariculture products by species (After Statistics of Fisheries, 1977,
Ministry of Agriculture, Forestry and Fisheries) (Unit: t)

Finfish

Year Total Seriola lﬁiasrsa jf;%"g mgslglgrel Filefish Caranx Fugu Blgircelzriea Others

1960 284, 828 1,431 — — — — — — — —
61 322, 498 2,036 — — — — — — — —
62 362, 897 4,470 — — — - — 119 — 25
63 389, 987 5,038 — — — — — 118 — 60
64 362,992 10, 321 — — — — — 113 — 112
65 379, 697 14,779 — — - - — 91 — 105
66 405, 197 16, 875 — — — — — 75 — 270
67 470, 133 21, 169 — — — — — 46 — 313
68 521,942 31,777 - — — — — 63 — 354
69 473,292 32,613 — — — — — 52 — 481
70 549, 081 43, 300 460 5 2 63 36 26 2 16
71 608, 682 61,743 971 23 24 44 43 21 1 41
72 647,905 76,913 1,298 95 112 149 15 15 13 113
73 790,973 80,269 2,606 58 348 253 30 17 9 179
74 879, 758 92,684 3,414 85 628 51 48 8 4 158
75 772,741 92,352 4,303 126 923 17 22 11 6 236
76 849,908 101,619 6,453 125 721 10 69 11 61 187

Shellfish

Spiny Kuruma )
Year lobster shrimp  Neptunus Octopus Ascidian Others Scallop Oyster Pearl Others

1960 15 97 — — — — — 182,779 48 —
— 20 85 1 — — — — 172, 895 80 —
— 16 125 — 145 — — — 203, 594 69 —
- 8 179 4 371 — — — 240, 144 80 —
— 10 154 3 787 - — — 240, 564 85 —
65 9 96 2 623 — — - 210, 603 99 —
— 13 212 9 190 47 — — 221,139 118 —
— 14 305 11 117 203 — — 232, 200 125 —
- 11 31 15 77 167 - — 267, 388 112 —
— 2 295 1 50 102 — — 245, 458 97 —
70 0 301 0 109 94 - 5,675 190, 799 85 4
— 0 306 1 98 339 — 11,165 193, 846 49 5
— 0 454 1 68 1,118 — 23,162 217,373 42 42
— — 653 0 56 4,678 — 39,372 229,899 34 298
- — 911 5 54 5,036 — 62,673 210, 583 30 132
75 — 936 0 41 6,313 — 70,256 201,173 30 114
— — 1,042 — 42 8,390 16 64,909 226, 286 34 73

Algae

Year Porphyra Undaria Laminaria Year Porphyra Undaria Laminaria

1960 100, 457 — - 1965 134,320 59, 821 -

— 147,379 — — 70 231, 464 76,698 282
— 154,631 — — — 244, 946 94, 350 666
— 144, 531 — — — 217, 906 105, 678 3,338
— 111, 851 — - — 311, 410 113,159 4,648
65 140, 753 12,537 — — 339,314 153, 762 10,177
— 128, 440 37,809 — 75 278,127 102, 058 15, 696
- 157, 550 58, 080 — — 291, 050 126, 723 22,087
— 144, 969 76,698 —
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Fig. 2. Map of hatcheries in Japan for
mariculture (1978).
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Erimacrus isenbeckii and Paralithodes
camtschaticus
Haliotis spp.
Patinopecten yessoensis
Paralichthys olivaceus
Caranz delicatissimus
Pagrus major
Fugu rubripes
Neptunus trituberculatus
Penaeus japonicus
Plecoglossus altivelis
Seriola quinqueradiata
Kushiro (Hokkaido; E,P)
Shikabe (Hokkaido; H, E)
Moura (Aomori Pref.; Pe, H)
Miyako (Iwate; H)
Mone (Miyagi; H, Pe, O)
Toga (Akita; H)
Ojika (Miyagi; H, Pa)
Murakami (Niigata; H, Pa)
Mano (Niigata; H, Pa)
Isozaki (Ibaragi; H)

. Tokaimura (Ibaragi; Pr, Pa)

. Ubara (Chiba; H)

. Chikura (Chiba; H, Pg, C)

. Misaki (Kanagawa; H, Pr. Pg)

. Notojima (Ishikawa; Pa, Pg, N, Pr)

. Numazu (Shizuoka; Pg, Pr, Pu, H)

. Himi (Toyama; Pg, H)

. Hamaoka (Shizuoka; Pg, Pr, Pa)

. Atsumi (Aichi; Pr, H, A)

