La mer

昭和 57 年 5 月

日仏海洋学会

La Société franco-japonaise
d'océanographie
Tokyo, Japon
日仏海洋学会

編集委員会

委員長 冨永政史（鹿児島大学）
委員 有賀祐樹（東京工業大学）
神田英二（東京工業大学）
西村 奥（東京大学）
宇野 宽（東京工業大学）
半沢正男（神戸商船大学）
増田正光（東京工業大学）
高木和雄（東京工業大学）
柳川真司（東京工業大学）
井上 猛（東京工業大学）
森田良美（東京工業大学）
高野健三（早稲田大学）

投稿規定

1. 報文の投稿者は本会会員に基づく。
2. 原稿は簡潔にわかりやすく書き、図表を含めて印刷ページで10ページ以内を原則とする。原稿（正1週、副1週）は、平成17年10月16日付 報文総会案内 日仏海洋学会編集委員会宛に送ること。
3. 編集委員会は、需要により原稿の字句の加除訂正を行うことがある。
4. 論文（仏文、和文とも）には必ず約2000字の欧文（原則として仏語）の要旨をつけること。欧文論文には論文の要旨のほかに必ず約500字の和文の要旨をつけること。
5. 図及び表は必要なもののみ限る。図はそのまま原寸でなるように線図を考慮して鮮明に黒インクで書き、論文の図及び表には必ず英文（又は仏文）の説明をつけること。
6. 初校は原則として著者が行う。
7. 報文には1編につき50部の刷制を無料で著者に進呈する。これ以上の刷数に対しては、実費（送込を含む）を著者に負担する。

Rédacteur en chef 　Masahide TOMINAGA (Kagoshima University)
Comité de rédaction 　Yusaku ARUGA (Tokyo University of Fisheries) 　Masao HANZAWA (Kobe University of Mercantile Marine) 　Makoto INOUE (Tokyo University of Fisheries) 　Kenji KANDA (Tokyo University of Fisheries) 　Tatsuyoshi MASUDA (Tokyo University of Fisheries) 　Yoshimi MORITA (Tokyo University of Fisheries) 　Minoru NISHIMURA (Tokai University) 　Kazunori TAKAGI (Tokyo University of Fisheries) 　Kenzo TAKANO (University of Tsukuba) 　Yutaka UNO (Tokyo University of Fisheries) 　Saburo YANAGAWA (Tokyo University of Fisheries)

RECOMMANDATIONS A L'USAGE DES AUTEURS

1. Les auteurs doivent être des membres de la Société franco-japonaise d’océanographie.
3. Le Comité de rédaction se réserve le droit d’apporter, le cas échéant, des modifications mineures aux manuscrits ainsi que de demander aux auteurs de les corriger.
4. Des résumés en langue japonaise ou langue française sont obligatoires.
7. Un tirage à part des articles en cinquante exemplaires est offert gratuitement aux auteurs. Ceux qui en désirent un plus grand nombre peuvent les faire établir à leurs frais.
Estimation of the Kuroshio Mass Transport Flowing out of the East China Sea to the North Pacific*

Junichi Nishizawa**, Eturo Kamihira**, Kumi Komura**, Ryoji Kumabe** and Masamori Miyazaki**

Abstract: Geostrophic transport of the Kuroshio referred to 1,000 db surface is estimated at a section near the southeast end of Kyushu Island using data of more than twenty years. The section is between Cape Toi and 30°N, 133°E. The geostrophic transport varies seasonally; largest in summer and smallest in winter, with a mean value of $46.5 \times 10^7 \text{ m}^3/\text{sec}$. Year-to-year change is also appeared. A relationship between the large Kuroshio transport and its meander is pointed out.

1. Introduction

The Kuroshio is a western boundary current in the North Pacific. It starts from the North Equatorial Current near the coast of the Philippine Islands, passes through the East China Sea and flows eastward along the south coast of Japan. A branch also flows from the East China Sea into the Japan Sea. The volume transport of the Kuroshio is likely to be related with a water mass formation in these areas, but its absolute value is not well-known.

We estimate geostrophic transport of the Kuroshio at the entrance of a region near the exit to the East China Sea to compare with previous ones obtained in the neighbouring areas.

Figure 1 shows the location of the sections as well as depth contours in meters. The estimation is made at Section I off Cape Toi at the southeast end of Kyushu Island. Another estimation made by the Nagasaki Marine Observatory at Section PN in the East China Sea is shown by a solid line. The third estimation is made at Section G off Kii Peninsula for the 90 nautical mile width crossing the maximum velocity area. Most of the data are given by Minami et al. (1978, 1979), though some additional recent data are supplemented.

The Kuroshio flows across Section PN on the trough west of the Ryukyu Islands, changes its direction to the east in the vicinity of Tokara Islands, flowing out of the East China Sea into the North Pacific, changes again its direction to the north, and flows across Section I and across Section G along the south coast of Japan.

2. Methods

The Kuroshio has been observed by the Japan Meteorological Agency for a long time. The data are published in “Results of Marine Meteorological and Oceanographical Observations”. The present estimation is mainly based on the data in these reports with some recent data which are not yet published. They span more than twenty years as a whole though there are some periods of no data.

Figure 2 shows a detailed view of Section I. Because no observational stations are kept permanently, the stations figured are only an example. In many cases four or five stations are located on Section I. The farthest one from the coast is usually located at about 30°N, 133°E. Except for the stations nearest to the coast, all the stations are deep enough to carry out geostrophic calculation referred to 1,000 db surface. Only for some shallow stations, extrapolation is done. In other cases where no reasonable extrapolation is possible, data are omitted. Geostrophic velocity and volume transport are calculated by the standard method.

* Received August 31, 1981
** Kobe Marine Observatory, Chuo-ku, Kobe, 650 Japan
Based on data in “Prompt Reports of the Sea Conditions of Maritime Safety Agency of Japan”, it is inferred that the southern edge of the Kuroshio is sufficiently covered by this section, while its northern edge is covered not enough. So another extrapolation is made to estimate the total transport as follows. First we specify the sea floor near Cape Toi as shown in the insert of Fig. 2. Then it is assumed that the geostrophic velocity along the coast is the same as that calculated from the northernmost pair of stations. This assumption might not hold good in some cases, especially when the nearest station is far from the coast. For three tenths
of all the cases the nearest stations are at around 30°50'N, 132°00'E. The northernmost stations are nearer in the rest cases.

Total volume transport of the Kuroshio through the cross section between Cape Toi and the station at about 30°N, 133°E is calculated under the conditions mentioned above.

3. Results

Values of total transport through Section I referred to 1,000 db surface are calculated for 59 cases. Mean values and standard deviations are calculated for each season; winter (January–March), spring (April–June), summer (July–September) and fall (October–December). The results are shown in Fig. 3. Annual mean transport is 46.5×10^6 m3/sec. The transport varies seasonally, largest (50.1×10^6 m3/sec) in summer and smallest (43.1×10^6 m3/sec) in winter. It is 48.0 and 44.2×10^6 m3/sec in spring and fall, respectively. Standard deviation consists of two kinds of deviations. One is the deviation of transport itself and the other is that due to errors in each estimation.

Mean transport for each season at Section PN referred to 700 db is shown in Fig. 4. This is calculated for 80 cases and annual mean transport is 19.7×10^6 m3/sec. Seasonal variation of the transport at Section PN is not apparent. Mean transport for each season at Section G referred to 1,000 db is shown in Fig. 5. This is calculated for 92 cases. The transport changes seasonally in the same way as that at Section I, but each value of mean transport at Section G is about 10% less than that at Section I.

In order to see year-to-year change of the transport, it is better to represent the transport in percent of the seasonal mean and efface the effect of the seasonal variation. Percent transport and yearly mean for the three sections are shown in Fig. 6. The period in which the Kuroshio meander is present south of Japan (off Tokaido) is also shown in the figure.

In Fig. 6 it is found that the periodic change of the transport is not apparent at Section I because of lack of observations in some periods, but the change at Section I resembles that at Section PN. The periodic change of the trans-

![Fig. 3](image1.png)
Fig. 3. Mean transport at Section I referred to 1,000 db surface for winter (W), spring (S), summer (S) and fall (F). Standard deviation is also shown.

![Fig. 4](image2.png)
Fig. 4. Mean transport at Section PN referred to 700 db surface.

![Fig. 5](image3.png)
Fig. 5. Mean transport at Section G referred to 1,000 db surface.
port at Section PN is found not to be very apparent (at about 4 and 10 or 20 year interval?), but the transport is large when the Kuroshio is meandering. It is also found that the transport at Section G varies with periods of about 7 and 20 years.

4. Discussion

Seasonal change of the volume transport of the Kuroshio is estimated at Section I. This is the case with Section G. However, no seasonal change is found at Section PN in the East China Sea. The reason for this difference is not known. The value of geostrophic transport at Section PN is rather small comparing with that at Section I. This is partly because the reference level (700 db) at Section PN is shallower than that at Section I. But, on considering the fact that a part of the Kuroshio flows into the Japan Sea, the probability of existence of a current or a flow east of the Ryukyu Islands is not small, which might give some reason for the seasonal change of the transport at Section I.

On the other hand, the year-to-year change of the transport at Section I resembles that at Section PN, but does not resemble that at Section G. Large transport is found at Section PN when the Kuroshio is meandering. Probably the situation is the same at Section I. But the reasons for these facts are not known. Although it is unsuccessful to estimate the Kuroshio transport at the boundary between the East China Sea and the North Pacific, our results should be helpful to improve knowledge of the Kuroshio in the East China Sea.

Acknowledgements

The authors wish to thank Mr. Akira SANO and other members of the Oceanographical Division of the Kobe Marine Observatory for many valuable advice and discussions. The data at Section PN are offered by Mr. Ippei EGUCHI of the Nagasaki Marine Observatory. We also thank him and the staff of the Nagasaki Marine Observatory.
References

東シナ海から北太平洋へ流出する黒潮流量の見積もり

西沢純一, 上平悦朗, 小村久美男, 隈部良司, 宮崎正衛

要旨: 20年余りの資料を用いて、九州南東の都井岬沖で、1,000 db 面を基準にした黒潮の地表流量を計算した。計算は、都井岬側の陸岸と 30°N, 133°E とを両端とする断面について行われた。この断面を通過する流量の平均値として 46.5 × 10^6 m^3/sec の値が得られた。流量は季節的に変化し、夏に多く冬に少ない。この様相は潮岬沖で計算された結果と同様である。経年変化の様子は、東シナ海における流量変化に似ており、東海道冲の黒潮大蛇行が存在する時期は東シナ海での流量が多い。
On the Outflow Modes of the Tsugaru Warm Current*

Dennis M. Conlon

Abstract: The Tsugaru Warm Current displays two principal circulation modes. The first mode is characterized by the presence of a warm-core anticyclonic gyre that extends as far east as longitude 143° (gyre mode). In the second mode, the Tsugaru Warm Current is generally confined near the Honshu coast (coastal mode). The occurrence of these modes is consistent with the laboratory findings of Whitehead and Miller (1979), which suggests that inertial-rotational dynamics govern the Tsugaru Warm Current.

1. Introduction

Sea straits which connect basins of different water mass characteristics are typically characterized by a two-layer flow regime, with lighter water flowing into one basin at the surface and denser water flowing in the opposite direction at depth. The flow of light water into a basin is of interest in the study of dynamics of rivers and estuaries, as well as sea straits, and it has generated a number of contributions to the oceanographic literature (e.g., TakanO, 1954; NOF, 1978a,b; Beardsley and Hart, 1978). Research on buoyant outflows has primarily emphasized deflection and spreading of the outflow jet. Basic considerations of the dynamics of flow in a rotating system lead to the natural conclusion that a buoyant jet will be deflected cumb sole and most investigations substantiate such behavior.

More recent work by Whitehead and Miller (1979, hereafter referred to as WM), however, suggests that an outflow jet can assume several different flow modes, depending on the buoyancy of the outflow, the geometry of the basin, and latitude. In their experiments, WM employed two semi-circular connecting basins, filled with water of different densities and mounted on a rotating turntable. After spinning up the fluids, the connection was opened and the resulting buoyant outflow was examined using photographs of pellets floating on the surface. The natural

* Received January 14, 1982
** U.S. Office of Naval Research, NSTL Station, MS 39529, USA

Fig. 1. Schematic representation of principal modes of outflow jet from the Tsugaru Strait. Upper picture: gyre mode of warmer months. Lower picture: coastal mode of colder months. Positions of USNS Silas Bent current moorings of November 1975-January 1976 also shown. (See Fig. 4)
hugging the coast. Where R was increased still further, however, the jet separated from the wall; a return flow was generated at the separation point, and in time a fully-developed gyre was generated. WM argued that their results showed that the gyre in the Alboran Sea is produced by the same inertial-rotational dynamics which governed their laboratory experiments.

2. Modes of the Tsugaru Warm Current

Interestingly, the Tsugaru Warm Current displays certain characteristics which suggest that it, too, may be governed by the inertial-rotational dynamics examined in the WM experiments.

Previous investigations (SUGIURA, 1958; HATA, 1975; and others) have documented the extreme seasonal variation of the eastward extent of the Tsugaru Warm Current. In the warmer months of summer and fall the Current extends as far as longitude 143°E, whereas during the colder months of winter and spring the Current appears to be confined to a narrow band adjacent to the coast of Honshu. Significantly, a gyre is typically present during the warmer months that is suggestive of the laboratory gyre of WM.

| Table 1. Seasonal Variation of Internal Rossby Radius. |
|---------------------|---------------------|
| Upper Layer Density (σ_L)** | Rossby Radius (Est.)** (km) |
| January | 26.2 | 8.2 |
| February | 26.4 | 4.7 |
| March | 26.4 | 4.7 |
| April | 26.3 | 6.7 |
| May | 26.0 | 10.6 |
| June | 25.8 | 12.5 |
| July | 25.0 | 18.4 |
| August | 24.1 | 23.2 |
| September | 24.0 | 23.7 |
| October | 24.2 | 22.7 |
| November | 25.1 | 17.7 |
| December | 25.6 | 14.2 |

** From surveys of RMS OYASHIO MARU, 1949-1952.

Based on lower layer density of σ_L=26.5 (SUGIURA, 1958) and upper layer mean thickness of 210 m (HATA, 1975).

![Fig. 2. The outflow region of the Tsugaru Strait in October 1975, showing the gyre mode. (Hakodate Marine Observatory, Oceanographic Observator Report, Vol. 14, No. 1.)](image)
A simplified model of the WM results is depicted in Fig. 1, in which two of the WM modes are shown: a gyre mode (high R) and a coastal mode (low R). The question to be addressed, then, is whether the Tsugaru Warm Current shows a pronounced seasonal variation in R that is consistent with the existence of these two modes. To answer this question, the interannual variability of the internal deformation on radius R must be calculated.

The monthly variation of the upper layer density in the Tsugaru Warm Current region was obtained from data gathered by the RMS OYASHIO MARU in 97 transects run eastward from the Honshu coast at latitude 40°32.5' north during the years 1949-1952 (Table 1). The station occupied at longitude 142° east on each transect is central to the flow regions of both gyre and coastal modes; measurements at the 25m level at this station were used to avoid transient surface effects such as rain. The underlying water in this region is of Oyashio origin and is stable throughout the year; the transition to the lower layer occurs roughly at the $\sigma_t = 26.5$ isopycnal (SUGIURA, 1958), from which $\Delta \rho$ can be computed. HATA (1975) estimates the thickness of the Tsugaru Warm Current to be about 180 m during the cold months and 240 m during late summer and fall; because R varies as $h^{1/2}$, a general estimate of 210 m for the surface layer thickness should then be adequate within about 10%. Using the above data, average values of R were calculated for each month of the year, and the results are shown in the accompanying table. The internal Rossby deformation radius shows an extremely large interannual variation (a factor of 5), and indeed, R is large when a gyre is usually present and small when it is not. Further, a comparison of this table with the maps of HATA (1975) suggests that R values of less than 10 km represent the coastal mode, while the gyre mode appears to be established when R exceeds 15 km. If these values are to be believed, then the table suggests that a transition from gyre mode to coastal mode should occur sometime between

Fig. 3. The outflow region in February-March 1976, showing flow confined near the Honshu coast. The eddy at 145°E is of Kuroshio origin. (Hakodate Marine Observatory, Oceanographic Observation Report, Vol. 14, No. 1)
October ($R>20$ km) and February ($R<5$ km).

3. An Observation of Modal Transition

Attention is focused on the Tsugaru Warm Current during the period October 1975–February 1976, using data obtained by the research vessels KOFU MARU, SHUMPU MARU and USNS SILAS BENT.

In October 1975 the gyre is clearly seen in the temperature distribution at 100 m (Fig. 2). Concurrent GEK data show that the outflow jet initially deflects to the left, then moves in an arc clockwise out to longitude 143° east, turns back to the coast at latitude 41° north, and bifurcates near 40°30'N, 142°E. The Rossby radius of the jet approximated from the hydrographic data is about 25 km; sectional profiles of T, S, and ρ indicate that the jet is between 20 km and 40 km wide, so the data are in rough agreement with Rossby adjustment ideas.

By late February 1976 the picture has changed completely (Fig. 3). The anticyclonic gyre has disappeared, and now the flow appears to be in the coastal mode. (TS data show that the eddy at 145°E is a spinoff eddy from the Kuroshio).

Fortuitously, moored current meters deployed from November 1975 to January 1976 by the SILAS BENT were in an excellent position to monitor the change of modes (see Fig. 1). Current meter 1 (northern location, Fig. 4b) lies between Erimo Misaki and the core of the Tsugaru Warm Current. The measurements show weak currents of about 20 cm/sec or less, but the direction of the current is remarkably uniform on a bearing of 320°–340° from the beginning of the record until about December 19. The direction of the current and its steadiness during this period strongly suggest the presence of a coastal countercurrent generated.

Fig. 4. Currents in the outflow region of the Tsugaru Strait, November 1975–January 1976, from survey of USNS SILAS BENT. Current data have been averaged by 72-hour running mean. (a) Southern location, position 4, 45-m depth (see Fig. 1). (b) Northern location, position 1, 225-m depth.
by the infilling of the adjacent bight by the Tsugaru Warm Current. Current meter 4 (southern location, Fig. 4a) is located within the zone of influence of both gyre and coastal modes. From November 17 to November 25, the currents are strong (up to 50 cm/sec) and very steady on a bearing of 20°, which indicates that the gyre is still active. The period between November 27 and December 14 appears to be a time of instability. The direction alternates from roughly southerly (November 27-December 4) to near northerly (around December 10) to easterly (December 14), with a trend toward decreasing current speeds. Sometime on December 15 or 16, however, the current speed increases sharply and the direction swings to the south, remaining between 140° and 200° for the remainder of the record. The coastal mode appears to have been firmly established.

A maximum estimate of the time of transition in this case is about three weeks (November 25-December 15). The close agreement between the abrupt direction changes at locations 1 and 4, however, indicate that the actual transition might be more rapid (order days instead of weeks).

