福井県松島先におけるバフロンウニの漁業生物学的研究—V.
個体群の生殖果指数

難波高志**，前川邦輝***，石渡直典****

Studies concerning the fishery biology of the sea urchin
Hemicentrotus pulcherrimus (A. AGASSIZ)
in Kaji, Fukui Prefecture—V.

Gonad index of the sea urchin population*

Takashi NABBA**，Kuniteru MAEKAWA*** and Naonori ISHIWATA****

Abstract: The gonad index of the sea urchin population is studied in six stations on the
coast of Kaji, Fukui Prefecture, during the 1968 fishing season. The gonad weight G increases in proportion to the body weight W as $G = \rho W - q$. The gonad index varies with differences of habitat, and may be correlated with the amount of food available per individual.

前報（石渡ら，1981）では福井県松島先におけるバフロンウニ個体群の観察成長と西水域の水深2 m 以浅で最も遅く、2～3 m，3 m 以深（高瀬満）束水域の順に遅くなり、生息場所によって速さがあることを知った。今報では本地域の各生息場所における生殖果指数について調べた結果を述べる。

1. 調査方法

1968年漁期中の7月31日～8月8日，福井県坂井郡三國町松島先において，バフロンウニの生殖果指数について調査を実施した。調査地点として西水域の水深2 m 以

Fig. 1. Five (a～e) western and one (f) eastern
stations for sampling of the gonads of the sea
urchin on the coast of Kaji, Fukui Prefecture.

a-d and f, in waters shallower than 2 m; e, in
waters deeper than 3 m.

* 1984年4月20日受理
Received April 20, 1984
** 福井県あゆ養殖センター，〒910 福井市中の郡3
Fukui Prefectural Ayu Farming Center, Nakano-go 3, Fukui-shi, Fukui, 910 Japan
*** 福井県水産試験場，〒914 敦賀市港町 23
Fukui Prefectural Fisheries Experimental Station,
Urasoko 23, Tsuruga-shi, Fukui, 914 Japan
**** 東京水産大学，〒108 東京都港区港南4
Tokyo University of Fisheries, Konan 4, Minato-ku, Tokyo, 108 Japan
2. 調査結果

上記の方法で a 地点において調べた結果は Fig. 2, A に示すようになる。体重 (W) と生殖器重量 (GW) との関係はほぼ直線であるので、一次式 (GW=ρW−q) を当てはめれば、最小二乗法で次の回帰直線が求められる。

\[GW = 0.129 W - 0.226 \] \hspace{1cm} (1)

すなわち、W が大きくなるにつれて、GW は直線的に増加する。これと同様の傾向は b～f 地点においても見られる。ただ、上記の関係式における定数 ρ, q の値が各地点によって異なる (Table 1)。

(1) 式を書き換えると,

\[GW/W = \rho - q/W \]

となる。したがって、体重の逆数 (1/W) に応じて、生殖器指数 (GW/W) は減少することになる。直接 1/W と GW/W との関係を求めても、これは同じである (Fig. 2, B)。同様の傾向は b～f 地点においても認められる。

3. 考察

体重 (W) が大きくなるにつれて、生殖器重量 (GW) は直線的に増加するが、生殖器指数 (GW/W) は一定の極限値に近づくように漸増する。すなわち、これらの関係は次式,

\[GW = ρW - q \]

で示される。この場合、上式の GW/W = ρ−q/W において、q が W に対して小さいので、q/W を近似的に無視すると、GW/W = ρ となる。

本地先の各地点における生殖器指数の近似値 (ρ) は d, b, a, c, f, e 地点の順に低下し、生殖場所によって差異が見られる。また、ρ は生息密度と相関し (Fig. 3)。概して、食物である海藻類が豊富で、生息密度が低い西水城の水深 2 m 以浅 (a～d) では高く、これに比べて、海藻類が乏しく、生息密度が高い東水城の水深 3 m 以深 (e) と東水域 (f) では低い傾向がある。なお、ρ は般怪成長 (石渡ら, 1981) と相関し、成長が速い西水域の水深 2 m 以浅では高く、成長が遅い西水域の 3 m 以深と東水域では低い傾向が認められる。