. Katami (Fukui; N, Pg, Pr, H)

. Shirahama (Wakayama; Pa, C, Pu, Pg etc)
. Tanabe (Wakayama; Pa, Pg, H, etc)
. Urago (Shimane; Pg, Pr, H)

. Ushimado (Okayama; Pr, N, Pg, etc)
. Tamano (Okayama; Pg, Pr, N)

. Takamatsu (Kagawa; Pr, S, Pg)

. Asakawa (Tokushima; Pg, H, Pr)

. Hakatajima (Ehime; Pg)

. Komame (Kochi; Pg, S)

. Komame (Kochi; S, Pg)

. Shitabe (Ehime; Pr, Pg, H)

. Aio (Yamaguchi; Pr, Pu, A)

. Nagato (Yamaguchi; Pg, A)

. Kamiura (Oita; Pg, Pr, H)

. Kamiura (Oita; Pg, Pr)

. Genkai (Fukuoka; Pg, Pr, H)

. Chinzei (Fukuoka; Pg, H)

38.

Sasebo (Saga; H, Pg, Pr)

39. Nomozaki (Nagasaki; Pg, H)

40.
41.
42.
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Ushibuka (Kumamoto; Pg, Pr, H)
Shibushi (Kagoshima; Pr, Pg, H)
Tarumizu (Kagoshima; H, Pr, Pg)



34 La mer, Tome 18, N° 1 (1980)

and the scale of culture of these species is
expected to continue to expand.

Recently,
Kuruma shrimp, red sea bream, scallop and
National
and Prefectural governments have established
facilities for seed production of these species to
restore and increase the marine resources in
their areas (Fig. 2). After many feasibility
studies they now produce more than 200 million

mass production techniques for

abalone have made great prgoress.

larvae per year including both fish and shellfish
to stock the open sea (mainly shallow waters)
with them. In order to restock the fenceless
natural environment effectively, much ecological
knowledge is needed about the distribution of
the species to be restocked.
an explanation could be made from the sumarized

In this respect,

results of studies concerning Kuruma shrimp
Penaeus japonicus, which is a sedentary shrimp
species, not a wandering species such as P.

Table 4. Life history phase of Penaeus japonicus (KURATA, 1972)
Beginning Duration Approx. BL (mm) . .
Phase From in days® Male Female Life form Habitats
Embryo Fertilization 0.6 0. 24 Planktonic Offshore
Larva Hatching 14-15 0.35-5.0 do do
Juvenile Metamorphosis 30 5-25 Planktonic- Offshore
benthic estuary
Adole- Development of 60 25-90®  25-1109 Benthic Estuary
scent secondary sex sound
characteristics
Subadult Onset of gonad ? 90-100®  110-125°° do Sound
maturation offshore
Adult Completion of
gonadal maturation ? 100-2200  125-262 do Offshore

a) Approximate number of days in summer,
d) minimum size with stopper,

RIVER

(25-90mm)
AN
\ . ‘SOUND
<
~
€=~ -
'Postlarva
. Survival rate
. 0.144 Mysis

(1-111) Zoea
: (1-111)

¢ .

Fig. 3.

b) diameter of egg.
e) minimum size with ripe gonad,

«— <«

= —> G
Adolescent \

. Post adolescent-
subadult (90-120)

¢) minimum size with jointed petasma,
f) maximum size ever found.

On-growing

(Hatchery for adult

activitiey

Seed rearing (50)

Spawning (100)

E=~N-~7~ M= pL

Gill net
(C.R. 0.5)

-~
OFF -SHORE 7 Adult 1 year old
- (120-160)
-~
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&0
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Diagramatical drawing of life cycle in P. japonicus (KURATA, 1972).
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setiferus and P. orientalis.

Through the development of indoor culture
techniques for the mass production of postlarvae
and many trials for the restocking of this species,
it has been possible to gain some understanding
of their life cycle as shown in Table 4 and Fig.
3. During the juvenile stage they remain in
tidal estuary areas where there are many pools
offering a plentiful supply of foods and some
protection from predator fishes. Hatchery pro-
duction abbreviates the pelagic life stages (Fig.
3) and the survival rate can be increased to ca.
509, compared with the very low mnatural
survival rate.

Principles for restocking:

1. Life history stage principle

Restocking should be carried out at the same

phase of life history as corresponds to natural

life cycle of shrimp, especially in relation to
habitat and food.
2. Protection principle

Postlarvae should be released in an area where

they have some protection from predators.
3. Dispersion principle

They should be distributed as sparsely and

homogeneously as possible.