It may be appropriate to add one speculative note. It has been suggested that during colder months, the penetration of the Oyashio into this region acts to “push” the Tsugaru Warm Current against the coast of Honshu. Note, however, that the significant direction shift in current at the southern location occurs a few day before the major shift at the northern location (December 15 versus December 19). An alternative hypothesis, therefore, is that the gyre mode prevents Oyashio intrusion, and only when the gyre collapses is the Oyashio able to penetrate this region. The Tsugaru Warm Current could therefore play an important role in the shifting of the Oyashio Front.

References

津軽暖流の流出モード

Dennis M. Conlon

要旨：津軽暖流は2つのおもな流出モードを示す。その1つは東経143°にまで及ぶ高気圧性暖水渦（渦モード）である。もう1つのモードでは、津軽暖流は本州海岸におしつけられている（海岸モード）。これら2つのモードの存在はWhitehead and Miller (1979) の室内実験の結果一致し、海流力学が津軽暖流を支配しているという示唆と一致する。
Note on Currents Driven by a Steady Uniform Wind Stress on the Yellow Sea and the East China Sea

Byung Ho Choi

Abstract: A two-dimensional hydrodynamical model of the Yellow Sea and the East China Seas is used to derive the currents driven by steady wind stresses on the shelf. Experiments have been performed with the model to determine the responses of the shelf to stationary wind stress fields suddenly imposed on the shelf for various wind directions of uniform NW, N, SW, SE winds and wind stresses of 1.6 dyn/cm² and 10 dyn/cm², respectively. Circulation patterns thereby deduced are presented and discussed.

1. Introduction
This paper describes the continuing model studies in the Yellow Sea and the East China Sea. The previously developed sea model of the Yellow Sea and the East China Sea shelf (CHOI, 1980) was satisfactorily utilized to compute M₂ tidal distribution in the system. As a subsequent model development step, the shelf model is used to derive the wind-induced currents in the shelf sea and the preliminary results of studies are presented and discussed here. Numerical experiments carried out with the model were to determine response of the shelf sea produced by steady uniform wind stress fields suddenly imposed on the sea area. In this respect, the separate effects of steady uniform winds have been investigated and in each case circulation patterns have been deduced. The underlying objective of this work is to build up fundamental knowledge of the system for the eventual development of a surge forecasting model of the Yellow Sea and the East China Sea. In the present study, the currents computed are the average values of water column and along the open-sea boundaries at the shelf edge radiation condition is employed which allows disturbances from the interior of the model to pass outwards.

2. Yellow Sea and the East China Sea model
The bottom topography in the study area is shown in Fig. 1. The model grid, with a resolution of 1/5° latitude by 1/4° longitude, is shown in Fig. 2. Computations are two-dimensional and solve the vertically-integrated equations of motion formulated on spherical polar

Fig. 1. The bottom topography of the Yellow Sea and the East China Sea.
coordinates yielding elevations and depth-mean currents at the centres of the mesh elements. Nonlinear terms are included and a quadratic law of bottom friction is assumed. Ignoring variations in water density, the influence of temperature and salinity stratification upon the movement of water is not resolved. A coefficient of bottom friction, 0.0025, was assumed over the whole shelf.

The finite difference scheme, which advances the surface elevation, ξ, and the eastward and northward component of the velocity, u and v, over the entire network at time t to the values of these variables at time $t + \Delta t$ is explicit: employing central space difference and a combination of forward and backward time difference in the manner described by Flather and Heaps (1975). In generating the wind driven surge fields, a time step of 4 minutes was used. As an open sea boundary condition for wind-driven surge computation a radiation condition (Reid and Bodine, 1968) was employed along the edge of continental shelf. Applying a radiation condition to the internally generated surge gives

$$h q_n' = (gh)^{1/3} \xi,$$

where q_n' is the associated outward going current velocity across the boundary. It was assumed that the transmission of energy outward across the boundary may be represented as a simple progressive wave travelling at right angles to the boundary (Heaps, 1974).

3. Numerical experiments

A uniform steady wind was blown for four tidal cycles from the state of rest. Northerly type winds of N and NW direction were chosen for representing the winter condition and southerly type winds of SW and SE direction were chosen for representing the summer condition. Wind stress of 1.6 dyn/cm2 applied may represent a wind speed of 10 m s$^{-1}$ and wind stress of 10 dyn/cm2 was also applied to represent rather strong wind forces. Series of numerical experiment performed are as follows;

- Numerical experiment 1, uniform northwesterly wind stress of 1.6 dyn/cm2
- Numerical experiment 2, uniform northerly wind stress of 1.6 dyn/cm2
- Numerical experiment 3, uniform southeasterly wind stress of 1.6 dyn/cm2
- Numerical experiment 4, uniform southwesterly wind stress of 1.6 dyn/cm2
- Numerical experiment 5, uniform northwesterly wind stress of 10 dyn/cm2
- Numerical experiment 6, uniform northerly wind stress of 10 dyn/cm2
- Numerical experiment 7, uniform southeasterly wind stress of 10 dyn/cm2
- Numerical experiment 8, uniform southwesterly wind stress of 10 dyn/cm2

The computed spatial distribution of steady wind-induced surface elevation over the shelf is represented as contour elevation. The spatial distributions of vectors of wind-induced currents are also accompanied by a diagrammatic interpretation in term of flow lines.

4. Discussion of results

Under the northwesterly wind, the sea surface slopes upwards from lowest values in the
Gulfs of Pohai and Liaotung to increasing values in the direction of east by southeast down to Pohai Strait and then in the direction of southeast down to southward shelf edge (Fig. 3(a) and Fig. 4(a)). This longitudinal set-up being accompanied by a marked transverse slope may be due to the earth’s rotation. The patterns of depth-mean currents shown in Fig. 5 and Fig. 6 indicate that there are relatively strong southerly flow down both sides of the Chinese

Fig. 3. Surface elevations produced by a uniform wind stress of 1.6 dyn/cm² from NW, N, SW and SE winds.
coast and the west coast of Korea and northerly flow up in the middle of the Yellow Sea. This north-going flow along the deeper part of the Yellow Sea may be due to return flow at depth contrasting to coastal situation where current tends to be south-going along the shallow water depth contours in direction of the wind. The variation of longitudinal flows accounts for the transverse variation of surface gradient.
Under the northerly wind condition, the sea

Fig. 4. Surface elevations produced by a uniform wind stress of 10 dyn/cm² from NW, N, SW and SE winds.
Fig. 5. The wind driven currents produced by a uniform NW wind stress of 1.6 dyn/cm² and corresponding flow lines.

Fig. 6. The wind driven currents produced by a uniform NW wind stress of 10 dyn/cm² and corresponding flow lines.
Fig. 7. The wind driven currents produced by a uniform N wind stress of 1.6 dyn/cm² and corresponding flow lines.

Fig. 8. The wind driven currents produced by a uniform N wind stress of 10 dyn/cm² and corresponding flow lines.
Fig. 9. The wind driven currents produced by a uniform SW wind stress of 1.6 dyn/cm² and corresponding flow lines.

Fig. 10. The wind driven currents produced by a uniform SW wind stress of 10 dyn/cm² and corresponding flow lines.
Fig. 11. The wind driven currents produced by a uniform SE wind stress of 1.6 dyn/cm² and corresponding flow lines.

Fig. 12. The wind driven currents produced by a uniform SE wind stress of 10 dyn/cm² and corresponding flow lines.
surface slopes upwards from lower values in the upper part of the Yellow Sea to increasing values in the direction of south down to the south border of the Yellow Sea and then in the direction of southwest down to the Taiwan Strait (Fig. 3(b) and Fig. 4(b)). The patterns of depth-mean currents shown in Fig. 7 and Fig. 8 indicate that flow pattern induced due to a uniform northerly wind is somewhat similar to those due to northwesterly wind.

Under the southwesterly wind direction, the sea surface slopes upwards from lower values along the Chinese coast to increasing values in the direction of northeast over the shelf (Fig. 3(c) and Fig. 4(c)). The patterns of depth-mean currents shown in Fig. 9 and Fig. 10 indicate that there are relatively strong northerly flow up along the both sides of the Chinese coast and the west coast of Korea and southwesterly flow down in the middle of the Yellow Sea in contrast to the condition of uniform northerly type winds.

Under the southeasterly wind direction, the sea surface slopes upwards from lowest values along the shelf edge to increasing values in the direction of northwest throughout the shelf region (Fig. 3(d) and Fig. 4(d)). The patterns of depth-mean currents shown in Fig. 11 and Fig. 12 indicate that flow pattern due to a uniform southeasterly wind is somewhat similar to those due to southwesterly wind in the region of the Yellow Sea. Northerly-type winds maintain a southward flow along the Chinese coast and along the west coast of Korea inducing clockwise flow gyres in Seohan Bay and the west coast of South Korea and anticlockwise flow gyres in the Gulfs of Liautung and Pohai, and in the middle part of the East China Sea. Southerly-type winds maintain a northward flow along the Chinese coast and along the west coast of Korea inducing anticlockwise flow gyres in Seohan Bay and the west coast of South Korea and clockwise flow gyres in the Gulfs of Liautung and Pohai and in the middle of the Yellow Sea and the East China Sea.

5. Concluding remarks
This paper has presented a short account of some of the numerical experiments from the Yellow Sea and the East China Sea model. Numerical experiments performed with the model to determine the response of the Yellow Sea and the East China Sea have shown that circulation patterns thereby deduced exhibit significant spatial variation of currents, and also have shown the complexity of the wind-driven circulation on the continental shelf.

Further studies may eventually be necessary to construct a three-dimensional shelf sea model since three-dimensional studies of the North Sea (DAVIES, 1980) indicate that both the magnitude and direction of the wind-induced current change significantly with depth and consequently depth-mean currents derived from two-dimensional model may not adequately describe the wind-induced circulation on the shelf.

References
黄海と東シナ海で定常均一風によってひきおこされる海流

Byung Ho CHOI

要旨: 黄海と東シナ海の上を吹く定常風によっておきる海流を二次元数値モデルを使って調べた。風の強さとしては2種類, 1.6 dyn/cm² と 10 dyn/cm², 向きとしては4種類, 北西, 北, 南西, 南東の風を用い, 合計8つの場合について計算した。計算結果を図示し, 考察を加えた。
Variations of Chlorophyll a Concentration and Photosynthetic Activity of Phytoplankton in Tokyo Bay*

Yoshiaki SHIBATA** and Yusho ARUGA**

Abstract: Phytoplankton biomass (chlorophyll a) was investigated together with some environmental conditions mainly at 15 stations in Tokyo Bay including Urage Strait from December 1975 through December 1978. Photosynthetic and respiratory rates were measured under various light intensities and temperatures with phytoplankton samples taken from the surface water off Haneda. Generally, the chlorophyll a concentration was higher in the northwestern part and lower in the southern part of the inner bay. In Urage Strait the chlorophyll a concentration was apparently lower than that in the inner bay. Seasonal changes of the chlorophyll a concentration and the photosynthetic activity of phytoplankton considerably differed from those observed ten or more years ago. Both the chlorophyll a concentration and the light-saturated photosynthetic rate on a chlorophyll a basis remained high throughout the year with the highest values being observed ordinarily in summer; however neither the spring bloom nor the autumn increase in standing crop of phytoplankton was remarkable. Water temperature and salinity seemed to play important roles in controlling both standing crop and photosynthetic activity of phytoplankton. The changes of phytoplankton biomass and distribution seemed to be dependent on such meteorological or physical factor as tide or drift current brought about by strong wind rather than on such chemical factors as nutrient concentrations. In Tokyo Bay high productivity of the phytoplankton community is maintained throughout the year and productivity does not appear to be limited by nutrients provided that physical conditions are favorable.

1. Introduction

Tokyo Bay covers an area of about 1,500 km² including Urage Strait by which the inner part of the bay is connected to the Pacific Ocean. Around the bay, especially around the inner bay, there are many cities and industrial areas, and a large amount of sewage flows into it. Because of these conditions, Tokyo Bay is one of the most polluted bays in Japan. The red tide in Tokyo Bay was first reported early in this century and is now observed almost always throughout the year. Many investigations have been done on red tide formation, species composition and its succession. MARUMO and MURANO (1973) and MARUMO et al. (1974) determined the species composition of red tide in the bay with special attention to diatom succession. HOGETSU et al. (1959) was the first to investigate the photosynthetic rate of blooming Skeletonema obtusa.

* Received August 28, 1981
** Laboratory of Phycology, Tokyo University of Fisheries, Konan-4, Minato-ku, Tokyo, 108 Japan

obtained from the area off Haneda in the bay. Since the first intensive investigation of the primary production in Tokyo Bay (cf. MATSU-Daira 1964), there have been many other investigations conducted on primary production. ICHIMURA and KOBAYASHI (1964) and ICHIMURA and ARUGA (1964) reported the seasonal changes of chlorophyll and photosynthetic rate of phytoplankton. ICHIMURA (1967) investigated primary production with special reference to environmental gradients. FUNAKOSHI et al. (1974), TERADA et al. (1974) and YAMAGUCHI and ICHIMURA (1976) reported that the primary productivity of Tokyo Bay is highest of all the inshore regions in Japan. These works were, however, limited spatially in the bay or by time of the year.

The present work was carried out to determine the variations of standing crop and photosynthetic activity of the phytoplankton community in Tokyo Bay in relation to environmental factors and in comparison with previously reported data.
2. Material and methods

Observations were carried out at 15 stations in Tokyo Bay (Fig. 1) from December 1975 through December 1978. Monthly observations were intended initially, but each year a few of the monthly observations could not be carried out mainly due to the inavailability of a research ship. Water samples were taken from various depths by a PVC bucket and a Van Dorn type water sampler, and used for the measurements of chlorophyll a, photosynthesis, respiration, salinity and nutrients. At the same time, measurements of Secchi disk depth and water temperature were conducted. Water temperature was measured with a standard thermometer and/or a bathythermograph. Salinity was measured with a recording S-T meter attached to the T/S Seiyo Maru or an Autolab portable T-S meter.

An aliquot of each water sample was immediately filtered through a 47 mm Whatman GF/C glassfiber filter, and the filters, wrapped in aluminum foil, were stored in a freezer until pigment analyses could be conducted. Pigments were extracted with 90% acetone, absorbances of the extract were measured with a Hitachi 101 spectrophotometer and the concentrations of chlorophylls were calculated by the formulae of SCOR-Unesco (1966).

Photosynthesis and respiration of phytoplankton were measured both in the laboratory and on the deck using the light and dark bottle method under various light intensities and temperatures, followed by the Winkler titration technique for dissolved oxygen determination. The light intensities on the bottles were regulated by varying the distance of the light source from the bottles in the laboratory experiments or by changing the number of neutral vinyl sheets rolled around the transparent acrylic cylinders in which the bottles containing water samples were placed under natural sunlight in the deck experiments. The measurements were carried out at in situ surface water temperature regulated either by pumping surface water over the bottles or by a cooling device (Taiyo Coolin CL-15).

Phosphate, nitrate, nitrite and silicate concentrations were determined using the procedures described by STRICKLAND and PARSONS (1972).

3. Results and discussion

(1) Distribution of chlorophyll a

Chlorophyll a has usually been used as an index of phytoplankton biomass (ARUGA and MONSI 1963, ARUGA 1966). Horizontal distributions of chlorophyll a in the surface water are shown in Fig. 2. The area of the shaded circles is proportional to the concentration of chlorophyll a. Usually the level of surface chlorophyll a concentration was markedly higher in the inner bay than in Uraga Strait. In some cases the higher chlorophyll a concentrations observed in the northern part of the strait can be related with the water flowing out of the inner bay to the strait at low tide as will be described in detail later. At Stn. T-9 in an oceanic area off Tateyama, the chlorophyll a concentration was always quite low as compared with that in the strait. In the inner bay, the surface chlorophyll a concentration varied greatly

Fig. 1. Map of Tokyo Bay showing the location of stations.
Fig. 2. Distribution of chlorophyll a concentration in the surface water of Tokyo Bay from December 1975 through December 1978.
Fig. 2. (Continued)
Chlorophyll a and Photosynthesis of Phytoplankton in Tokyo Bay

Fig. 2. (Continued)
from station to station and with the time of year as can be seen in Fig. 2. Both in the northern and central regions of the inner bay the chlorophyll a concentrations remained at levels higher than 10 mg/m3 throughout most the year. The highest chlorophyll a concentration of 104.7 mg/m3 was obtained in the region off Haneda in July 1978.

The most typical type of distribution can be seen in the case of May 1978 (Fig. 2) with higher chlorophyll a values in the northwestern inner bay and lower values in the southeastern inner bay and in Uruga Strait. This type of distribution has been observed frequently (ICHIHARA 1967, TERADA et al. 1974, YAMAGUCHI and ICHIMURA 1976), and has been explained as related to environmental gradients, especially to nutrient gradients. During the present investigation, such a situation was also observed on some occasions.

The second type of distribution is represented by that of February 1978, in which the surface chlorophyll a concentration was higher in the northeastern part than in the southwestern part of the inner bay. This type of distribution was rather rare and found in April 1976, May (II) 1977 and February 1978. It is of interest to note that such high chlorophyll a concentrations were not reported before in the eastern part of the inner bay. The third type of distribution is characterized by a rather homogeneous distribution of chlorophyll a concentration in the inner bay as seen in the case of March 1976. This type of chlorophyll a distribution was often obtained throughout the year irrespective of the seasons.

In general, the trend of the surface chlorophyll a distribution is concluded to be similar to that of ten or more years ago with higher chlorophyll a concentrations in the northwestern part of the inner bay and with a decrease of the concentrations to the southeast. During the past ten years, however, the area of higher chlorophyll a concentrations has extended further to the southeast.

Seasonal changes of the surface chlorophyll a concentration at each station are shown in Fig. 3. Although sometimes measurements were not made every month, comparisons can be made. The concentrations of chlorophyll a remained at very high levels throughout the year at the stations in the inner bay. Generally, the chloro-

![Fig. 3. Seasonal changes of the surface chlorophyll a concentration at 14 stations (Stns. T-2W-T-9).](image-url)
Fig. 4. Vertical distributions of chlorophyll a at Stns. T-2, T-4, T-8 and T-9.
phyll a concentration began to increase from March and reached its maximum in August, sometimes with a small decrease observed during the rainy season (mainly in June). It decreased rapidly in autumn and remained comparatively low during winter until the following March with some short-term variations. This general pattern of variation is similar to those observed in Tokyo Bay ten or more years ago (ICHIMURA and ARUGA 1964, ICHIMURA 1967, YAMAGUCHI and ICHIMURA 1976). However, as generally observed by other investigators, the seasonal variations of chlorophyll a concentration with two or three remarkable peaks including the spring bloom, summer bloom and/or autumn increase were not clearly observed during the present investigation. It may be that these peaks were possibly hidden by a higher basal level of chlorophyll a concentration during these years in Tokyo Bay.