![Fig. 2. (A) Relationship between body weight (W) and gonad weight (GW) of the sea urchin at station a (Fig. 1) on the coast of Kaji, Fukui Prefecture, during the 1968 fishing season.](image)

![Fig. 3. Relationship between mean density (number of individuals/4 m³) per station and approximate value of gonad index (ρ) of the sea urchin population on the coast of Kaji, Fukui Prefecture, during the 1968 fishing season. Circle, for western stations (a-d); square, for another western station (e); triangle, for eastern station (f).](image)

Table 1. Values of constants ρ and q in equation (GW=ρW−q) for the relationship between body weight (W) and gonad weight (GW) of the sea urchin at stations a～f on the coast of Kaji, Fukui Prefecture, during the 1968 fishing season.

<table>
<thead>
<tr>
<th>Station</th>
<th>Constant</th>
<th>Body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.129</td>
<td>3.4～24.9</td>
</tr>
<tr>
<td>b</td>
<td>0.157</td>
<td>2.1～54.7</td>
</tr>
<tr>
<td>c</td>
<td>0.128</td>
<td>3.9～44.4</td>
</tr>
<tr>
<td>d</td>
<td>0.196</td>
<td>3.3～33.2</td>
</tr>
<tr>
<td>e</td>
<td>0.153</td>
<td>2.1～54.7</td>
</tr>
<tr>
<td>f</td>
<td>0.110</td>
<td>1.9～18.6</td>
</tr>
</tbody>
</table>
本邦産ウノ類の産殖栄養量については福井県をはじめ、山口県および北海道などで類似の調査結果が得られている。川名（1969）によれば、福井県越前町根浦と三国町根地先の7月におけるパフウンニの調査では水深4m以上のものは鰓が大形で、鰓の厚さが40cm程度で、漁獲量も大きい。それ以深のものは鰓が形が小さく、漁獲量も小さい。また、中村、井上（1965）によれば、山口県下各地先におけるパフウンニ・ムラサキニ・アカニの3種類の産殖栄養量は地域により、また、同一地域においても漁獲場所によって差異がある。山口県豊北町和久地先の5月と9月における同じ3種類についての産殖栄養量の調査（井上ら、1969）では岸から沖合に行くにつれて、体内の量はそれほど小さくなるのが認められている。また、川村（1965）は北海道札幌市船泊の6〜7月におけるエゾパフウンニの産殖栄養量（産殖栄養量×10/体重）を求める。この結果によると、産殖栄養量は地域により差異があり、また、同一地域においても浅所のものは深所のものより高く、その差異は産卵場の生態状態と関係があるようである。そのほか、Moore（1934）はアイリッシュ海沿岸のPort Erin付近の2地点においてEchinosausurusの産殖栄養量（産殖栄養量×10/殻容積）の季節的変化を求めている。この結果は、浅所のもののは深所（35〜40m）のものより殻が大形で厚く、産殖栄養量も周年高く、それの差異は食物としての海藻類の量と関係があることを示唆している。本調査結果でも産殖栄養量に差異を生ずる要因は、各漁場に於ける魚種と観察密度が相互に関係した個体当たり利用し得る食糧の多寡であり、それが捕食適または代謝量に作用し、その結果、産殖栄養量に差異を生ずるものと思われる。水温その他の物理的要因も捕食適または代謝量に作用し、その結果、産殖栄養量に差異を生ずるであろうが、本調査事例のいきこい遠程漁場の漁獲場所においては、物理的要因の差は僅少であるので、それが産殖栄養量に大差を生ずることはないと考えられる。

文 献
井上, 桜, 中村達夫, 丸田信孝, 寺尾百合正, 重宗新治, 西村忠信（1969）：天然漁場におけるウノ類の生態と漁業環境に関する調査研究。山口外海水試研報，10，1〜46。
石渡直典, 服見浩, 前川邦煕, 篠波高志（1981）：福井県西部におけるパフウンニの漁業生物学的研究—II個体群の殻容積の推移，うみ，19，143〜148。
川村一広（1965）：札幌市船泊のエゾパフウンニの生態について。第2報：北水試報，3，19〜38。
川村武（1988）：パフウンニの増殖について。水産研究誌，33，104〜116。
中村達夫, 井上, 桜（1965）：山口県のウノと養殖事業効果について。山口外海水試研報，5，1〜70。