It is very important to check out the above-
mentioned ecological factors for the specific
species as a base for reasonable restocking
activity but this requires much time, many
researchers and a sufficient budget.

Next, taking an actual example of restocking,
Figs. 4 and 5 are a summary of the results
monitored by Yamaguchi Prefecture Fisheries

Research Station. The releasing trials were
carried out between 1972 and 1979. In each
trial about 2 million seeds were used for re-
stocking and in total 27 million postlarvae (12
mm in total length, 0.01 g in body weight) were
released during three years. In Omi Bay,
Yamaguchi Pref., released postlarvae reach a
size of 7cm and are caught in the sound by
set-nets after two and a half months and indi-
viduals measuring more than 14 cm are caught
offshore by small trawls up to November. It
has been established that released larvae move
to offshore areas as they grow larger based on
the results of tagging experiments as shown in
Figs. 4 and 5.

After restocking trials, mortality among the

Fig. 4. Movement of Kuruma shrimp based
on tagging experiments in Yamaguchi
Pref. (HivAMA, 1976).
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Fig. 5. Growth of restocked population in Omi Bay, Yamaguchi Pref. (HIvaMa, 1976).
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Table 5. Economic comparison between Kuruma-shrimp culture and “‘farming fishery”
(HASEGAWA, 1973)
Yield Body weight Market price Income
’I‘r};%?lcifon rate of harvested of prawn rate
P (%) prawn (g) (yen/kg) (%)
Premises of Culture 70 20 3, 000 33
comparison Farming fishery 10 35 2, 000 70
S;;(Cﬁir?; Type of Yield Material cost (yen) Income
(yen/head) production (ven) Seedlings  Others Total fyfml
Income per head of Cultu.re 42 0.26 27.9 28.1 13.6
seedling 0.26 g:gg;ng 7 0.26 2.1 2.36 4.6
Income per kilogram Culture 3, 000 18.5 1,981 2,000 1, 000
P g 0.26 Farming
of harvested prawn fishery 2,000 74.3 600 674 1, 326
: Culture 3, 000 348 1,981 2,329 671
Income per kilogram 4.9 Farming
of harvested prawn fishery 2, 000 1, 400 600 2, 000 0
56
5 10k .
S L 74 2 s
% 74 7 7/172{’_—_Z N 48 - O 0
: l ?, /
5 i s 4or 1
& ' =
- i %k 4
Z : : ¢ 32 fo)
-4 - i -~ 0
& : \ o
2 ‘ ' < 24 | .
\ 73695 : s o (o
10 Laaad 1 i1 1 1 : .
10 102 10° 104 10° g 1o
Density of larvae more than 200}1 / m §
a 8p -
Fig. 6. Relationship between spats collecting and 2 /
density of larvae (Inds./m®) (TSUBATA et al., = 1 1 1 1
1972). 0 10 20 30 40 50
Density / m2
Fig. 8. Relationships between the density and

Fig. 7.

HOKKAIDO

Funka Bay, 1977-'78

Yamada bay, 1973

Kisennuma bay, 1972

in northern part of Japan.

Mutsu Bay 1974-'75(3.5-6.1x10

8 Ind.)

Occurrance of mass mortality of scallop

the net production of scallop in Mutsu Bay
(YAMAMOTO, 1977).

released larvae occurs in the following steps:

1. 24hours after being released.

2. 2-4 weeks after releasing up to a size of ca.
3cm. Mortality is estimated at max. 35 %/
5days.

3. 2 months, up to a size of ca. 10 cm.

Mortality is estimated at 3.59%/5 days.

During this period the growth rate has been

measured as 1-2 mm/day in summer.
Finally, 6-7 % of the restocked larvae survive
to reach a size of 10-14cm and are caught by
set-nets or small trawls, but recapture rate

(36
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Hanging culture
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Fig. 9. Relationships between number of spats and catches after 3 years
(After the data of Aomori Mariculture Center).

Table 6.

Daily variations of ration of larvae Pagrus major in outdoor tank (100 t).

Temperature 17.0-22.0°C; specific gravity (¢=15) 23.12-25.76; pH 8.12-8.58;

a, number of larvae;

d, nos. of available rotifer for larvae;

rotifer density (inds/larva) (b/a);

b, nos. of rotifer supplied;

g, feeding ratio (f/e).