In the northwestern part of the inner bay (Stn. T-2W), the typical pattern of variations as mentioned above was obtained in the surface chlorophyll a concentration. On the contrary, in the northeastern part of the inner bay (Stn. T-2E), fairly high concentrations of chlorophyll a were observed during winter as compared with the concentrations in other parts of the bay. For example, the values obtained in January or February 1978 were approximately equal to those obtained in May or June 1978 in the northeastern part of the inner bay, whereas in the northwestern part values one half to one third the May or June values were obtained in winter (Fig. 3).

The fluctuations of the surface chlorophyll a concentrations at Stns. T-6 and T-7 in Uraga Strait were rather large with a range of 0.336–41.68 mg/m³ (Fig. 3). Water movement in the strait is strongly affected by tidal currents. The boundary between oceanic and neritic waters around the strait is shifted continually northwards or southwards, so that even if the observations were done on the same day the values obtained would change conspicuously from time to time. Thus, it is difficult to have a generalized trend of variations in the chlorophyll a concentrations in Uraga Strait.

The surface chlorophyll a concentrations at Stns. T-8 and T-9 were considerably lower as compared with those at other stations in the bay and never exceeded 4 mg/m³ throughout the year (Fig. 3). The chlorophyll a concentrations at Stn. T-8 were always higher than those at Stn. T-9. This is possibly due to the fact that the area of Stn. T-8 is affected by neritic water from the bay more effectively than at Stn. T-9.

The seasonal changes in the vertical distribution of chlorophyll a at Stns. T-2, T-4, T-8 and T-9 are shown in Fig. 4. At Stn. T-2 the chlorophyll a concentration varied conspicuously and was sometimes stratified vertically in summer, whereas homogeneous distributions were observed in winter. When stratified, the chlorophyll a maximum was usually found within the upper 5 m layer and sometimes near the bottom. At Stn. T-4 the pattern of vertical distribution did not vary as much as that at Stn. T-2, and a stratified distribution was obtained almost throughout the year except for December 1975, January and December 1978 in which homogeneous distributions were observed. The chlorophyll a maximum was found within the upper 15 m layer, which was a little deeper than that at Stn. T-2.

The distinctive stratified vertical distribution of chlorophyll a was observed in the northwestern part of the inner bay by ICHIMURA (1967) and FUNAKOSHI et al. (1974). According to ICHIMURA (1967), the stratified distribution of chlorophyll a may possibly be due to special hydrographic conditions in the inshore region of the bay where the distinctive gradient of density has been produced by freshwater discharge. In the present investigation, the chlorophyll a distribution was well stratified vertically during spring to autumn both at Stns. T-2 and T-4. In winter, however, no clear stratification was observed in the vertical distribution of chlorophyll a. This indicates that the phytoplankton cells were distributed almost homogeneously throughout the water column due to the vertical mixing of water caused by strong wind in this shallow part of the bay.

At Stns. T-8 and T-9, the chlorophyll a concentration in the surface water was very low and did not exceed 4 mg/m³ throughout the year as described above. The concentration of
chlorophyll \(a\) at each depth was almost always higher at Stn. T-8 than at Stn. T-9. The stratification of chlorophyll \(a\) distribution was observed throughout the year at both stations (Fig. 4). These patterns of stratification coincide well with those reported in the oceanic regions (ARUGA and MONSTI 1962, LORENZEN 1967, ARUGA and ICHIMURA 1968), especially with those reported in summer. The chlorophyll \(a\) maximum was found at 10–50 m depth and 10–75 m depth at Stns. T-8 and T-9, respectively. The vertical distribution of chlorophyll \(a\) is usually characterized by the presence of a chlorophyll \(a\) maximum (LORENZEN 1967). The fact that the chlorophyll \(a\) maximum at Stn. T-9 was located deeper than that at Stn. T-8 suggests a strong influence of oceanic water at Stn. T-9. These chlorophyll \(a\) maxima were found mostly at the thermocline and in some cases above it.

(2) Photosynthetic activity

With the surface water samples collected near Tokyo Light off Haneda, the photosynthesis of phytoplankton was measured at nearly \textit{in situ} temperatures under various light intensities. The photosynthesis-light curves thus obtained are shown in Fig. 5. The light intensity at which the light-saturation of photosynthesis occurred was about 10–30 klux, and the light-saturated net photosynthetic rates were in the range of 8.20–56.10 mgO\(_2\)/mg.chl.a/hr. The inhibition of photosynthesis by strong light was sometimes encountered within the range of light intensity up to 100 klux. This inhibition occurred particularly with those samples obtained during the period of high water temperature. According to ICHIMURA (1967), in most cases the light-saturation of photosynthesis occurred at a light intensity below 8 klux with phytoplankton samples taken from the northwestern part of Tokyo Bay, and no inhibition by strong light.

![Fig. 5. Photosynthesis-light curves of phytoplankton from the surface water off Haneda in Tokyo Bay.](image)

![Fig. 6. Photosynthesis- and respiration-temperature curves of phytoplankton from the surface water off Haneda in Tokyo Bay.](image)
was observed at light intensities up to 20 klux. A similar photosynthesis-light curve was reported with a bloom of *Skeletonema costatum* which showed no inhibition by strong light even at 140 klux (HOGETSU *et al.* 1959). FUNAKOSHI (1973) also reported no inhibition of photosynthesis in *Skeletonema costatum* under a strong light of 150 klux in summer. On the other hand, many observations about the inhibition of photosynthesis by strong light were reported by many investigators (RYTHER 1956, RYTHER and MENZEL 1959, ICHIMURA *et al.* 1962, ICHIMURA and ARUGA 1964, ARUGA 1965b). It is noteworthy that both types of photosynthesis-light curves with or without inhibition by strong light were obtained in the present investigation. This suggests that the subsurface phytoplankton cells photosynthesize at somewhat higher rates than the surface ones in Tokyo Bay, at least in summer.

Photosynthesis-temperature relations of phytoplankton have been scarcely studied from the ecological and physiological points of view, and in these respects the information about natural phytoplankton communities is especially scarce (ARUGA 1965a, ARUGA and ICHIMURA 1968). Seasonal changes in the photosynthesis-temperature curves and the respiration-temperature curves obtained with the samples taken from the surface water near Tokyo Light off Haneda are shown in Fig. 6. In most cases the net photosynthetic rate increased gradually with a rise in temperature to reach a maximum and decreased gradually with a further rise in temperature. The maximum photosynthetic rates mostly occurred at temperatures between 20 and 25°C except in July 1976 and December 1977. Significant seasonal changes in the temperature optimum for photosynthesis were not observed. According to ARUGA (1965b), in laboratory cultures the photosynthesis-temperature relation of algae varied to some extent with the temperature conditions under which they had been grown. Under natural conditions ARUGA (1965a) observed that the optimum temperature for photosynthesis of freshwater phytoplankton shifted adaptively; the higher the environmental temperature, the higher the optimum temperature for photosynthesis. However, even though the data were limited, such a relationship was not observed in the present study. The respiratory rate of phytoplankton gradually increased with a rise in temperature within the temperature range of the present measurements.

Seasonal changes in the light-saturated net photosynthetic rate per unit amount of chlorophyll *a* and the chlorophyll *a* concentration of surface water off Haneda are illustrated in Fig. 7. The light-saturated net photosynthetic rate varied in the range of 8.20–56.01 mgO₂/mg.chl. a/hr with the highest value in September 1978 and the lowest in September 1976. Such a definite trend as already reported in Tokyo Bay by ICHIMURA and ARUGA (1964) and ICHIMURA (1967) was not observed in the changes of the photosynthetic rate. In those reports the photosynthetic rate on a chlorophyll *a* basis increased from the end of spring and showed a peak in early summer, thereafter it decreased in early autumn but increased again showing a small peak in late autumn. In the present investigation, however, the seasonal changes in the photosynthetic activity as well as the chlorophyll *a* concentrations of surface water considerably differed from those obtained early in 1960's in Tokyo Bay (ICHIMURA and KOBAYASHI 1964, ICHIMURA and ARUGA 1964, ICHIMURA 1967) as well as from those in eutrophic lakes (ICHIMURA and ARUGA 1964). The light-saturated net photosynthetic rate per unit volume of water in the same samples showed changes strongly related to the changes in chlorophyll *a* concen-
Chlorophyll \(a \) and Photosynthesis of Phytoplankton in Tokyo Bay

![Graph showing seasonal changes of chlorophyll \(a \) and photosynthetic rate per unit volume of water off Haneda in Tokyo Bay.]

Fig. 8. Seasonal changes of the concentration of chlorophyll \(a \) and the light-saturated net photosynthetic rate per unit volume of water of phytoplankton in the surface water off Haneda in Tokyo Bay.

![Map showing distribution of light-saturated net photosynthetic rate (mg O\(_2\)/mg. chl. \(a \)/hr) of surface phytoplankton in Tokyo Bay in December 1977.]

Fig. 9. Distribution of the light-saturated net photosynthetic rate (mg O\(_2\)/mg. chl. \(a \)/hr) of surface phytoplankton in Tokyo Bay in December 1977.

tration (Fig. 8). This would mean that the photosynthetic activity per unit volume of water is ordinarily dependent on the phytoplankton density or on the concentration of chlorophyll \(a \) in the water concerned.

The distribution of the light-saturated net photosynthetic rate of surface phytoplankton in November 1977 is illustrated in Fig. 9. Three regions of higher photosynthetic activity were clearly recognized. The photosynthetic rate was considerably higher in the northwestern part of the bay as reported by ICHIMURA (1967), TERA-DA et al. (1974) and FUNAKOSHI et al. (1974). Usually the photosynthetic rate of phytoplankton was higher in this region than elsewhere in the bay throughout the year. It is interesting to note that another area of high photosynthetic rate was identified between Yokohama and Kisasazuka. Thus, an extention of the highly productive area in recent years is suggested.

There have been a large number of reports on phytoplankton production in which the photosynthesis of phytoplankton was measured either by the light and dark bottle oxygen technique or by the radioactive carbon \(^{14}\)C technique. With natural populations the agreement between the data obtained by the two techniques is often poor (RYTHER and YENTSCH 1958, MCALLISTER 1961). The \(^{14}\)C technique can give results much lower than those calculated from oxygen evolution (ANTIA et al. 1963).

As reported by SHIMURA et al. (1978) with Trichodesmium populations, a suitable correction must be made in certain situations for the extracellular release of photosynthates when the primary production is computed on the basis of the data obtained by the \(^{14}\)C technique. MCALLISTER (1961), however, found that the absolute \(^{14}\)C uptake rates appear to exceed the absolute \(O_2 \) evolution rates at high light intensity for shade-adapted cells. When comparing the values obtained by the different techniques, therefore, certain corrections should be considered carefully. In the studies of phytoplankton productivity in Tokyo Bay, both of the techniques have been employed independently. Using the \(^{14}\)C technique, ICHIMURA (1967) obtained light-saturated photosynthetic rates of 0.4–3.5 mgC/mg.chl.\(a \)/hr in the highly eutrophic inshore area off Haneda and 0.4–2.5 mgC/mg.chl.\(a \)/hr in the area off Kisasazuka in Tokyo Bay during 1962–1963. Using the same technique, ICHIMURA and KOBAYASHI (1964) reported light-saturated photosynthetic rates of 0.46–5.18 mgC/mg.chl.\(a \)/hr for the surface water of the inner bay. YAMAGUCHI and ICHIMURA (1976) obtained high photosynthetic rates of 0.69–7.20 mgC/mg.chl.\(a \)/hr during the period of 1972–1974 in the bay. On the other hand, using the light and dark bottle oxygen technique, HOGETSU et al. (1959) obtained the light-saturated photo-
synthetic rates of 24–45 mgO₂/mg chl./hr for the bloom of *Skeletonema costatum* off Haneda in Tokyo Bay. FUNAKOSHI et al. (1974) reported rates of 1.5–15 mgO₂/mg chl./a/hr also for the *Skeletonema* bloom in the bay. In order to compare the data from the oxygen technique with those from the ¹⁴C technique, the amount of O₂ evolved was tentatively converted to the amount of carbon assimilated with the photosynthetic quotient as unity. As a result, the values obtained in the present work were 3.08–21.00 mgC/mg chl./a/hr, indicating that the higher rates are extraordinarily high even if underestimation by the ¹⁴C technique is taken into consideration. However, at least, it is noted that the light-saturated photosynthetic rate of phytoplankton in Tokyo Bay is quite high when compared with the rates in productive Oyashio (3–6 mgC/mg chl./hr) and coastal areas (2–7 mgC/mg chl./hr), or with the rates in eutrophic lakes (2–6 mgC/mg chl./hr) summarized by ICHIMURA and ARUGA (1964) for Japanese waters. Thus, it is concluded that the photosynthetic activity of phytoplankton in Tokyo Bay is as high as the highest level observed in natural waters (YAMAGUCHI and SHIBATA 1979).

(3) Phytoplankton biomass and photosynthetic activity in relation to environmental factors

Water temperature is one of the major environmental factors affecting phytoplankton production. The chlorophyll *a* concentrations obtained in December 1975–November 1976 for the surface water of Tokyo Bay and Uraga Strait were plotted in relation to *in situ* temperatures (Fig. 10). As can be seen in Fig. 10, the chlorophyll *a* concentration remained high irrespective of changes in water temperature, especially in the inner bay. In Fig. 11, the chlorophyll *a* concentrations in the surface water at Stn. T-2W is plotted in relation to the *in situ* water temperatures. The upper level of chlorophyll *a* concentration seemed to be related to water temperature to some extent although no significant correlation was observed.

The light-saturated net photosynthetic rates per unit amount of chlorophyll *a* of surface phytoplankton off Haneda were plotted in relation

Fig. 10. Relationships between chlorophyll *a* concentration and temperature in the surface water of Tokyo Bay (December 1975–November 1976).

Fig. 11. Relationship between chlorophyll *a* concentration and temperature of the surface water at Stn. T-2W in Tokyo Bay.

Fig. 12. Relationship between the light-saturated net photosynthetic rate of phytoplankton and temperature of the surface water off Haneda.
Chlorophyll a and Photosynthesis of Phytoplankton in Tokyo Bay

Fig. 13. Relationship between the light-saturated net photosynthetic rate of phytoplankton and temperature of the surface water off Haneda.

Fig. 14. Relationships of the light-saturated net photosynthetic rate and the chlorophyll a concentration to salinity in the surface water in Tokyo Bay.

to the in situ water temperatures, but no correlation was found (Fig. 12). This would suggest that the water temperature does not limit the photosynthetic capacity of phytoplankton. However, as can be seen in Fig. 13, the upper level of the light-saturated net photosynthetic rate per unit volume of water seemed to be limited to a certain extent by temperature as was the case with chlorophyll a concentrations (Fig. 11). As the activity of the organisms increases in general with rise in temperature, it is expected that the photosynthetic rate of phytoplankton is higher during the period of higher water temperature. ICHIMURA (1967) obtained a linear relationship between the light-saturated photosynthetic rate per unit amount of chlorophyll and in situ water temperature at a station off Haneda in Tokyo Bay. In the present study, however, such a clear relationship was not obtained between the light-saturated photosynthetic rate or the chlorophyll a concentration and the in situ water temperature in the inner bay as shown above.

The relationships between the light-saturated net photosynthetic rate of phytoplankton and salinity and between the chlorophyll a concentration and salinity of the surface water are shown in Fig. 14, in which are included the data obtained in the inner part of the bay and Uraga Strait. The light-saturated net photosynthetic rate of phytoplankton from the low-salinity water of the inner bay was appreciably higher when compared with the low photosynthetic rate of phytoplankton from the high-salinity water of Uraga Strait. In Fig. 14(A) it is clearly illustrated that the photosynthetic rate was lower in the samples from the high-salinity water even though the data scattered to a certain extent. A similar trend was also obtained between the chlorophyll a concentration and salinity as shown in Fig. 14(B), though the data scattered much more as compared to Fig. 4(A).

Salinity is also an important factor affecting phytoplankton production especially in the neritic and estuarine areas where a noticeable salinity gradient is often observed. There have been many investigations concerning the effect of salinity on phytoplankton production (NAKANISHI and MONSI 1965, MAEDA et al. 1973, SHIMURA et al. 1979, TERADA and ICHIMURA 1979a, b). According to NAKANISHI and MONSI (1965), phytoplankton in Tokyo Bay seemed to be tolerant to a rather wide range of salinity without appreciable decrease in their photosynthetic activity. TERADA and ICHIMURA (1979a) found that within the estuary the photo-
Fig. 15. Distributions of chlorophyll a concentration, salinity, dissolved oxygen concentration and temperature in the surface water at the entrance of Tokyo Bay obtained on August 26, 1978.

A synthetic rate correlated linearly with salinity and inversely with nutrient concentration. The present data coincide fairly well with those reported by Terada and Ichimura (1979b) in the salinity range above 30%. In this range, the lower photosynthetic rate obtained in the present study may be not only due to higher salinity but also to lower concentrations of nutrients. The photosynthetic rate of phytoplankton was low in the southern part of the inner bay with high salinity. It may be possible to expect that inflowing freshwater stimulates in some way the phytoplankton photosynthesis in the innermost part of the bay where the photosynthetic rate was observed to be higher in water of lower salinity.

In Fig. 14(B) special attention is paid to the distinctive difference in the concentration of chlorophyll a around the salinity of 33.5%, because the chlorophyll a concentration decreased with the increase in salinity and could not be found at any greater concentrations than 5 mg/m³ in the water with salinity of 33.5% or more. Fig. 15 shows the results of the observations on hydrographic conditions and chlorophyll a concentration in the surface water around the front at the entrance of Tokyo Bay on August 26, 1978. A marked difference was observed in the concentration of chlorophyll a around the front, the boundary of bay water and oceanic water. The boundary was quite clearly distinguished in salinity and dissolved oxygen concentration but not in water temperature. The boundary salinity was around 33.5% and agreed well with that mentioned above in reference with Fig. 14(B). Thus, the neritic phytoplankton community in Tokyo Bay is characterized by water with salinity of less than 33.5%.

Transparency of water is dependent on the concentration of suspended substances and colored dissolved matter in the water. Fig. 16 shows the relationship between the chlorophyll a concentration in surface water and transparency (Secchi disk depth) measured in Tokyo Bay and its adjacent areas including Stns. T-8 and T-9 during the period from March to November 1976. The obtained hyperbolic relationship coincided fairly well with that reported by Ichimura (1956) for lake water in Japan. However, there is a distinctive difference between the present result and the results obtained for the Kuroshio and Oyashio areas by Saito and Ichimura (1960). The difference is clearly seen when the
concentration of chlorophyll a is plotted on logarithmic scale (Fig. 17); in the present areas the Secchi disk depth does not increase much with decrease of the chlorophyll a concentration. This suggests that the proportion of suspended substances other than phytoplankton is high in water of Tokyo Bay, which would largely be concerned with defining the photosynthetic layer in the bay.

Figure 18 compares the horizontal distributions of chlorophyll a, light-saturated net photosynthetic rate, phosphate, nitrate, nitrite and silicate in the surface water of Tokyo Bay on December 11, 1978. The nutrient concentrations were higher in the northwestern part of the bay. Such a trend was already obtained in the early 1960’s (ICHIMURA 1967) and seems not to have changed. The level of concentrations of these nutrients has not been changed very much although a slight decrease in nitrate was noticed.

Fig. 16. Relationship between the concentration of surface chlorophyll a and Secchi disk depth in Tokyo Bay and adjacent areas (1976).

Fig. 17. Relationship between the concentration of surface chlorophyll a and Secchi disk depth in Tokyo Bay and adjacent areas (1976).

Fig. 18. Horizontal distributions of chlorophyll a, light-saturated net photosynthetic rate ($P_{n,max}$), phosphate, nitrate, nitrite and silicate in the surface water of Tokyo Bay on December 11, 1978.
It is generally said that the distribution of chlorophyll a is related to the distribution of nutrients and that the phytoplankton growth is greatly affected by nutrient concentrations. In the present investigation, the data supporting this generalization were obtained in May 1978, but in December 1978 the distribution of chlorophyll a did not coincide with that of the nutrients. A similar result was reported in the observation of the distribution of polluted water by Saitoh et al. (1979) when they analyzed the LANDSAT MSS data of 1972–1976 in Tokyo Bay. According to them, the chlorophyll a distribution might be dependent not on nutrient gradients but on such meteorological or physical factor as tide or drift current brought about by strong wind stress, which transports surface phytoplankton cells toward the northeastern part of the bay. This situation could reasonably be used for explaining the distribution of chlorophyll a obtained in January and February 1978. In spite of these conditions it is said that phytoplankton chlorophyll a might be produced more vigorously in the northwestern water than in the southeastern water; in the former water appropriate nutrient supply is expected for phytoplankton growth.

Short-term variations of the concentrations of inorganic nutrients and chlorophyll a and the photosynthetic activity of phytoplankton in the surface water off Haneda are illustrated in Fig. 19. The variations of phosphate, nitrate, nitrite concentrations were almost independent of the variation of chlorophyll a concentration, while the variation of silicate concentration seemed to be inversely correlated with that of chlorophyll a concentration to a certain extent. Although the concentrations of phosphate and/or nitrate are usually considered to limit phytoplankton growth, it is hardly the case when the variation of phytoplankton biomass is independent of those of nutrient concentrations as seen in Fig. 19. It is reasonable to consider that the present concentrations of inorganic nutrients in Tokyo Bay are far above the levels to be limiting on phytoplankton growth (Yamaguchi and Shibata 1979).

4. Concluding remarks
In the inner part of Tokyo Bay, both the concentration of chlorophyll a and the photosynthetic activity of phytoplankton are very high almost throughout the year, so that a very high level of primary production by phytoplankton is expected all over the inner bay throughout the year. Especially in summer the light condition favors the maintenance of high primary productivity of phytoplankton, resulting in an increase of the phytoplankton standing crop and frequent occurrence of phytoplankton blooms. The highest productive area is found in the northwestern part of the inner bay, even though the highly productive area tended to expand southwards. A markedly high level of chlorophyll a concentration observed during the period other than summer and higher photosynthetic activity of phytoplankton in addition
to the extremely high levels of nutrient concentrations in water support the comparatively high level of primary productivity all over the inner part of Tokyo Bay provided that the meteorological and hydrological conditions are favorable.

Acknowledgements

We are very grateful to Captain T. ISOUCHI, officers and the crew of the T/S Seiyo Maru, Tokyo University of Fisheries, for their helpful cooperation during the cruises throughout the present investigations. Sampling work on board was carried out in cooperation with Professor M. MURANO and the member of his laboratory, to whom we express cordial thanks. We are also very much indebted to the members of our laboratory for their assistance throughout the investigations. We express our thanks to Ms. K. TORKKO for her kind help in revising the English of the manuscript.

References

東京湾における植物プランクトンのクロロフィル量と光合成活性の変動

柴田佳明, 賀賀祐雄

要旨: 植物プランクトン現存量（クロロフィルa）という環境要因を、東京湾内湾、浦賀水道および潮汐の点を中心に、1975年12月から1978年12月まで3年間にわたって調べた。また、同時期に潮汐の観測を用いて光合成と呼吸の活性を種々の照度と温度の下で測定した。

通常、クロロフィルa濃度は内湾北西部で高く、南部で低かった。また浦賀水道以南では、クロロフィルa濃度は内湾に比べて明らかに低かった。光合成活性とクロロフィルa濃度の季節変化は10年もしくはそれ以前に比べ大きく異なっており、両者とも1年を通じて高く、最大値は夏季に得られたが、春および秋季の増殖が顕著でなかった。水温と塩度は植物プランクトンの現存量および光合成活性の変動に大きな役割を果たしているようであり、植物プランクトンの現存量およびその分布の変化は栄養塩濃度等の化学的要因よりも、むしろ潮汐や強風によってもたらされる吹送流等の物理的もしくは気象的要因に依るところが大きいと考えられる。東京湾では、植物プランクトン群集の高い生産力は通年維持され、物理的環境が好適であれば、栄養塩等によって制限されることはないと考える。
On the Urohyal of Forty-Six Species of Fishes of the Order Cypriniformes

Takaya KUSAKA**

Abstract: Urohyals of 46 species of fishes of the order Cypriniformes were observed and compared. The features of urohyals are remarkably characteristic of genera and families. The common feature of urohyals in this order is the vertical plate of main body developed commonly, and the ventral edge is remarkably expanded horizontally in various grades like a triangle or quadrate shape respectively. The frontal top as the part connected to the hypohyal is commonly developed, and on the other hand, the anterodorsal part connected to the basibranchial is entirely undeveloped. In the suborders Characoides and Cyprinidae, the urohyals resemble in shape an aeroplane tail without a few example. In the suborder Siluridae, the urohyal is commonly taking a flat shape as laterally viewed and a remarkably expanded shape as dorsally viewed.

この目に含まれる各々の分類単位について, それぞれ形状に特徴が見られるが, 以下順を追って記述する。

コイ目 Cypriniformes

前連部はかなり肥厚しているが, 頭連部は全く発達していない。垂直部は普通で, 下辺の拡りがよく発達する。尾舌骨形部の割合を括弧するとき, 尾舌骨長は頭長の5%のものから50%のものもあり, 変化が大きいが, 平均すれば26%で,
硬骨魚全体の標準よりはやや小さいといえる。骨高の骨長比は 18% から 260% で、やや短い範囲が広く、平均値は 49% で、かなり高い値を示している。骨幅は 8% から 156% で変化が著しく、平均値は 47% で、かなり幅広いといえる。

1. カラシ（Characine）亜目 Characoidei

前後部発達・下辺拡張型で、他のものと比べて特徴はない。尾柄骨長の頭長比は 12% ないし 46%，平均 29% で、やや短い。

骨高の骨長比は 22% ないし 66%，平均 43% で、かなり高さが高い。骨幅の骨長比は 8% ないし 37%，平均 23% で、本種中では拡張は狭斎である。

1.1 カラシ科 Characidae

垂直部は大体標準形であるが、短いものが多い。下辺の拡張はいずれも発達しているが、その程度はいろいろである。尾柄骨長の頭長比は 16% ないし 37%，範囲が広く、平均値は約 30% である。骨高の骨長比は 22% ないし 66%，平均値は約 46% で、かなり短い。骨幅の骨長比は 8% ないし 37%，平均値は 23% で、下辺の拡張は比較的少ない。

1.1.1 ピラニア（Piranha）属 Serrasalmus

垂直部は発達し、骨高は高い。下辺の拡張は次第に拡張し、中部が幅広く、後方までせばまっているので、上面形は矩形形をしている。

1.1.1.1 ピラニア・ナッテリ Serrasalmus nattereri（KNER）

尾柄骨長の頭長比は 30%，骨高の骨長比は 51% と著しく高く、骨幅の骨長比は 30% と標準的である。

1.2-2 メチネス属 Metynnis

垂直部はよく発達し、ほぼ正三角形をしている。下辺の拡張はよく発達するが、その拡張が下方にのびて、あたかも縁状をしている。この形状は極めて特徴的である。

1.2-2.1 メチネス Metynnis schreitmulleri

尾柄骨長の頭長比は 37% で、本科中ではかなり大きな方である。骨高の骨長比は 66% と本科中で最高である。骨幅の骨長比も 36% で、やや本科中で幅広いもの一つである。

1.1-3 ミロソマ属 Mylossoma

垂直部が下辺の拡張も発達し、拡張の後縁はほぼ完形をしている。魚類目を代表する典型的な形をしているもの一つである。

1.1-3.1 ミロソマ Mylossoma aureum（AGASSIZ）

尾柄骨長の頭長比は 25% でやや小さく、骨高の骨長比は 61% と大きく、骨幅の骨長比は 37% と本科中でもっとも幅広い。

1.1-4 コンゴウ・テトラ（Congo tetra）属 Phenacogrammus

垂直部は普通で、前後部がかなり長大している。下辺の拡張は下方にとられ、前方から後方まで一様な拡張を具備である。

1.1-4.1 コンゴウ・テトラ Phenacogrammus interruptus（BOULENGER）

尾柄骨長の頭長比は 16% と著しく小さく、本科中最小である。骨高の骨長比は 50% と大きい方であるが、骨幅の骨長比は 19% とかなり狭小である。

1.1-5 レポリナス属 Leporinus

垂直部は前方から後方に発達している。一方、下辺の拡張は発達が悪く、前方に認められる程度である。

1.5-5.1 ブラック・ラインド・レポリナス（Black-lined leporinus）Leporinus striatus KNER

尾柄骨長の頭長比は 26%，骨高の骨長比は 50% と著しく短いものであるが、骨幅の骨長比は 13% と本科中最小値に近い。

1.1-6 キロダス属 Chilodus

垂直部が肥厚している。垂直部は上辺が細みかなりそろっており、下辺の拡張は発達する。下辺の拡張は良好に発達し、上面形は細長い菱形をしている。

1.1-6.1 キロダス・プントタタス Chilodus punctatus MUELLER & TROSCHEL

尾柄骨長の頭長比は 46% で、本科中で最大であり、他科の魚類に比べてもかなり大である。骨高の骨長比は 36% と割合に低く、骨幅の骨長比は
23% と普通である。
1.1-7 プリストラ属 Pristella
垂直部は直角三角形に発達している。 前連部
は比較的細い。 下辺の拡りも僅かで細長く、上
面からみてペン軸様の形状をしている。
1.1-7.1 プリストラ・リドレイ Pristella
riddlei (MEEK)
尾舌骨長の頭長比は 33%，骨高の骨長比は 30%
といずれも小さい。 さらに、骨幅の骨長比は 8% と
骨長比は 16% というも小さい値を示している。
特に特に骨長比は本種内低である。
1.2 ヘミオタス (Hemiodus) 科 Hemiodidae
垂直部および下辺の拡りは共によく発達し、コ
イ科の尾舌骨とよく似ている。
1.2-1 ヘミオタス属 Hemiodus
垂直部はほぼ直角三角形をなし、下辺の拡りは
著しく広く左右に拡がり、あぶみ形を呈している。
1.2-1.1 ヒトサポニオタス Hemiodus
semiilacunatus KNER
尾舌骨長の頭長比は 37% と割合に大きい。
骨高の骨長比は 33% と普通であり、骨幅の骨
長比は 29% とやや大きい。
1.3 ハチャット属 (Hatchet) 科 Gasteropelecidae
尾舌骨は著しく退化的で、単純な形状をしている。
1.3-1 ハチャット属 Gasteropelecus
前連部は肥厚している。 垂直部は狭く後方にの
びているだけで、下辺の拡がりは全く見られない。
側面形は一見、似乎の様な形状である。
1.3-1.1 シルバー・ハチャット (Silver hatchet)
Gasteropelecus levis (EIGENMANN)
尾舌骨長の頭長比は 12% と極めて小さい。
骨高の骨長比は 30%，骨幅の骨長比は 17% と
共に小さ目の値である。

2. デンジウナギ亜目 Gymnotoidei
特別な特徴はみられない。
2.1 ランフィケア (Rhamphiethyi) 科
Rhamphiethyiidae
2.1-1 ヒポポムス属 Hypopomus
垂直部の上辺が著しく後方に延長している。 下
辺は短か、その部分に左右の拡がりが、ほぼ菱
形に発達している。
2.1-1.1 トランスルーセント・ナイフ・フィッシュ (Translucent knife-fish) Hypopomus
arctidii KAUP
尾舌骨長の頭長比は 42% とかなり大きい。
骨高は骨長の 29%，骨幅は骨長の 26% と共に
普通である。

3. コイ亜目 Cyprinoidi
前連部、垂直部、下辺の拡がりと、いずれもよく発
達し、標準的な形状は航空機の尾翼を思わせる形
状をしている。 中には例外的な形状のもあるが、
概して前述のカラシナ亜目のそれに著しく類似し
ている。
3.1 コイ科 Cyprinidae
尾舌骨長の頭長比は 30% ないし 50%，平均値
は 36% と標準よりやや大である。 骨高の骨長比
は 35% で標準値を示す。 骨幅の骨長比は平均
31% と下辺の拡がりがかなり発達している。
3.1-1 バラナゴ属 Rhodeus
前連部は小さな二股になり、垂直部はよく発達
し、下辺の左右の拡がりもよく発達していて、コイ
・フナのそれとよく似た形をしている。
3.1-1.1 バラナゴ属 Rhodeus ocellatus
(KNER)
尾舌骨長の頭長比は 37% で、標準値であり、
骨高の骨長比は 42%，骨幅の骨長比は 40% と、
いずれもかなり大きな値である。
3.1-2 モチ属 Pseudorasbora
骨高、骨高、骨幅のいずれもかなり大きめであ
る。垂直部は後方にのび、その上に付け、下辺
の拡がりは前方でよく発達して、全体形があぶみ状
<table>
<thead>
<tr>
<th>Species name (or common name)</th>
<th>Locating and date of collecting (* Obtained from a market in Tokyo, Japan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serrasalmus nattereri</td>
<td>South America;* Sept. 1971.</td>
</tr>
<tr>
<td>Metynnis schreimulleri</td>
<td>South America;* Mar. 1969.</td>
</tr>
<tr>
<td>Chilodus punctatus</td>
<td>South America;* Oct. 1971.</td>
</tr>
<tr>
<td>Pristella riddlei</td>
<td>South America;* Oct. 1971.</td>
</tr>
<tr>
<td>Hemiodus seminaenatus</td>
<td>South America;* Feb. 1971.</td>
</tr>
<tr>
<td>Gasteropeclus levii</td>
<td>South America;* Feb. 1971.</td>
</tr>
<tr>
<td>Rhodeus occelatus</td>
<td>Saitama, eastern Central Japan, July 1971.</td>
</tr>
<tr>
<td>Pseudorasbora parva</td>
<td>Southwest Tokyo, Japan; Feb. 1970.</td>
</tr>
<tr>
<td>Pseudorasbora pumila</td>
<td>Saitama, eastern Central Japan, Aug. 1969.</td>
</tr>
<tr>
<td>Tribolodon hakonensis</td>
<td>Chiba, southeastern Central Japan, Nov. 1971.</td>
</tr>
<tr>
<td>Zacco platypus</td>
<td>Tokyo, Japan, May 1966.</td>
</tr>
<tr>
<td>Ctenopharyngodon idellus</td>
<td>Saitama, eastern Central Japan, Nov. 1968.</td>
</tr>
<tr>
<td>Hypophthalmichthys moritrix</td>
<td>Tokyo, Japan, Apr. 1969.</td>
</tr>
<tr>
<td>Carrassius auratus</td>
<td>Saitama, eastern Central Japan, July 1969.</td>
</tr>
<tr>
<td>Cyprinus carpio</td>
<td>Tokyo, Japan, July 1970.</td>
</tr>
<tr>
<td>Barbus tetrazona</td>
<td>Saitama, eastern Central Japan, July 1966.</td>
</tr>
<tr>
<td>Misgurnus anguillicaudatus</td>
<td>Saitama, eastern Central Japan, Nov. 1968.</td>
</tr>
<tr>
<td>"Ganges loach"</td>
<td>Mymensingh, Ganges River, South Asia, Jan. 1971.</td>
</tr>
<tr>
<td>Botia macracanthus</td>
<td>Borneo, Southeast Asia;* Nov. 1970.</td>
</tr>
<tr>
<td>Ploitosus anguillaris</td>
<td>Sagami Bay, Southeast Japan, May 1966.</td>
</tr>
<tr>
<td>"Kaiyan resembling"</td>
<td>South America;* Feb. 1971.</td>
</tr>
<tr>
<td>"Ganges bagrus"</td>
<td>Mymensingh, Ganges River, South Asia, Jan. 1971.</td>
</tr>
<tr>
<td>"Dotted dorsalfin bagrus"</td>
<td>Mymensingh, Ganges River, South Asia, Jan. 1971.</td>
</tr>
<tr>
<td>Corydoras paleatus</td>
<td>South America;* Oct. 1971.</td>
</tr>
<tr>
<td>Corydoras paleatus Albino</td>
<td>South America;* Oct. 1971.</td>
</tr>
<tr>
<td>Clarias lazera</td>
<td>Africa;* May 1972.</td>
</tr>
<tr>
<td>"Ganges chaca"</td>
<td>Mymensingh, Ganges River, South Asia, Jan. 1971.</td>
</tr>
</tbody>
</table>
コイ目（Cypriniformes）魚類46種の尾舌骨（Urohyal）の形状

of total length, body length, body height, head length, etc.