¢, vol. of water exchanged;
e, rotifer inds./larva (d/a);

f, actual
(FukusHO, 1977).
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(gg) fegtgilh a b c d e £ g

5.0 0(t) 5.00

0 2.98 0 0 0
1 2.98 173 3.0 0 3.00 173.4 173.4 1.00
2 3.10 173 2.0 10 1.82 105.2 115.6 1.10
3 3.10 173 1.5 10 1.36 78.6 86.7 1.10
4 3.27 173 0 10 0 0 0 -
5 3.47 173 0 25 0 0 0 —
6 3.50 172 2.0 25 1.60 93.0 116.3 1.25
7 3.90 163 2.0 25 1.60 98.2 122.7 1.25
8 3.95 152 3.5 25 2.80 184.2 230.3 1.25
9 4,11 140 3.0 30 2.31 165.0 214.3 1.30
10 4.04 132 4.0 30 3.08 233.3 303.0 1.30
11 4.56 130 4.0 42 2.82 216.9 307.7 1.42
12 4,89 130 5.0 42 3.52 270.8 384.6 1.42
13 5.40 130 12.0 42 8.45 650.0 923.1 1.42
14 5.64 130 4.0 38 2.90 223.1 307.7 1.38
15 6.02 129 5.0 50 3.33 258.1 387.6 1.50
16 6.62 123 9.0 48 6.08 494.3 731.7 1.48
17 6.25 112 10.0 50 6.67 595.5 892.9 1.50
18 7.14 102 10.0 50 6.67 653.9 980. 4 1.50
19 7.04 94 14.0 50 9.33 992.6 1,489.4 1.50
20 7.98 91 15.0 50 10.00 1,098.9 1,648.4 1.50
21 8.45 90 17.0 100 8.50 944. 4 1,888.9 2.00
22 8.65 90 12.0 100 6.00 666.7 1,333.3 2.00
23 9.17 90 14.0 100 7.00 777.8 1,555.6 2.00
24 9.56 90 3.5 120 1.59 176.7 388.9 2.20
25 9.43 90 12.0 150 4.80 533.3 1,333.3 2.50
26 10.83 83 5.0 100 2.50 301.2 602.4 2.00
27 9.82 76 5.0 150 2.00 263. 2 658.0 2.50
28 10.71 69 11.0 200 3.67 531.9 1,595.7 3.00
29 11.90 62 9.5 300 2.38 383.9 1,535.6 4.00
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varies greatly according to the conditions in each
releasing area.

The economic effect on the fishing yield in
the case of restocking with Kuruma shrimp
larvae was investigated by HASEGAWA (1973)
in relation to one farming fishery trial at the
pilot farm of Saijo, Shikoku in 1971. The
natural mortality of the shrimp was estimated
at 3-4 percent per day and this rate remained
stable from seedling size (10-13 mm) to com-
mercial size. Growth was very rapid and larvae
stocked in June reached commercial size in
September and were recaptured by gill nets and
small trawls in the fishery grounds near and
off the releasing sites in the tidal area. The
results are summarized in Table 5.

As already mentioned, for fish farming of a
specific species, the basic thing is to establish
the mass production of seed. There are two
methods for this.

One is the natural seed collecting method.
In the case of species such as scallop, oyster
and yellowtail the juveniles are collected in the
open sea. It is possible to obtain large numbers
of spats or juveniles of each species every year.
In order to assure the stability of the quantities
collected by this method, it has become clear
recently that one of the main factors of suc-
cessful natural collection, especially in semi-
enclosed waters with a fixed current pattern,
is the building up of the natural parent popu-
lation to a certain level by culture, restocking
etc. Once the parent population has been in-
creased up to this level, yearly spat collection
can be expected to achieve a good degree of
stability. One of the relatively clear examples
of this is the case of scallop spat collection in
Mutsu Bay as shown in Fig. 6.
that once the density of larvae with size of
larger than 200 ym in shell length has reached
more than 100 inds./m?, the number of spat
collected yearly achieves stability at more than
4,000 spats per collector. The density of larvae
corresponds approximately to the numbers of
the parent population.

Beginning in 1972, the phenomenon of mass

It can be seen

mortalities of hanging scallop has been experi-
enced in all the major scallop culture areas as
shown in Fig. 7. This phenomenon began in

the southernmost culture areas which also
happened to be practicably enclosed bays of
relatively small area. However, in 1975 the
same phenomenon appeared in Mutsu Bay and
spread north Funka Bay in 1977 in spite of this
bay being one of the largest and most open
embayment areas.