<table>
<thead>
<tr>
<th>Measurements in mm</th>
<th>Proportion in percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length</td>
<td>Head length of urohyal length</td>
</tr>
<tr>
<td>Body length</td>
<td></td>
</tr>
<tr>
<td>Body height</td>
<td></td>
</tr>
<tr>
<td>Body length</td>
<td></td>
</tr>
<tr>
<td>Head length</td>
<td></td>
</tr>
<tr>
<td>Urohyal length</td>
<td></td>
</tr>
<tr>
<td>Urohyal height</td>
<td></td>
</tr>
<tr>
<td>Urohyal width</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>76</td>
<td>76</td>
<td>24</td>
<td>7.3</td>
<td>3.7</td>
<td>2.2</td>
<td>30%</td>
</tr>
<tr>
<td>135</td>
<td>121</td>
<td>72</td>
<td>25</td>
<td>9.2</td>
<td>6.0</td>
<td>3.3</td>
<td>37%</td>
</tr>
<tr>
<td>85</td>
<td>79</td>
<td>47</td>
<td>22</td>
<td>5.6</td>
<td>3.0</td>
<td>2.0</td>
<td>25%</td>
</tr>
<tr>
<td>84</td>
<td>72</td>
<td>19.0</td>
<td>19.5</td>
<td>3.2</td>
<td>1.6</td>
<td>0.6</td>
<td>16%</td>
</tr>
<tr>
<td>166</td>
<td>146</td>
<td>30</td>
<td>38</td>
<td>10.0</td>
<td>5.0</td>
<td>1.3</td>
<td>26%</td>
</tr>
<tr>
<td>56</td>
<td>48</td>
<td>14.0</td>
<td>13.5</td>
<td>6.2</td>
<td>2.2</td>
<td>1.4</td>
<td>46%</td>
</tr>
<tr>
<td>34</td>
<td>28</td>
<td>8.4</td>
<td>6.0</td>
<td>2.0</td>
<td>0.65</td>
<td>0.25</td>
<td>33%</td>
</tr>
<tr>
<td>34</td>
<td>27</td>
<td>11.4</td>
<td>7.7</td>
<td>1.8</td>
<td>0.40</td>
<td>0.28</td>
<td>23%</td>
</tr>
<tr>
<td>108</td>
<td>93</td>
<td>19</td>
<td>23</td>
<td>8.5</td>
<td>2.8</td>
<td>2.5</td>
<td>37%</td>
</tr>
<tr>
<td>45</td>
<td>41</td>
<td>19</td>
<td>10</td>
<td>1.2</td>
<td>0.36</td>
<td>0.20</td>
<td>12%</td>
</tr>
<tr>
<td>88</td>
<td>80</td>
<td>8.0</td>
<td>9.0</td>
<td>3.8</td>
<td>1.1</td>
<td>1.0</td>
<td>42%</td>
</tr>
<tr>
<td>71</td>
<td>59</td>
<td>26</td>
<td>13</td>
<td>4.8</td>
<td>2.0</td>
<td>1.9</td>
<td>38%</td>
</tr>
<tr>
<td>73</td>
<td>63</td>
<td>14.0</td>
<td>13.5</td>
<td>5.7</td>
<td>2.3</td>
<td>2.4</td>
<td>39%</td>
</tr>
<tr>
<td>45</td>
<td>39</td>
<td>7.7</td>
<td>8.4</td>
<td>3.7</td>
<td>1.7</td>
<td>1.8</td>
<td>40%</td>
</tr>
<tr>
<td>62</td>
<td>53</td>
<td>12</td>
<td>13</td>
<td>4.7</td>
<td>1.5</td>
<td>1.4</td>
<td>36%</td>
</tr>
<tr>
<td>195</td>
<td>162</td>
<td>36</td>
<td>38</td>
<td>11.8</td>
<td>4.3</td>
<td>3.7</td>
<td>31%</td>
</tr>
<tr>
<td>121</td>
<td>101</td>
<td>24.0</td>
<td>24.5</td>
<td>7.3</td>
<td>3.3</td>
<td>1.6</td>
<td>30%</td>
</tr>
<tr>
<td>172</td>
<td>143</td>
<td>36</td>
<td>32</td>
<td>11.8</td>
<td>2.6</td>
<td>3.8</td>
<td>37%</td>
</tr>
<tr>
<td>170</td>
<td>142</td>
<td>40</td>
<td>39</td>
<td>19.5</td>
<td>6.0</td>
<td>4.0</td>
<td>50%</td>
</tr>
<tr>
<td>106</td>
<td>94</td>
<td>21</td>
<td>20</td>
<td>6.0</td>
<td>2.3</td>
<td>1.2</td>
<td>30%</td>
</tr>
<tr>
<td>82</td>
<td>70</td>
<td>27</td>
<td>21</td>
<td>7.7</td>
<td>2.8</td>
<td>3.8</td>
<td>36%</td>
</tr>
<tr>
<td>118</td>
<td>92</td>
<td>38</td>
<td>27</td>
<td>10.7</td>
<td>3.5</td>
<td>4.6</td>
<td>39%</td>
</tr>
<tr>
<td>347</td>
<td>307</td>
<td>89</td>
<td>79</td>
<td>28.0</td>
<td>7.2</td>
<td>13.6</td>
<td>35%</td>
</tr>
<tr>
<td>39</td>
<td>30</td>
<td>9.0</td>
<td>9.5</td>
<td>3.0</td>
<td>1.2</td>
<td>0.4</td>
<td>32%</td>
</tr>
<tr>
<td>81</td>
<td>65</td>
<td>18</td>
<td>17</td>
<td>6.0</td>
<td>1.7</td>
<td>1.5</td>
<td>35%</td>
</tr>
<tr>
<td>45</td>
<td>37</td>
<td>8.1</td>
<td>9.5</td>
<td>2.8</td>
<td>1.0</td>
<td>0.6</td>
<td>30%</td>
</tr>
<tr>
<td>23.7</td>
<td>19.3</td>
<td>4.0</td>
<td>4.3</td>
<td>1.3</td>
<td>0.40</td>
<td>0.35</td>
<td>30%</td>
</tr>
<tr>
<td>114</td>
<td>100</td>
<td>14.0</td>
<td>15.5</td>
<td>2.5</td>
<td>1.4</td>
<td>1.1</td>
<td>16%</td>
</tr>
<tr>
<td>90</td>
<td>80</td>
<td>11</td>
<td>13</td>
<td>1.7</td>
<td>0.8</td>
<td>0.8</td>
<td>13%</td>
</tr>
<tr>
<td>92</td>
<td>79</td>
<td>16</td>
<td>16</td>
<td>1.08</td>
<td>0.86</td>
<td>0.40</td>
<td>8%</td>
</tr>
<tr>
<td>56</td>
<td>52</td>
<td>3.4</td>
<td>7.5</td>
<td>0.68</td>
<td>0.37</td>
<td>0.13</td>
<td>9%</td>
</tr>
<tr>
<td>58</td>
<td>45</td>
<td>12</td>
<td>16</td>
<td>1.06</td>
<td>2.76</td>
<td>0.65</td>
<td>7%</td>
</tr>
<tr>
<td>34</td>
<td>25</td>
<td>5.8</td>
<td>8.3</td>
<td>0.4</td>
<td>0.7</td>
<td>0.3</td>
<td>5%</td>
</tr>
<tr>
<td>112</td>
<td>95</td>
<td>17.0</td>
<td>18.5</td>
<td>4.8</td>
<td>3.3</td>
<td>4.0</td>
<td>27%</td>
</tr>
<tr>
<td>400</td>
<td>365</td>
<td>73</td>
<td>85</td>
<td>17.7</td>
<td>7.2</td>
<td>11.0</td>
<td>22%</td>
</tr>
<tr>
<td>55</td>
<td>46</td>
<td>9.0</td>
<td>8.0</td>
<td>0.7</td>
<td>0.7</td>
<td>0.3</td>
<td>10%</td>
</tr>
<tr>
<td>180</td>
<td>166</td>
<td>27</td>
<td>35</td>
<td>6.6</td>
<td>3.5</td>
<td>6.0</td>
<td>19%</td>
</tr>
<tr>
<td>110</td>
<td>98</td>
<td>21</td>
<td>25</td>
<td>5.0</td>
<td>1.8</td>
<td>3.7</td>
<td>20%</td>
</tr>
<tr>
<td>71</td>
<td>63</td>
<td>12</td>
<td>15</td>
<td>3.5</td>
<td>1.2</td>
<td>2.4</td>
<td>24%</td>
</tr>
<tr>
<td>127</td>
<td>107</td>
<td>22</td>
<td>22</td>
<td>4.4</td>
<td>1.34</td>
<td>1.42</td>
<td>20%</td>
</tr>
<tr>
<td>125</td>
<td>110</td>
<td>20</td>
<td>20</td>
<td>4.1</td>
<td>1.75</td>
<td>1.42</td>
<td>21%</td>
</tr>
<tr>
<td>35</td>
<td>27</td>
<td>8.0</td>
<td>8.0</td>
<td>2.0</td>
<td>0.5</td>
<td>2.0</td>
<td>25%</td>
</tr>
<tr>
<td>30</td>
<td>23</td>
<td>7.0</td>
<td>8.0</td>
<td>1.4</td>
<td>0.4</td>
<td>1.6</td>
<td>18%</td>
</tr>
<tr>
<td>324</td>
<td>307</td>
<td>45</td>
<td>62</td>
<td>12.0</td>
<td>3.2</td>
<td>13.5</td>
<td>19%</td>
</tr>
<tr>
<td>95</td>
<td>82</td>
<td>7.0</td>
<td>12.0</td>
<td>2.8</td>
<td>0.5</td>
<td>4.2</td>
<td>23%</td>
</tr>
<tr>
<td>146</td>
<td>125</td>
<td>20</td>
<td>44</td>
<td>6.2</td>
<td>1.5</td>
<td>9.7</td>
<td>14%</td>
</tr>
</tbody>
</table>
であるのが特徴である。
3.1-2.1 モツボ Pseudorasbora parva
（Temminck & Schlegel）
尾舌骨長の頭長比は 39%、骨高の骨長比は 40%、骨幅の骨長比も 40% といずれもかなり大き
な値を示している。
3.1-3 モロコ属 Gnathopogon
垂直部も下辺の拡りも共によく発達するが、全体
に長さが長く、側面形はへら状を呈する。
3.1-3.1 ホンモロコ Gnathopogon caerulescens
（Saugave）
尾舌骨長の頭長比は 36% と標準であり、骨高
の骨長比は 32% とやや低く、骨幅の骨長比は 30% で
はほぼ標準である。
3.1-4 ウグイ属 Tribolodon
前連部は小さく二段になり、垂直部と下辺の拡
りはよく発達し、側面は下辺後端が とがっている
上表面は羽根状を呈する。
3.1-4.1 ウグイ Tribolodon hakonensis
（Günther）
尾舌骨長の頭長比は 33% とやや小さい。骨高
の骨長比は 32%、骨幅の骨長比は 29% というも
標準より僅かに小さい。
3.1-5 オイカワ属 Zacco
垂直部は後上方に高く延長する。下辺の拡りは
全く水平に発達しているので、側面形は完全に一
直線をしています。下辺の拡りの後線は深く切れこ
んでいる。
3.1-5.1 オイカワ Zacco platypus
（Temminck & Schlegel）
尾舌骨長の頭長比は 30% とやや小さい。骨高
の骨長比は 40% とかなり大きいが、骨幅の骨長
比は 22% とかなり小さい値である。
3.1-6 ソウギョ属 Ctenopharyngodon
全体にやや細形で上辺が緩くそり上っている点
と下辺の拡りの後線が深く切れこんでいるのが特
徴的である。
3.1-6.1 ソウギョ Ctenopharyngodon idellus
（Cuvier & Valenciennes）
尾舌骨長の頭長比は 37% と標準であるが、骨
高の骨長比は 27% とかなり小さく、骨幅の骨長
比は 32% とやや小さい値を示す。
3.1-7 ハクレン属 Hypophthalmichthys
やや細形で、左右への拡りの後線が切れこんで
いるため、上表面は矢羽根状を呈する。下辺前方
が、側面からみて竜骨状にそりだしているのが特
徴である。
3.1-7.1 ハクレン Hypophthalmichthys
moriiuis (Cuvier & Valenciennes)
尾舌骨長の頭長比は 50% に達し、本科中の最
大値を示している。骨高の骨長比は 31%、骨幅の
骨長比は 21% といずれも小さい値である。
3.1-8 （Genus undetermined）
下辺の側面形が直線的で、前記オイカワに似て
いるが、下辺の拡りが狭小であることと、その後線が
僅かに深い銭角的に切れこんでいるのが異なる。
3.1-8.1 ガンジス・ワタカ “Ganges dace”
尾舌骨長の頭長比は 30% とかななり小さい。骨
高の骨長比は 38% と標準に近く、骨幅の骨長比
は 20% と著しく狭小である。
3.1-9 フナ属 Carassius
下辺の左右の拡が著しく発達し、上表面は
はほぼ正三角形を呈する程である。
3.1-9.1 フナ Carassius caryassius Linne
尾舌骨長の頭長比は 36% と標準であり、骨高
の骨長比も 36% と標準値を示すが、骨幅の骨長
比は 49% に達し、拡がの発達していることを示
している。
3.1-9.2 キンギョ Carassius auratus Linne
上記フナのそれと酷似しているが、尾舌骨長の
頭長比が 39% と少しであるが大きく、一方、骨
高の骨長比が 32% であり、骨幅の骨長比が 35%
といずれもフナの場合より小さい値を示し
ている。
3.1-10 クイ属 Cyprinus
尾舌骨形はフナ属のそれと似ているが、前端部
のくびれた部分が短かく、下辺の拡がの側線
が曲線状であること、および、垂直部が後方にや
や延長し骨高が低い点が異なる。
3.1-10.1 クイ Cyprinus carpio Linne
尾舌骨長の頭長比は 35% と標準値である。骨
高の骨長比は 26% とかななり低い。骨幅の骨長比
は48%でかなり幅広い形状である。
3.1.11 バルパス属 Barbus
全体的にやや細長いが、特別に変った点はなく、ただし垂直部の上辺が僅かに上方に凸のゆるい曲線であることが特徴といえる。
3.1.11.1 スマトラ (Sumatra) Barbus tetrazona BLEECKER
尾舌骨長の頭長比は32%とやや小さい。垂直部はよく発達し、骨高の骨長比は40%を示す。
下辺は長く、左右の拡がりは狭く細長く、上面形はベン状で、骨幅の骨長比は13%と著しく小さい。
3.1.11.2 バルパス オリゴレピス Barbus oligolepis (BLEECKER)
尾舌骨長の頭長比は35%で普通である。垂直部はよく発達するが、上部スマトラのそれよりも高さがかなり低く、骨高の骨長比は28%にすぎない。下辺の拡がりは左右よく発達し、その後端は上方から見て直線をしており、骨幅の骨長比は25%と上部スマトラのそれよりかなり大である。
3.1.12 ラベオ属 Labeo
上記バルパス属に似てやや細いが、前部がやや肥大し、上辺は極めてゆるい曲線で、前半が凹、後半が凸になっている。下辺の拡がりは後端が直線である。
3.1.12.1 レッドテイル ブラック シャーク (Red tail black shark) Labeo bicolor SMITH
尾舌骨長の頭長比は30%と比較的小さい。骨高の骨長比は36%と高く、骨幅の骨長比は21%とかなり狭小である。
3.1.13 ブラキダニ属 Brachydanio
垂直部は発達し、後上方にのびているので、上辺の方が下辺よりかなり長さが長いのが特徴である。
3.1.13.1 ゼブラ ダニオ (Zebra danio)
Brachydanio rerio (HAMILTON-BUCHANAN)
尾舌骨長の頭長比は30%とやや小さい。骨高の骨長比は31%と普通であり、骨幅の骨長比は27%でやはり普通である。
3.2 ドジョウ科 Cobitidae
本科のものは尾舌骨が著しく短小で、尾舌骨長の頭長比が7%から16%、平均約10%しかない。
短形ながら垂直部と下辺の拡がりは発達しているものが多い。骨高の骨長比は70%前後を示して著しく高く、中には高さの方が骨長の倍以上のものもあり、骨幅の骨長比は18%から62%と多様で、平均値は48%である。
3.2.1 ドジョウ属 Misgurnus
この属のものはいずれも前部が発達し、二股になっている。下辺の拡がりはよく拡がっている。
尾舌骨長の頭長比は8%から16%、骨高の骨長比は56%から80%、骨幅の骨長比は37%から50%を示す。
3.2.1.1 ドジョウ Misgurnus anguillicaudatus (CANTOR)
垂直部は普通発達し、ほぼ正三角形をしています。
下辺の拡がりは前半部のみであるが著しく拡がっている。
尾舌骨長の頭長比は16%、骨高の骨長比は56%、骨幅の骨長比は43%である。
3.2.1.2 シロドジョウ “White loach”
Misgurnus sp. Type A
上記ドジョウのそれに似ているが、下辺が上辺より著しく短く、下辺の後方の部分が欠けているのが特徴である。
尾舌骨長の頭長比は12%。
骨高の骨長比は69%、骨幅の骨長比は50%であって、いずれも上記種のそれより大差はない。
3.2.1.3 ガンジスドジョウ “Ganges loach”
Misgurnus sp. Type B
前部は上記2種と同様よく発達するが、垂直部の上辺は発達が小さく下辺より長さが短かい。
下辺の拡がりはあまり発達していないのが特徴である。尾舌骨長の頭長比は8%
と著しく小さく、骨高の骨長比は80%と大きいが、骨幅の骨長比は37%と比較的である。
3.2.2 クーリーローチ (Kuhllo loach)属 Acanthophthalmus
垂直部は後上方に発達し、上辺は下辺より著しく長く、側面形はほぼ直角三角形をなす。
下辺の拡がりは僅かである。
3.2.2.1 クーリーローチ Acanthophthalmus semincinctus FRASER-BRUNNER
骨長の頭長比は9%と著しく小さい。骨長の
骨長比は 54%、骨幅の骨長比は 18% で短い。
3.2-3 クラウンローチ (Clown loach) 属 Botia
垂直部は上方にのみ発達しているので、長さは
極めて短く、典型的な楕円形である。下辺は短
く左右への拡がりが認められる。
3.2-3.1 クラウンローチ Botia macracanthus
(Bleecker)
尾舌骨長の頭長比は 7% で極めて小さい。骨
高の骨長比は 260% と極端に大であり、骨幅の骨
長比は 62% という値を示す。
3.2-4 (Genus undetermined)
3.2-4.1 レッドフィンシャーク似ドジョウ
“Red-fin shark-like loach”
垂直部は全く発達していない。前項部のみが発
達し、下辺の拡がりは全く認められずたんに下方に向
て縦長に近い形状をしている。尾舌骨長の頭長比は
5% と極端に小さい。骨高の骨長比は 175% と極
めて大きく、骨幅の骨長比は 75% となり、大きく
大きい値を示す。
3.3 ジリノケイルス (Gyrinocheilus) 科
Gyrinocheilidae
垂直部は細長く後方に延長し、下辺は左右後方
に細長く延長しており、全体が飛んでいる魚の
様な形状で、極めて特異形である。
3.3-1 ジリノケイルス属 Gyrinocheilus
3.3-1.1 アルジェーター (Algetar)
Gyrinocheilus aymonieri (TIRANT)
尾舌骨長の頭長比は 27% とやや小さい。骨高
の骨長比は 69% と大きく、骨幅の骨長比は 83% と
頗著に大きい。

4. ナマズ亜目 Siluroidei
いずれも左右への拡がりがよく発達し、全体形が
幅広いものが多いため、また、特異な形状をするも
のもかなりある。尾舌骨長の頭長比は 10% ない
し 24% と比較的小型で、骨高の骨長比は 18% か
ら 175% と変化が大きく、一方、骨幅の骨長比
は 32% から 156% と幅が広く、2、3 のものを除
けば、他の魚類にみられぬ幅広形が特徴である。
4.1 ナマズ科 Siluridae
特に特徴はない。

4.1-1 ナマズ属 Parasilurus
前項部は肥厚し、垂直部は発達せず狭い。下辺
は後方にのび、左右への拡がりは充分に発達し、上
面形は菱形をしている。
4.1-1.1 ナマズ Parasilurus asotus (LINNÉ)
尾舌骨長の頭長比は 22% と本亜目の標準に近
い。骨高の骨長比は 36% で、骨幅の骨長比は 63%
と大きい。
4.1-2 グラスキャットフィッシュ (Glass cat
fish) 属 Kryptopterus
垂直部は下方に発達し、上辺と左右辺の拡がり
が大きい。下辺の拡がりは比較的に少なく狭く、上
面形は方錐形をしている。
4.1-2.1 グラスキャットフィッシュ
Kryptopterus bicirrhus (CUVIER & VALEN-
CIENNES)
尾舌骨長の頭長比は 10% とこの亜目の中で最
も小さい。骨高の骨長比は 100% と大きく、この
亜目中で最高である。骨幅の骨長比は 37% と相
比的狭い。
4.2 ゴンサイ科 Plotosidae
前記ナマズの尾舌骨に似て、前辺が厚く発
達し、垂直部はやがての梯形を呈し、下辺の拡がりは
上辺形がやがてに菱形をしている。
4.2-1 ゴンサイ属 Plotosus
4.2-1.1 ゴンサイ Plotosus anguillaris
LACÉPÈDE
尾舌骨長の頭長比は 19% とナマズのそれとほ
ぼ同じである。骨高の骨長比は 53%、骨幅の骨長
比は 91% と下辺の拡がりは広い。
4.3 ギギ科 Bagridae
前項部が肥厚している点は前記ナマズ科のそれ
とよく似ている。垂直部および下辺の拡がりもよく
発達している。尾舌骨長の頭長比は 20% ないし
24%、骨高の骨長比は 32% ないし 44%、骨幅の
骨長比は小さいものと大きいものと二様で、30%
から 74% と範囲が大きい。
4.3-1 (Genus undetermined)
4.3-1.1 カイラン "Kaiyan"
垂直部は高さが低く、下辺の拡がりはよく発達し、
上辺形はほど正三角形をしている。尾舌骨長の頭
長比は 20％、骨高の骨長比は 36％であり、骨幅の骨長比は 74％と極めて大きい。

4.3-2 (Genus undetermined)
4.3-2.1 カイサン似 “Kaiyan resembling”
前後のそれによく似ているが、垂直部分が前方に延長し、その後端が当たっている点が類似している。尾舌骨長の頭長比は 24％、骨高の骨長比は 34％、骨幅の骨長比は 69％と上記種とはほど変わらない。

4.3-3 (Genus undetermined)
4.3-3.1 ガンジスチャン “Ganges bagrus”
前端部分が肥厚し、下辺の拡がりが発達している。垂直部分が前方にはほぼ同じ高さをしており、下辺の拡がりは前方で狭く、後方で変形に拡がっている。尾舌骨長の頭長比は 20％、骨高の骨長比は 31％、骨幅の骨長比は 32％で、全体に細長いことを示す。

4.3-4 (Genus undetermined)
4.3-4.1 セビラシギギ “Dotted dorsalfin bagrus”
上記種に似ているが垂直部分の高さが前方で高く、後方で低下している点と下辺の拡がりが相違する点が異なる。尾舌骨長の頭長比は 21％、骨高の骨長比は 43％、骨幅の骨長比は 35％およびその他の値も上記種より多少が大きい。

4.4 カリチョウ（Callichthyidae）科 Callichthyidae
4.4-1 コリドラス属 Corydoras
前端部分は肥大しているが、垂直部分はほとんどなく、左右への拡がりが発達した平面状で、上面形は変形した五角形を呈している。骨高は著しく低下し、骨幅は骨長と同じか、それ以上と幅広い。

4.4-1.1 コリドラス・パレアタス Corydoras paleatus (JENYNS)
下辺の側線、左右の後端は共にはほぼ直線状で、側端、後端部分の角はいずれも丸味をなしている。尾舌骨長の頭長比は 25％、骨高の骨長比は 25％、骨幅の骨長比は 100％である。

4.4-2 アルビノ・コリドラス Corydoras paleatus (JENYNS) Albino
上記種に似て、側線、後端は共に僅かに内に湾曲している。そのため、拡がりの左右の端および後縁の前端部は直角に当たっている。尾舌骨長の頭長比は 18％、骨高の骨長比は 29％、骨幅の骨長比は 114％と拡がりが頭著で、上記種と数値的にかなり異なっている。

4.5 クララ（Clara）科 Clariidae
4.5-1 クララ属 Claris
前葉部分は幅広く肥厚し、垂直部分は全くなく、左右の拡がりが突出となって側方に突出しているので、全体形は先端に細形であるがややしの形状をしている。

4.5-1.1 アルビノ・クララ Claris lazera
Cuvier & Valenciennes Albinio
尾舌骨長の頭長比は 19％、骨高の骨長比は 27％で、骨幅の骨長比は 112％と幅の方が大である。

4.6 ロリカリア科 Loricariidae
4.6-1 ロリカリア属 Loricaria
前葉部分は幅広く発達し、その両端は前方への小突起となっている。垂直部分はほとんどなく、中心線が僅かに隆起しているにすぎない。左右への拡がりは極めてよく発達している。

4.6-1.1 ロリカリア Loricaria parva
Boulenger
尾舌骨長の頭長比は 23％、骨高の骨長比は 18％と極めて低い。骨幅は骨長の 150％と極めて幅広い。

4.7 イヴァナーズ科 Chacidae
4.7-1 イヴァナーズ属 Chaca
前葉部分は肥大していない。垂直部分は全くなく、上面、下面共はほぼ平坦である。左右の拡がりは極めてよく発達し、側縁後半は棒状となって、側方前方に延長している。したがって、極めて異なった形状で、あたかもジェット機のような形状をしている。

4.7-1.1 ガンジスチャカ（Ganges chaca）
Chaca sp.
尾舌骨長の頭長比は 14％と小さく、骨高の骨長比は 24％で、骨幅の骨長比は 156％と極めて大である。

以上のことから、カラシ属 Characoidei とコイ属 Cyprinoidei との尾舌骨はダンギウナギ亜
目 Gymnotoidei を含め、いずれも 2, 3 の例外を除くと、垂直部と下辺の拡がりが発達した形状で、各亜目の間に特に相異点は見られず、系統分類上も極めて密接な関係にあるものと考えられる。ナマズ亜目 Siluroidei の尾舌骨においては、前連部が発達肥厚し、垂直部はやや低いものから次第に狭小になっており、それらでの下辺の拡がりは一段と発達して尾舌骨長を越える骨幅のものが多い。いずれにしてもコイ亜目からナマズ亜目へと派生進化した尾舌骨形といえる。

科、属、種の配列は尾舌骨形の上から、類形的なものを順に並べたが、これが系統分類学上の配置とどの程度適合するのかが焦点であり、諸賢の御意見を戴ければ幸いと存ずる次第であります。

尚、尾舌骨の観察図については、既刊、魚類の尾舌骨（KUSAKA 1974）の原因を再使用したので、その転用を御諌承下さった東京大学出版会の御好意に対し、感謝申し上げます。

文 献

草下孝也 (1975): ニシン亜目 (Clupeoidei), ウナギ亜目 (Anguilloidei) の尾舌骨の形状. うみ, 13, 134-149.
コイ目（Cypriniformes）魚類46種の尾管骨（Urohyal）の形状

PLATE 1

1.1-1.1 SERRASALMUS NATTERERI

1.1-4.1 PHENACOGRAMMUS INTERRUPTUS

1.1-2.1 METYNIS SCHREITMULLERI

1.1-5.1 LEPORINUS STRIATUS

1.1-3.1 MYLOSPOMA AUREUM

1.1-6.1 CHLODUS PUNCTATUS
1.1-7.1 PRISTELLA RIDDLEI

1.1-8.1 MOENKHAUSIA OLIGOLEPI

1.3-1.1 GASTROPELCS LEVIS

1.2-1.1 HEMIODUS SEMITAENIATUS

2.1-1.1 HYPOPOPOMUS ARTEDI

3.1-1.1 RHODEUS OCELLATUS
3.1-7.1 HYPOPHTHALMICHTHYIS MORITRIX

3.1-8.1 "GANGES DACE"

3.1-9.1 CARRASSIUS CARRASSIUS

3.1-9.2 CARRASSIUS AURATUS

3.1-10.1 CYPRINUS CARPIO

3.1-11.1 BARBUS TETRAZONA
PLATE 5

3.1-11.2 BARBUS OLIGOLEPIS

3.1-12.1 LABEO BICOLOR

3.1-13.1 BRACHYDANIO RERIO

3.2-1.1 MISGURNUS ANGUILLICAUDATUS

3.2-1.2 "WHITE LOACH"

3.2-1.3 "GANGES LOACH"
PLATE 6

3.2-2.1 ACANTHOPHTHALMUS SEMICINCTUS

3.2-3.1 BOTIA MACRACANTHUS

3.2-4.1 "RED-FIN SHARK-LIKE LOACH"

3.3-1.1 GYRINOCEILUS AYMONIERI

4.1-1.1 PARASILURUS ASOTUS

4.1-2.1 KRYPTOPTERUS BICIRRHUS
PLATE 7

4.2-1.1 PLOTOSUS ANGUILLARIS

4.3-1.1 "KAIYAN"

4.3-4.1 "DOTTED DORSALFIN BAGRUS"

4.3-2.1 "KAIYAN RESEMBLING"

4.4-1.1 CORYDRUS PALEATUS
大槌湾における毛顕類の性状と海況変動との関係

寺崎誠**, 丸茂隆三***

Seasonal Distribution of Pelagic Chaetognaths in Relation to Variation of Water Masses in Otsuchi Bay, Northern Japan

Makoto TERAZAKI** and Ryuzo MARUMO***

Abstract: A plankton sampling was carried out at three stations in Otsuchi Bay once monthly over the period of one year, May 1978-May 1979. On the basis of analyses of 35 samples taken by a Norpac net with 0.33 mm in mesh-opening, studies were made on the monthly variation in number of pelagic chaetognaths and the breeding seasons and the relationship between the distribution of indicator species and the water masses was discussed.

There is a large variation of chaetognath number ranging from 1/m³ (in March) to 78/m³ (in October). Three genera and 9 species 1 form of chaetognaths were identified. The species composition in Otsuchi Bay was similar to that in the open sea off Otsuchi Bay. Sagitta minima was the most common and abundant species, followed by S. nagae, S. enflata, S. elegans and S. crassa f. naikaiensis. The breeding season of these species in the bay was June–October in S. crassa f. naikaiensis, April in S. elegans, August–October in S. enflata, October–November in S. nagae and August–December and February–May in S. minima. S. crassa including S. crassa f. naikaiensis, and S. minima have finished their life history in Otsuchi Bay. S. elegans and Eukrohnia hamata were carried by the Oyashio cold current and on the other hand, the occurrence of S. enflata, S. ferox, S. regularis and Pterosagitta draco had close connection with the Kuroshio warm current.

1. 統 言

大槌湾は、南北 2 km、東西 8 km の、東側が太平洋に開いた細長い湾であり（Fig. 1）、水深は、湾口部 70～80 m、湾奥部 10～20 m である。湾内の水は、湾奥部に開く大槌川、小槌川、鶴住居川から供給される河川水と、沖合から流入する外洋水によって形成される。大槌湾の沖合は年によっ
をいただいた同センター 川村忠枝氏、東京大学海洋研究所 山下洋氏に深く感謝の意を表する。

この研究は文部省科学研究費特别研究の補助を得て行なわれた。

2. 材料と方法

1978年5月から1979年4月までの1年間にわたる、毎月1回にFig. 1に示す大槌湾内の A（水深 35 m）、B（水深 47 m）、C（水深 75 m）の3定点で、網目 0.33 mm の Norpac ネットを用いて、底から表面までの鉛直曳採集を行なった。

水深はネットの口部に取付けられたフローメーターの回転数より算出した。採集試料はただちに10％中性ホルマリン溶液で固定した。試料から毛顕類を選別した後、種を同定し、各種について個体数を算定した。標本の体長測定は実体顕微鏡に取付けたミクロメーターを用いて行った。量的に多い Sagitta minima, S. elegans, S. enflata, S. nagae, S. crassa forma naikaiensis の4種1型については、湾内で再生産が行なわれているかどうかを知るため、THOMSON (1947) の方法に基づいて成熟度を調べた。

また大槌湾内外の S. elegans の出現頻度を比べるため、1979年5月10日、東京大学海洋研究所研究船淡青丸で ORI-100 ネット（OMORI 1965）を用い、湾内6点、湾外3点で傾斜曳採集を実施した。

3. 結果

(1) 大槌湾の水温と塩分

Fig. 2 に示すように、測点 B における T-S ダイヤグラムによって2〜4月は大槌湾は7℃以下、34％以下の低温低塩分水によって占められ、親潮水域（44°N, 154°E）の水温・塩分構造（HATORI 1973）に近いが、5月に入ると水温、塩分の上昇が始まり、これは8月まで続く。8月は T-S ダイヤグラムは黑潮水域（34°N, 136°E）の水温・塩分構造（YAMAMOTO and HORIKOSHI 1979）と近く、この時期に湾内水が黑潮水の強い影響下にあったことが示される。9月に入ると降溫が始まり、これは3月まで続くが、塩分は9月、10月を除き1月まで34％以上である。9月、10月の低塩分は、この時期に多量の降雨があり（寺崎・四竜 1979）、湾内水が河川の影響を強く受けたためである。

![Fig. 1. Map showing Otsuchi Bay. Stns. A-C are routine sampling locations.](image)
Fig. 2. Seasonal variation of T-S diagrams at Stn. B in Otsuchi Bay. Stns. 19 (44°N, 154°E) and T-2 (34°N, 136°50′E) are located in the Oyashio area (HATTORI 1973) and the Kuroshio area (YAMAMOTO and HORIKOSHI 1979) respectively.

(2) 出 現 種

3定点 A, B, C の毛毬類総個体数の周年変動は類似した傾向を示した。個体数はどの点でも10月が最も多く60/m³ 以上で、1～3月は少なく5/m³ 以下であった（Fig. 3）。

以下に各種の出現状況について述べる。

Sagitta crassa と S. crassa f. naikaiensis: 大槌湾では S. crassa は11～3月および5月に、S. crassa f. naikaiensis は6～10月の高温期に出現し（Fig. 4）、両者が同じ月に採集されることもなかった。村上（1959）が瀬戸内海で報告している両者の中間型は今回の調査では検出されなかった。S. crassa は湾全域に出现したが、個体数はどの月も1/m³ 前後と少なかった。一方、S. crassa f. naikaiensis は湾奥の測点Aから多く採集され、この点における出現個体数は1～18/m³（平均7/m³）、測点B, C ではどの月も3/m³ 以下であった。

S. crassa の体長は4.0～15.3 mm で、5月にのみ完熟個体（体長13 mm 以上）が出現した。
S. crassa f. naikaiensis の体長は3.0～8.5 mm であり、完熟個体（体長6 mm 以上）は何れの月
にも出現した。

Sagitta elegans: 本種は4〜6月に採集されたが、量的には4月が最も多く13〜20個体/m³であり（Fig. 4）、完熟個体は4月のみ認められた（Fig. 5）。1979年5月のORIネットによる傾斜では、種は湾内の6点から0.001〜0.028個体/m³採集されたが、湾の3点のうち1点では採集されず、他の2点でもいずれも0.001個体/m³以下と低い値であった。

Sagitta enflata: 本種は8〜10月に出現したが量的には9〜10月が多い（Fig. 4）。8〜10月には体長10 mm以上の大型個体が多く、完熟個体もかなり認められたが、11月には12 mm以上、12月には8 mm以上の個体は出現せず、この両月には6 mm未満の小型個体が多く観られた（Fig. 6）。

Sagitta ferox: 本種は7月に測点A、Bからそれぞれ1個体ずつ採集され、他の月には出現しなかった。

Sagitta minima: 本種は大槌湾の卓越種であり、6月を除く各月に全測点で採集された。10月が最も多く27〜49個体/m³、1〜7月は少なく3個体/m³以下であった（Fig. 4）。10月に見られる毛顎類総個体数の極大（Fig. 3）は本種の大量出現に起因する。

Fig. 4. Seasonal distribution of individual number of chaetognath species in Otsuchi Bay.

Fig. 5. Size frequency of Sagitta elegans collected in different months. Shaded areas show the number of fully matured individuals.