Following the mass mortality of cultured
scallops ecological studies have been made in
all major culture areas. It has been found that
there is a limit to total potential production in
each area. In the case of Mutsu Bay the limit
for production by bottom culture may be about
20,000 tons and by hanging culture somewhat
less than 30,000 tons as shown by the data
contained in Fig. 9. Studies carried out to
investigate the causes of this phenomenon have
clearly shown that there is a maximum density
for scallop culture above which such mortality
This is shown in Fig. 8 where
it can be seen that after reaching a certain

tends to occur.

culture density no increase in production is
possible.

The other method for mass production of seed
is culture in tanks. In the case of red sea

Fish meat paste

Artemia N.

200 Tigricpus

Rotiter
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Fig. 10. Growth of larvae of red sea bream in
mass culture tank (100t). W.T., 17.3-22.6
°C; pH, 7.6-9.0; initial number of larvae,
2.68 million; survival rate, 40.0%. (FUKU-
SHO et al., 1976)
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Table 7. The life history phases of Japanese red sea bream Pagrus major

Phase Size Age Organ Behavior Food Habitats
Tank rearing
Egg 1mm — — Pelagic None Offshore
(day)
Prelarva 2.3-3.2 2-4 ° Yolk . None
Postlarva I 3.2-6.0 4-15 Yolk absorbed ys None
(4 days old)
. 11 6-10 15-25 Origin of fins Moving to benthic  Rotifer Coastal
life. Schooling waters *
Juvenile 1 10-20 25-40 Digestive and Cannibalism, Minced meat of Sound or
swimming organs schooling fish and shellfish bay
well developed Cannibalism plus rotifer
. I 20-40 40-60 ' disappears and copepods
Field study
Adolescent 40-90 40-90 Development of Trophic migration | Gammaridea, Coastal or
adult form and offshore Polychaeta, offshore
morphologically dispersion Mysis,
Subadult 9-23 0.25-2 Onset of gonadal Crustacea,
cm (year) characters Ophiuroidea
Adult 23-36 <3 Completion of Offshore
gonad maturation
>36
v
100 Co Ca, Ma
o Rl R,
(3]
g 50 -
9 Po, An, Br
(&2}
= RN\ ETETE RN
-
9 %100
g
@ &
= O
(3]
27 50
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Fig. 11. Diagram of trophic migration of juvenile

Pagrus major in Shishiki Bay, Kyushu.

g0 we

: Larva (TL 3.3-10.0 mm). Apr.-May.
: Juvenile (FL 10-20 mm), May-June.
: Juvenile-Adolescent (FC 25-80 mm).

: Adolescent (FL 80-100 mm).

(TANAKA, 1977)

bream, flatfish and abalone, the seed cannot be
Therefore, juveniles

collected in the open sea.

are reared artificially in tanks.

Recently, the

techniques in this field have made great progress,
especially those for red sea bream and about a

million juveniles 3-4 cm in length can be pro-

399

20 cm

Total length

12.
major through postlarva-adolescent stages.
Upper; Hosonosu, Seto Inland Sea (After
IMABAYASHI et al. 1976), Lower; Shishiki
Bay, Kyushu (After TANAKA et al.).

(Sa1sHU, 1978)

Fig. Differentiation of food habits of Pagrus

Co; Copepoda Op; Ophiuroidea
Ga; Gammaridea An; Anomura
Ca; Caprellidea Br; Brachiura
Po; Polychaeta  My; Mysis

Ma; Macrura

duced in one hatchery facility.

Next, there are some techniques used in
relation to the food supply system. FUKUSHO
et al. (1976) carried out experiments for mass
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production employing 100-ton tanks and the

results are shown in Table 6 and Fig. 10. They

have established a practical technique for the
mass production of red sea bream and can
produce 62x10* juveniles per tank.

Through such practical rearing and field work,
some knowledge has been aquired concerning
the life history of the species as shown in Table
7. The differentiation of trophic migration
pattern and food habit are shown in Figs. 11
and 12. This information will be very effective
in working out a reasonable restocking plan in
the next step of sea farming.

Concerning the future research problems in
the field of large scale mariculture, they are as
follows:

1. Development of effective restocking methods
particularly the improvement of the natural
habitats by using man-made reefs etc.

2. Theoretical and practical methods for calcu-
lating the potential capacity of the culture
and restocking areas.

3. Exploitation of mass culture techniques for
new species. Compared with traditional style
mariculture such as oyster culture, the recent
advances in technology have enabled the mass
culture of Kuruma shrimp, abalone and red
sea bream. Now, having developed large

scale mariculture for coastal and offshore

waters, there -remains one unexploited area
for mariculture. This is the culture of ocea-
nic species such as tuna.
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