Fig. 6. Size frequency of Sagitta enflata collected in different months. Shaded areas show the number of fully matured individuals.
4. 考察

（1）大槌湾に出現する毛類類の特性

鬼頭（1974）が1955〜1960年の間、2月、5月、8月、11月に三陸沖でネットを用いて行なった0〜100 m の掘り採集では、毛類類20種が出現したが、周年出現頻度が高いのはS. minima のみであり、その下は季節的に出現し、S. nagae は春から秋にかけ、S. enflata と S. regularis は冬から春にかけて高い頻度を示した。また毛類類総個体数は2月が最も低く2.4/m³ で、その後は徐々に増加し、5月が8/m³, 8月が15.3/m³, 11月が27.7/m³ であった。三陸沖と大槌湾を比べると、毛類類総個体数は大槌湾の方が多いが、単個体数の周年変動の傾向および各種の季節的出现状況は極めてよく類似している。三陸沖からは報告されているが、本研究で大槌湾から採集されなかった種類は、Sagitta bipunctata, S. delicata, S. hexaperta, S. lyra, S. neglecta, S. pacifica, S.
pseudoserratodentata, S. robusta, Krohnitta pacifica, K. subtilis の10種で、いずれも暖海性の表層種であり、今後、大槌湾に出現する可能性もある。

S. crassa, S. crassa f. naikaiensis は、東京湾や瀬戸内海などの内湾では卓越種であるが（村上1957, 1959, 丸茂1977）、大槌湾では両者とも個体数は7/m³以下と極めて少なく、その分布も主に湾奥部に限られていた。これでは大槌湾が東京湾や瀬戸内海に比較して、外洋に直接面しているため外洋水との交換がよく行なわれることを意味し、物理的な解析結果（蓮沼他1977, 四巻私信）とよく一致する。

(2) 出現種と水塊との関連

S. ferox, S. regularis, P. draco はそれぞれ7月、9～12月に出現したが、それぞれ1個体得られただけである。上記3種は黑潮水系、日本海に分布することが知られており、黑潮北上分派もしくは津軽暖水によって大槌湾まで運ばれたものと考えられる。これまでの日本海の調査では、上記3種は2個体/m³以下で、かつ採集される頻度も少なかった（宮頭1974）。また、本研究で7月から12月にかけての沖合は、南から張り出した黑潮北上分派の勢力が強かったので（岩手県水産試験場地先定点観測資料）、これらは津軽暖水よりむしろ黒潮系水によって運ばれたものと考えられる。

4月には S. elegans, E. hamata など亜寒帯水系に生息する種類が採集された。この時期は親潮第一枝分の南下が著しく、洞口から沿岸域一帯は8℃以下の冷水に覆われており（Fig. 9）、また、湾内からは Calanus plumchrus, Eucalanus bungii, Tortanus discadacta などの冷水性かいわし類がかなり多く採集された（寺崎1980）ことと相まって上記2種は縦脈によって運ばれてきたと推定できる。S. elegans の場合、5月、6月にも出現したが、完熟個体は認められず、個体数は2～3/m³で、4月の13～20/m³と比べてかなり少なくた。5月に行なったORIネットによる湾内外調査では沖合からはほとんど採集されなかったので、この時期には湾外からの補給はなく、4月に大量に流入した個体が、湾内に拡散し6月まで生残したものと考えられる。

S. enflata は大槌湾では8月から出現したが、量的には9月、10月が多く、その後徐々に減少し、1月には測点Aで1個体採集されたのみであった。1月の湾内の水温は10℃前後で、本種の出現下限水温10℃（浜田1967）あるいは11℃（宮頭1974）と一致していた。水温は2月から1月にかけて急激に下降し（Fig. 2）、2月は全層で17℃以下になった。このため、これまで湾内に生息していた S. enflata はこの低温水に適応できずに死滅したと推定できる。この考え方は、2月に暖海種が全く採集されていないことも裏付けられる。S. enflata は黒潮水系では通年、日本海では夏に少し分布するので（宮頭1974）、黒潮北上分派、または津軽暖水によって大槌湾に運ばれたと考えられるが、本研究においては、この時の湾沖合の海況から考え、S. ferox, S. regularis, P. draco の場合同様、黒潮による可能性が強い。S. enflata では8月から10月にかけて完熟個体が出現し、9月以降に小型個体が増加すること（Fig. 6）から、本種は湾内では秋に産卵すると考えられる。しかし、前述の理由により低温期に死滅してしまうので、湾内では生活史を繰り返すことができない。

Fig. 9. Distribution of the surface water temperature (℃) in neighboring water of Otsuchi Bay in April 1979 (Data from the Iwate Prefecture Fisheries Experimental Station).
S. minima 和 S. nagae は、大槌湾に出現する毛鱗類の中では量的に多く、S. minima では 6 月、S. nagae では 5 月、6 月を除く、すべての月に採集された。両種は三陸沖の混合水域と日本海に多く出現し、また南部沖からも報告されており（鬼頭 1974）、分布が普遍的であるので水塊の指標種としては適当ではない。S. minima は完熟個体の出現状況から見て 8～12 月、2～5 月が産卵期であると考えられ、前者の期間すなわち高温期には 6 mm 前後の小型個体、後者では 8 mm 前後の個体で産卵する。大槌湾内での S. nagae の産卵期は 10～11 月で、12 月以降に幼虫の出現が認められる。しかし、2 月以降は出現個体数も極端に減少し、ついに 5、6 月には採集されなかった。過去にも 1977 年 5 月に湾内の 15 点で Norpace ネット鉛直曳によるプランクトン採取が実施されたが、この時にも出現しておらず（丸茂 1977）、S. nagae はこの時期に大槌湾に生息していない可能性がある。さらに 1978 年 7、8 月に採集された S. nagae は体長 14 mm 未満の個体ばかりで、11～12 月に産まれ越冬した世代を含むとは考えられない。これらの事からも S. nagae が大槌湾で生活史を繰り返す可能性は極めて少ない。また、5 月に放流した魚群の混合水域では S. nagae は卓越種である（鬼頭 1974）にもかかわらず、湾内には出現しないという事実は興味深い事で、この時期に湾内外の水の交換があまりないため本種や他の暖海種が湾内に流入できないと考えられる。しかし、この点を明らかにするためには将来流速測定などによって大槌湾内の水の動向を正確に知る必要がある。

文 献

浜田尚雄 (1967): 播磨灘、大阪湾における Chaetog-
A Review of Sea Conditions in the Japan Sea*

Kenzo SHUTO**

Abstract: Sea conditions in the Japan Sea are briefly reviewed. Flow patterns in upper and deeper layers are described together with prevailing water masses.

1. Bottom topography

Figure 1 is a bathymetric chart of the Japan Sea, which is connected with the East China Sea, the Pacific Ocean and the Sea of Okhotsk through the Straits of Tsushima, Tsugaru, Soya and Mamiya, respectively. There is Yamato Rise which consists of Yamato Tai and Kita-Yamato Tai in the central part of the Japan Sea. It divides the Japan Sea into three basins: Yamato Basin, Tsushima Basin and Japan Basin.

![Bathymetric chart of the Japan Sea](image)

Fig. 1. Bathymetric chart of the Japan Sea. G, the Straits of Tsushima; H, the Straits of Tsugaru; I, the Straits of Soya; A, Yamato Rise; a, Japan Basin; b, Yamato Basin; c, Tsushima Basin.

2. Flow conditions in the Straits of Tsushima

According to the velocity sections constructed by MIYA (1976) on the basis of current measurements, the Tsushima Current is split into two branches in the west of Goto Islands; one is the eastern branch passing through the East Channel of the Tsushima Strait and the other is the western branch passing through the West Channel. Figure 2 shows a velocity section immediately after the Tsushima Current passed through the Straits of Tsushima. The western branch flows away along the Korean Peninsula. The eastern branch flows at a maximum speed of about one half of that in the western branch. Compared with the western branch, the eastern branch is unstable and does not reach deep layers. It is to be noted that a countercurrent extending from the surface to the bottom between both branches flows at a maximum speed of 25 cm/s. The volume transport of the western branch is 3.0 sv and that of the eastern branch is 1.9 sv.

The velocity in the upper layer in the West Channel, obtained by YI (1970) from the difference of the sea level between Izuhara of Tsushima and Pusan at the southern coast of Korea, becomes maximum in October and minimum in March. Its annual mean is 48 cm/s.

3. East Korea Warm Current

The western branch passing through the West Channel flows northward, as the East Korean
Warm Current, along the eastern coast of Korean Peninsula. It turns along the north side of a warm water region which is formed on the east side of it, whose location varies to a great extent from year to year. As an example, Fig. 3 shows the Korean Warm Current in March, 1967 (Tanioka, 1968). The left is the distribution of water temperature at 100 m depth and the right is the dynamic topography of the sea surface referred to 300 db surface. The warm water region is particularly large. It extends from 36°N to 38°N.

The northward volume transport of the East Korean Warm Current varies seasonally, with its maximum in October. The average of the yearly mean geostrophic transport referred to 200 db surface is 1.09 Sv, while the volume transport of the southward countercurrent flowing along the east side of the warm water region is 80 to 90% of that of the northward flowing East Korean Warm Current.

In May 1963 the warm water region was located extremely south and its extent was particularly limited.
4. **Flow conditions in the interior region**

Figure 4 is a schematic representation of surface currents in summer (NAGANUMA, 1972). After passing through the Straits of Tsushima, the Tsushima Current is split into three branches: the first one flows northeastward along the coast of Japan main island, the second one flows from the north of the Oki Islands to the west of Cape Nyudozaki off the Noto Peninsula and Sado Island, and the third one flows northward along the east coast of Korea, turns to the right at about 38°N, passes by the vicinity of Yamato Rise and reaches the west of Cape Nyudozaki. These three branches meet one another in the west of Cape Nyudozaki. There are southward and northward currents between the second and third branch, and warm and cold water regions are developed there.

The volume transport of the Tsushima Current between the west of Cape Nyudozaki at 40°N and the west of the Shakotan Peninsula at 43°N varies seasonally. Its maximum appears in August in the south, and in October in the north delaying northward. The northward geostrophic volume transport of the Tsushima Current referred to 400 db varies greatly from year to year, particularly in summer, in the west of Cape Nyudozaki. For example, it ranges from 2.0 sv to 6.5 sv in August.

The outflow transport through the Straits of Tsugaru is evaluated by subtracting the north-
ward transport near Okuji Island at 42°N from that in the west of the Tsugaru Peninsula at 41°N. Its year-to-year variation is large, particularly in August when it ranges from 1.0 to 4.1 sv. The ratio of the outflow transport through the Straits of Tsugaru to the northward transport at 41°N is 80% on the average. It becomes larger in the year when many strong depressions pass through the central part of the Japan Sea and reach Oshima Peninsula (HATA, 1962, 1973).

Figure 5 shows one of the results of a cooperative survey made by five research vessels of Japan Meteorological Agency in October 1969 (OHWADA and TANIOKA, 1971). The left is the dynamic topography of the sea surface referred to 600 db, and the right is the surface current measured with GEK. The Tsushima Current meanders and makes a detour around cold water regions in the north of Sado Island, and around warm water regions in the north of the Oki Islands and in the northwest of Noto Peninsula. Also seen are weak currents along the coast of Japan and the polar front as well. There is a cyclonic gyre in the northern part and a smaller anticyclonic gyre in the western part of the Liman Current region.

NAGANUMA (1973) pointed out that the Tsushima Current has the above-mentioned characteristics such as its splitting into three branches in summer and in warm years, meandering in winter and in cold years.

Figure 6 shows a dynamic topography of 1,200 db surface referred to 2,000 db in October, 1969 (OHWADA and TANIOKA, 1971). There is a cyclonic gyre in Japan Basin and another one in Tsushima Basin with the maximum speed of about 2.8 cm/s. There is an anticyclonic gyre in Yamato Basin, and another one is in the west of Yamato Rise with a speed of about 0.9 cm/s. The above-mentioned cyclonic gyre in Japan Basin is also found on the dynamic topography of 1,500 db surface referred to 3,000 db (NIKAN, 1972).

5. Proper Water in the Japan Sea

The name of "Proper Water in Japan Sea" was given by UDA (1934) to a water mass characterized by temperatures of 0 to 1°C, salinity of about 34.1% and dissolved oxygen of 5.4 to 5.9 ml/l. According to YASUI et al. (1967), the water mass of 0 to 1°C and of 33.96 to 34.15% extends predominantly over the Japan Sea (84% of the total volume). This is the Proper Water.

Figure 7 gives the vertical distribution of potential temperatures averaged over the Liman Current and the Tsushima Current region (NIKAN, 1972). Three straight lines intersect each other at two points; one is at 1,000 to 1,100 m depth and the other is at 2,000 to 2,300 m depth. The water shallower than the former is called deep water, the water deeper than the former but shallower than the latter is called upper bottom water, and the water deeper than the latter is called lower bottom water. The potential temperature is decreased exponentially with depth in the deep and upper bottom water, but is constant in the lower bottom water.

There is a cold, saline region of temperature lower than 0.06°C and salinity higher than
34.075% off the Siberian coast at 1,500 m depth, depth of the upper bottom water. This region is also rich in dissolved oxygen (more than 5.3 ml/l). In the central part of Japan Basin there is a warm region of temperature higher than 0.05°C at 2,500 m depth, depth of the lower bottom water. A saline water of salinity higher than 34.075% extends eastward from the Straits of Tsugaru. A rich dissolved oxygen water (more than 5.5 ml/l) extends along the northern side of Yamato Rise.

Figure 8 shows the horizontal distribution of \(\sigma_t \) at the sea surface in winter. A belt of high \(\sigma_t \) denser than 27.30 lies in the distance of 45 nautical miles from the Siberian coast. The thickness of the surface mixed layer becomes maximum (550 m) near this belt, which suggests an active sinking at the surface and subsurface layer.

Figure 9 gives a zonal-vertical section of the potential \(\sigma_z \) in the west of the Straits of Tsugaru in March, 1971. Near the continent, a homogeneous water of the potential \(\sigma_z \) equal to 27.36 occupies the whole layer from the surface to the depth of 450 m. The equipotential surface of \(\sigma_z = 27.36 \) reaches a depth of 800 m in the central part. The potential \(\sigma_z \) of the lower bottom water is higher than 27.375.

These observational results should indicate that the sinking at the belt of high \(\sigma_z \) forms the deep water as well as the upper bottom water in the Japan Sea. However, it is not so strong as to form the lower bottom water, which should result from ice formation. SUDA
(1932) showed that the bottom water of the Japan Sea is formed in the central and northern part of the Liman Current. A dense water formed near the Siberian coast as a result of ice formation could sink down to deep layers to form the bottom water.

References

日本海の海況（総説）

周 東 健 三

要旨：日本海の海況について簡単にまとめた。対馬海峡通過直後の流速断面において、東西2つの流速パターンの中間的に西向きの反流があるのが注目される。朝鮮半島沿いに北上する東側暖流の東側には暖水域が形成されるが、その位置と規模は年によってかなり変化する。日本海における対馬暖流が3分枝状態をとる場合と蛇行流路が顕著な場合を示したが、これは季節もしくは長期変動の現われるといえると指摘している。

津軽海峡からの平均流出量は、北上する対馬暖流の流量の約80%であるが、顕著な低気圧が日本海中央部を通じて渡島半島に達する回数が多い年は、流出量も多い。

深層では、日本海盆と対馬海盆に反時計まわりの循環、大和海盆には時計まわりの循環が存在すると思われる。

日本海全体積の約80%を占める最大の水塊である日本海固有水は、低温で均質であるが、この水塊は、冬季における海面の冷却による鉛直対流だけでは生成されそうにもなく、生成には結氷作用が必要なようである。
A Commentary Note on the Paper “On the Outflow Modes of the Tsugaru Warm Current” by D. M. CONLON*

Takashi ICHIYE**

Abstract: CONLON (1982) proposed that there are two modes of the Tsugaru Warm Current outflowing from Tsugaru Strait; one is the gyre mode with the outflow turning around an anticyclonic gyre during the warm season and the other is the coastal mode with the outflow moving southward along the east coast of the Japanese mainland during the cold season. Seasonal change of these two modes is confirmed by the seasonally averaged surface current measured with GEK from 1953 through 1977. The month-to-month change of the isotherms at 100 m and GEK data from November 1975 through January 1976 agreed with the mode change suggested by currents measured directly at two mooring stations. The mode change may be dependent on the ratio of the internal Froude number to the Rossby number of the two-layer strait, though its dependency on the Rossby radius of deformation as proposed by Conlon cannot be dismissed.

1. Introduction

CONLON’s paper (1982, hereafter referred as C) is both interesting and provocative in interpreting the flow pattern of the Tsugaru Warm Current which has been studied by a number of Japanese oceanographers for decades. He recognizes its two modes, the gyre and coastal modes based on two hydrographic data collected by Hakodate Marine Observatory in October 1975 and February 1976. The two modes seem to be substantiated by currents measured directly at two mooring stations which were operated from November 1975 to January 1976. Then he compared the two modes with the hydraulic experiment by WHITEHEAD and MILLER (1979, hereafter referred to as WM) and concluded that the coastal and gyre modes are related to smaller or larger Rossby radius of deformation in colder or warmer seasons, respectively, since the radius changes seasonally mainly due to density differences between the upper and lower layers.

2. Additional data

C used the hydrographic data of 1949–1952 for monthly mean values of the upper layer density in calculation of the Rossby radius of deformation. His result can be compared to the seasonal change in the Tsugaru Warm Current. The Marine Environmental Atlas (JODC, 1979) shows the seasonal charts of the vectorial averaged surface current measured with GEK from 1953 through 1977 in each square of half degree longitude and latitude (Fig. 1). In this atlas, winter, spring, etc. are defined as Jan.–Mar., Apr.–June and so on. It is clearly seen that from January through June the current just east of Tsugaru Straits flows south or southeastwards, whereas in summer and fall the current there flows eastwards with speed exceeding 0.5 knots and then turns to the southeast of 143°W. Particularly in summer an anticyclonic eddy of about 60 n. miles diameter can be recognized with a center at about 41.3°N and 142°W. Although the period of statistics for this figure is different from the one used by C for the upper layer density, this seasonal change seems to match the internal Rossby radius in his Table 1, as the gyre and coastal modes correspond to large or small density difference and thus the Rossby radius, respectively. Lack of the anticyclonic gyre in the fall may be due to the coarse grid for statistics and smallness and shifting nature of the gyre.

In order to fill gaps in the flow patterns
between October 1975 and February 1976 shown by Figures 2 and 3 of C, the temperature distributions at 100 m depth in months between these two months are shown based on Ten-Day Marine Report (JMA, 1975 and 1976) in Fig. 2. The isotherms are modified to limit the data within an interval stated, instead of the whole month. Selected vectors of the surface current determined with GEK are also plotted in this figure.

It is seen that in mid-November the surface current just east of Tsugaru Strait was mainly eastwards and there was still the warm water in late November, though its maximum temperature decreased by about 2°C from October and its area also shrunk. This corresponds with
Strait was southerly without the anticyclonic gyre.

3. Compared with theoretical and experimental models

C compared his two modes of the Tsugaru Warm Current with the experiment of WM. The latter indicates that the gyre is apt to form to the right of the outflow when the Rossby radius of deformation is beyond a certain critical number, whereas the outflow turns to the right along the wall as a jet for the radius within a certain range. Also the flow becomes unstable for the radius below another critical number. Therefore the experimental result agrees qualitatively at least with the mode change observed in the Tsugaru Warm Current. However, the experiment was made with two-layer fluid (bottom layer with salted water) and the radius is calculated from density difference of these layers, whereas in the Tsugaru Warm Current the pycnocline is not so sharp, particularly in the cold seasons as considered to form the two-layer system. It may be interpreted that Tsugaru Strait is shallow and the outflow moves over the underlying water without mixing, thus virtually forming a two-layer system, in order to apply the experimental result.

It is out of scope in this note to discuss details of dynamics of the outflow from the strait or to criticize experimental and theoretical modeling. However it seems that the result of WM may be applicable to the Tsugaru Current only in a qualitative sense, particularly since the topography and vertical stratification of the prototype are quite different from the model and also since the critical parameter of the model is the Rossby radius of deformation only and does not include the velocity of the flow in the strait.

A numerical model of NOF (1978) may have some relevancy to the present case, though the topography is extremely simplified. The potential vorticity equation and the Bernoulli integral of the upper layer in the two-layer model are dependent on the Rossby number $R = V/fB$ and the internal Froude number $F = V'/(g'H)$, respectively, and both are dependent on F/R, where V is a characteristic velocity of the current in the strait, f is the Coriolis co-
Table 1. Characteristic speeds V and $(g'H)^{1/2}$, the Rossby number R, and internal Froude number F

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V (m/s)</td>
<td>0.027</td>
<td>0.11</td>
<td>0.13</td>
<td>0.19</td>
<td>0.32</td>
<td>0.27</td>
<td>0.19</td>
</tr>
<tr>
<td>$(g'H)^{1/2}$ (m/s)</td>
<td>0.45</td>
<td>1.21</td>
<td>1.78</td>
<td>2.24</td>
<td>3.25</td>
<td>2.19</td>
<td>1.71</td>
</tr>
<tr>
<td>R</td>
<td>0.0093</td>
<td>0.083</td>
<td>0.045</td>
<td>0.066</td>
<td>0.111</td>
<td>0.093</td>
<td>0.066</td>
</tr>
<tr>
<td>F</td>
<td>0.0036</td>
<td>0.038</td>
<td>0.053</td>
<td>0.072</td>
<td>0.097</td>
<td>0.015</td>
<td>0.012</td>
</tr>
<tr>
<td>F/R</td>
<td>0.39</td>
<td>0.22</td>
<td>0.12</td>
<td>0.11</td>
<td>0.09</td>
<td>0.16</td>
<td>0.19</td>
</tr>
</tbody>
</table>

The characteristic speed of the Tsugaru Strait, V, is determined from the mean transport by Toba et al. (1982) divided by 3.73 km2, and $(g'H)^{1/2}$ is calculated from Table 1 of Conlon (1982). The Rossby and Froude numbers are determined from $F = V^2/g'H$, $R = V/fB$, where g', f, B, and H are reduced gravity, Coriolis coefficient, width of the Strait, and the mean depth of the upper layer, respectively.

efficient, B is the width of the strait, g' is the reduced gravity and H is the unperturbed thickness of the upper layer. For a horizontally uniform current in the strait, Nof (1978) obtained the flow pattern which shows the outflow being narrow and veering to the right close to the wall for a higher value of F/R, whereas the outflow becomes more straight but broader for lower F/R.

Since $F/R = VfB/g'H = VB/fR_d^3$, where R_d is the Rossby radius of deformation, this ratio increases for a decreasing R_d. Thus, if V is constant, this ratio becomes larger in the colder seasons and thus the behavior of the Tsugaru Current corresponds to both WM and Nof. However as indicated by Toba et al. (1982) V is smaller in spring and winter and larger in summer and fall. Therefore seasonal change of V and R_d may counteract each other to keep F/R constant. In order to check this effect, V is determined by dividing the monthly mean transport of the geostrophic current through an eastern section of Tsugaru Strait (Toba et al., 1982) by the cross-sectional area of 3.73 km2. In Table 1, V is listed for months where the mean transport was determined by Toba et al. (1982) and $(g'H)^{1/2}$ computed from Table 1 of C is also listed with F, R, and F/R. The table indicates that the ratio F/R is largest in March but not so large as by an order of magnitude compared to the minimum in September as Nof’s example of numerical modeling suggests. The Rossby and Froude numbers reach both minimum in March but maximum in September and October, respectively. Thus it seems that the observed patterns agree qualitatively at least with Nof’s model, too.

4. Conclusion

The flow pattern of the Tsugaru Warm Current definitely shows two different modes as C first pointed out. The mode change may be dependent on the critical Rossby radius of deformation as he suggested or on the ratio of the Froude to the Rossby number. The definite conclusion should wait for more elaborate work on theoretical or experimental modeling. Most significant contribution by C is that the direct current measurement is useful even at two mooring stations if these stations are located at a strategically important place and if the conventional hydrographic measurement is carried out frequently enough within a limited area.

This work is supported by the Office of Naval Research.

References

学会記事

1. 昭和57年3月10日、日仏会館会議室において日仏会館と共催でセミナーを開催した。
アンドレ・モレル「海の色のリモートセンシング」
横島二郎「甲殻類の繁殖と放流」

2. 昭和57年5月1日、東京水産大学において編集委員会が開かれ、La mer第20巻第2号の編集を行った。

3. 新入会員（正会員）

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>算価者</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yves Henocque</td>
<td>北里大学</td>
<td></td>
</tr>
<tr>
<td>島本 信夫</td>
<td>兵庫県立水産試験場</td>
<td></td>
</tr>
<tr>
<td>上原 培育</td>
<td>ウジェオ電気㈱</td>
<td></td>
</tr>
<tr>
<td>André Morel</td>
<td>パリ第6大学</td>
<td></td>
</tr>
<tr>
<td>中村 陽一</td>
<td>東京大学海洋研究所</td>
<td></td>
</tr>
</tbody>
</table>

4. 逝去

(正会員) 結城美代子 川合 友治 岩尾 威

(援助会員) 鈴木大樹、鈴木ヒデオ・ホロモニオ

5. 逝去

安田富士郎 長谷川秀治 田畑恵司 窪原 健

6. 会員の住所・所属の変更

<table>
<thead>
<tr>
<th>氏名</th>
<th>新住所または新所属</th>
</tr>
</thead>
<tbody>
<tr>
<td>岩瀬義朗</td>
<td>〒104 中央区築地 5-3-1 海上保安庁港水部</td>
</tr>
<tr>
<td>農松英雄</td>
<td>〒790 松山市北博多町 102 松山地方気象台</td>
</tr>
<tr>
<td>岩佐敏司</td>
<td>〒104 中央区築地 5-3-1 海上保安庁港水部海岸研究室</td>
</tr>
<tr>
<td>中村保昭</td>
<td>〒420 静岡市清水町 9-6 静岡県農業水産部水産課</td>
</tr>
<tr>
<td>松本 勝</td>
<td>〒270-11 千葉県我孫子市白山3-8-1-102</td>
</tr>
<tr>
<td>倉田 塚</td>
<td>〒520 大津市京町3丁目滋賀会館内</td>
</tr>
</tbody>
</table>

7. 交換および寄贈図書

1) 「太平洋における海洋科学技術協力」 第6回国際海洋シンポジウム報告書
2) 国立科学博物館彙報 第14号
3) 国立科学博物館研究報告 Vol. 7, No. 4

4) 地盤水理実験施設年度報 第7号
5) 海洋産業研究資料 Vol. 13, Nos. 1, 2, 3
6) 日本ブランクトン学会報 第28巻第2号
7) 地質調査所 クルーズレポート No. 17
8) 研究実用化報告 Vol. 31, Nos. 3, 4
9) 海洋時報 第24号
10) 新海洋法条約の締結に伴う国内法制の研究 第1号
11) 船舶の移動をめぐる海事紛争と新海洋法秩序 第2号
12) 広島日仏協会報 No. 81
13) なつしま
14) 昭和53年水産試験研究機関海洋観測資料
15) 湖沼実験施設論文集 No. 20
16) 海洋法と海洋政策 第5号
17) 養殖研究所研究報告 第2号
18) 養殖研究ニュース No. 3
19) RESTIC 8号
20) 千葉県水産試験場研究報告 第40号
21) Phyllogenetic and Biogeographic Analysis of Cyprinodontiform Fishes Vol. 168-4
22) Novitates 2719
23) 科学通信 Vol. 27, Nos. 2, 3
24) Annals de l'institut océanographique Tome 57-2
25) IOLR Collected Reprints Vol. 4
26) Boletín de INIP N° 5
27) Revue des travaux de l'institut des pêches maritimes Tome 44, Fasc.2, 3

日仏海洋学会役員

顧問 ヨベール・プロシェ ジャン・デルサルト ジャック・ロペール アレクシス・ドランスデール ベルナール・フレンド ミシェル・ルサージュ ロカル・ゲルムール ジャック・マゴー

名誉会長 クー・ヴァンデルメルジュ

会長 佐々木義進

副会長 黒木武郎、國司秀明

常任幹事 阿部友次郎、有賀祐一、髙木政英、松村 治、三浦昭雄

庶務幹事 佐伯和昭

編集幹事 村野正昭
幹事
石野 誠, 井上 竜, 今村 豊, 岩下光男, 宇野 纡, 川原原 勝, 肥沼恒二, 菅原真一, 草下孝, 佐藤隆一, 佐々木尚徳, 高木和雄, 高野健三, 高橋 正, 迫田時美, 奈须敏二, 根本敏久, 半沢正男, 木村隆二, 森田真也, 山中嘉之助
（五十音順）

監査
久保田 義, 岩崎秀男

評議員
青山恒雄, 赤松英雄, 秋山 勇, 阿部宗明, 阿部友三郎, 新橋浩義, 有賀祐輔, 石野 誠, 石野真一, 市村俊英, 井上 竜, 今村 豊, 入江春彦, 岩崎芳人, 岩下光男, 岩田嘉孝, 宇野 纡, 大内正夫, 小倉通男, 大村芳道, 岡部幸男, 岡見 慶, 榆木新二郎, 加藤重一, 加納 敏, 川合英夫, 川上太郎, 川村利浩, 川原田 勝, 肥野修二, 菊地真一, 草下孝, 杉 本, 藤田兼明, 久保田 義, 藤本敏郎, 小泉政美, 小林 博, 小牧勇哉, 西条八重, 藤倉隆一, 藤倉正行, 佐伯和昭, 板本秀太郎, 佐々木史之, 佐々木幸康, 高橋勝男, 柴田恵司, 今村敏正, 庄司大典, 関 紳雄, 多賀信夫, 高木和雄, 高野健三, 高橋正, 高橋 正, 迫田時美, 奈须敏二, 根本敏久, 半沢正男, 木村隆二, 森田真也, 山中嘉之助
（五十音順）

助 賛 会 員
旭 化 成 工 業 株 式 会 社
株式会社内田老舗堂新社 内田和
株式会社 オーシャン・シー社
株式会社 オ セ ア ノ ー ト
小樽 船 用 電 機 株 式 会 社
社団法人 海洋 産 業 研 究 会
協同 低 温 工 業 株 式 会社
小 松 川 化 工 機 株 式 会 社
小 山
三 信 船 舶 電 機 株 式 会 社
三 洋 水 路 計 量 株 式 会社
ジェイジーティー財団構成事務所
昭 和 電 機 株 式 会 社
新 日 本 気 象 海洋 株 式 会 社
株 式 会 社 矢 見 精 機
株 式 会 社 東 京 久 樂
東京製鋼 鉄道学会 株式会社
株 式 会 社 東 邦 電 探
中川 防 腐 設 造 株 式 会 社
日本 ア ク イ ア ラ ン グ 株 式 会社
日本テトラポッド株式会社
社 団 法 人 日 本 再 生 協 会
深 田 サ ル ペ ッ ジ 株 式 会 社
藤 田 峯
古 野 電 気 株 式 会 社
丸 文 株 式 会 社
三 井 海 洋 開 発 株 式 会社
宮 本
株式会社ユニオン・エンジニアリ
グ 佐 野 博
吉 野 計 器 製 造 所
株 式 会 社 読 看 広 告 社
株 式 会 社 離 合 所
株 式 会 社 渡 部 計 器 製 造 所
東京都大田区有楽町 1-1-2 三井ビル
東京都千代田区九段北 1-2-1 蜂谷ビル
東京都千代田区神田美土代町 11-2 第 1 東英ビル
東京都台東区北沢 1-19-4-202
小樽市白内町 3-4-3
東京都港区新橋 3-1-10 丸藤ビル
東京都千代田区神田佐久間口町 1-21 山田ビル
東京都台東区岩本町 1-10-5 TMMビル F
東京都文京区本駒込 6-15-10 英和印刷社
東京都千代田区神田 1-16-8
東京都港区新橋 5-23-7 三栄ビル
東京都港区高輪 2-2-8 DFビル
高松市寺町 1079
東京都世田谷区玉川 3-14-5
横浜市鶴見区鶴見中央 2-2-20
東京都中央区日本橋 3-1-15 久栄ビル
東京都中央区日本橋中央町 2-6 江戸ビル
東京都杉並区宮代 1-8-9
東京都千代田区神田飯田町 2-2-2 東京建物ビル
沖縄県那覇市水 沢 2229-4
東京都港区新橋 2-1-13 新橋富士ビル 9 階
東京都港区芝公園 3-1-22 協同ビル
東京都中央区表町 1-9-1 天理教ビル 8 階
茨城県水戸市藤原町大字毛有 850 株式会社 中村鉄工所
東京都中央区八五洲 4-5 藤村ビル
東京都中央区日本橋中央町 2-1-1
東京都千代田区一ツ橋 2-3-1 小学館ビル
東京都中央区かちどき 3-3-5 かちどきビル 森本製作
神戸市中央区海岸通 3-1-1 KCCビル 4F
東京都港区芝西 1-14
東京都中央区渋谷 1-8-14
東京都千代田区神田錦町 1-10-4
東京都文京区香椎 1-7-17
T.S.-塩分計 DIGI-AUTO

本器は電磁誘導方式による卓上塩分計として画期的な T.S-E シリーズを全自動化した新製品です。その取扱いは熟練を必要とせず、誰にでも迅速・容易・正確に塩分値を計測する事が出来ます。
① 資料の海水ビンにチューブを入れてスタートボタンを押すだけで自動的に動作し塩分値を表示し又速かに試水は元にもどります。
② 大型 LED デジタル表示
③ 高精度・高安定度
④ 検出部にサンプルの吸水速度を自動的にコントロールしているのでセル部への気泡付着に気を使う必要はありません。
⑤ 電極式ではないため洗浄等のメンテナンスも容易です。
⑥ 二重の安定装置によりポンプの寿命がのびました。

試水範囲	0〜36 °/ 100% S
精度	±0.01 °/ 100% S
分解能	0.001 °/ 100% S
自動温度補償範囲	5〜30°C
所要試水量	約 60cc
電源	AC 100V 50/60Hz
重量	約 15kg
尺寸	450×250×400mm

株式会社 鶴見精機
横浜市鶴見区鶴見中央2丁目2番20号 〒230 TEL; 045-521-5252
CABLE ADDRESS; TSURUMISEIKI Yokohama, TELEX; 3823750 TSKJPN J
OVERSEAS OFFICE; TSK-AMERICA INC. Seattle WASHINGTON
IWAMIYA INSTRUMENTATION LABORATORY
「クイーン・コーラル」
深海潜水艇“はくよう”により採集された、世界で一番美しい珊瑚。
高さ 1.2 m 重さ 12 kg
採集場所 徳之島近海
採集年月日 昭和54年7月4日

世界最大の珊瑚
高さ 1.6 m、重さ 35 kg の歴史上最大といわれる“ジャンボサンゴ”
採集場所 沖縄近海
採集年月日 昭和49年5月

花とさんごと美術館

沖縄さんご園

本社／〒903 那覇市首里金域町3-5 ☏ (0988) 86-3535（代）
さんご園事業所／〒901-03, 沖縄市字摩文仁 1102 ☏ (09899) 7-3535（代）
ホテル店事業所／〒903 那覇市首里山川町1-132-1 ☏ (0988) 84-3535（代）
ユニオン・エンジニアリングが
パーフェクトな観測をお約束する
海象・気象計測器

優れた精度・取扱い容易・世界的な実績・豊富な部品在庫・迅速確実なメンテナンス

水中光学測器
- バリオセンサ
 (蛻光光度計)
- 深度計
- 水中分光光度計
 (12分光)

気象計
- 自動気象ステーション
 特長：電池1周で1年観測
 要素：風速・風向・温度・湿度・
 雨量・気圧・日射
- プライオリエンテーション
- 視程計
- 雲高計

波高・潮位計
- 超音波波高計
- ブイ式波高計
- 東大式波波潮位計
- 高精度潮位計

メモリーセンサー
- メモリーソンダ
 - メモリーソンダ水温計
 - メモリーソンダ水温塩分計
 - メモリーソンダ水深水温計
 - メモリーソンダ流速計
 - メモリーソンダ張力計

水中音波器機他
- 超音波自動切離装置
- タイマー式切離装置
- 水中位置検知装置
- ピンガーや各種
- リチウム電池

株式会社ユニオン・エンジニアリング
水中濁度計
水中照度計
電導度計

誠村山電機製作所
本社 東京都目黒区五本木2-13-1
出張所 名古屋・大阪・北九州

は無限の可能性に挑戦する

- 漁業電子機器
- 航海計器
- 海洋開発機器
- 航空機用電子機器
- 各種制御機器
- コンピュータ端末機器
- 各種情報システム

吉野電気株式会社
INDUCTIVE SALINOMER MODEL 601 MK IV

海水の塩分測定の標準器として、既に定評のあるオート・ラブ 601 MK III の改良型で、小型・軽量・能率化した高精度塩分計です。試料水を吸上げる際に、レベル検出器により吸引ポンプと攪拌モーターとが自動的に切換えられます。温度はメーター指針により直示されます。

測定範囲 0〜51 % S
感 度 0.0004 % S
確 度 ±0.003 % S
所要水量 約 55 cc
電 源 AC 100 V 50〜60 Hz
消費電力 最大 25 W
寸 法 52(幅)×43.5(高)×21(奥行)cm

営 業 品 目
転倒温度計・水温計・湿度計・
採水器・採泥器・塩分計・
水中照度計・濁度計・S-T計・
海洋観測機器・水質公害監視機器

株式 会社 渡部計器製作所

東京都文京区向丘1の7の17
TEL（811）0044（代表）☎113
SOMMAIRE

Notes originales

Estimation of the Kuroshio Mass Transport Flowing out of the East China Sea
to the North Pacific .. Janichi NISHIZAWA, Etsuo KAMIHARA, Kumio KOMURA,
Ryoji KUMABE and Masamori MIYAZAKI 55

On the Outflow Modes of the Tsugaru Warm Current ... Dennis M. CONLON 60

Note on Currents Driven by a Steady Uniform Wind Stress on the Yellow
Sea and the East China Sea ... Byung Ho CHOI 65

Variations of Chlorophyll a Concentration and Photosynthetic Activity of
Phytoplankton in Tokyo Bay ... Yoshiaki SHIBATA and Yusho ARUWA 75

On the Urohyal of Forty-Six Species of Fishes of the Order Cypriniformes
(in Japanese) ... Takaya KUSAKA 93

Seasonal Distribution of Pelagic Chaetognaths in Relation to Variation of
Water Masses in Osuchi Bay, Northern Japan (in Japanese) ... Makoto TERAZAKI and
Ryozo MARUMO 111

Compte rendu

A Review of Sea Conditions in the Japan Sea ... Kenzo SHUTO 119

Miscellanées

A Commentary Note on the Paper "On the Outflow Modes of the Tsugaru
Warm Current" by D. M. CONLON ... Takashi ICHIYE 125

Procès-Verbaux

129

第20巻 第2号

目次

原 著

東シナ海から北太平洋へ流出する黒潮流量の見積り（英文） 西沢純一，上平悦明，小村久美男，
齋藤英司，宮崎正恵 55

津軽暖流の流出モード（英文） ... Dennis M. CONLON 60

黄海と東シナ海で定常均一風によって引き起こされる渦流（英文） Byung Ho CHOI 65

東京湾における植物プランクトンのクロロフィル量と光合成活性の変動（英文） 柴田修明，星野裕司 75

コイ目（Cypriniformes）魚類46種の尾舌骨（Urohyal）の形状 丸尾 孝也 93

大槌湾における毛頭鰭の性状と海況変動との関係 ... 寺崎 達，丸尾隆三 111

総 説

日本海の海況（英文） ... 周東 健三 119

寄 言

D. M. CONLON 著「津軽暖流の流出モード」に対するコメント（英文） 市栄 善 125

学会記事 ... 129