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The short-period cold water mass accompanied by
large meander of the Kuroshio south of Japan®

Haruo ISHII** and Yoshihiko SEKINE***

Abstraet: A cold water mass accompanied by the large meander of the Kuroshio with short
lifetime less than one year was observed to the south of Japan. The difference in hydrography
between the short-period meander observed in 1969-1970 and long-period meanders observed
in 1975-1980 and 1981-1984 is considered. It is shown that there are no apparent differences
in the current path pattern of the Kuroshio during the formation process of the large meander
between the short-period meander and the long-period meanders. The time variation in
temperature at depths of 1,000 m and 1,500 m near the center of the cold water mass with
the short-period meander has a tendency to increase in the western side of the Izu Ridge.
In the final period of the short-period meander, the center of the cold water mass shifts to
the eastern side of the Izu Ridge. Observed current path does not show amplification in the
eastern side of the Izu Ridge, which is neither observed in the final period of the long-period
meanders. The temperature variation of the cold water mass accompanied with long-period
meander is found to repeat its increase and decrease in the western side of the Izu Ridge.
However, the decrease in the temperature is not detected in the cold water mass accompanied
by the short-period meander. It is suggested that the lifetime of the large meander of the
Kuroshio and of the cold water mass is related to the occurrence of temperature decrease of
the cold water mass in the western side of the Izu Ridge south of Japan.

1. Introduction large meander of the Kuroshio formed in 1975.
It is well known that a large-scale meander They showed that the temperature at a depth
of the Kuroshio appears south of Japan and shallower than 1,000m near the center of the
stays for a long period (e.g., SHoj, 1972; cold water mass takes several repetition of cool-
NisHIDA, 1982). This phenomenon, which is ing and warming, in which the cooling has a
called large meander, is peculiar to the Kuroshio tendency to occur in late spring to summer and
and a similar one has not been observed in the warming in the other seasons. During the
other western boundary currents. Since 1950, cooling periods, the expansion of the low
the large meander of the Kuroshio has been temperature area, which is estimated from a
observed six times (see Table 1). We should horizontal temperature distribution at a depth
notice here that the two cases of the large of 200m, is commonly observed, while the
meander, which were formed in 1851 and in  shrinking of the low temperature area is observed
1969, ended with a short lifetime less than one in warming periods. It is also suggested by
year, whereas the other cases continued more SEKINE et al. (1985) that the cold water mass
than two years. The difference in lifetime length of the Kuroshio decays in comparatively short
between both the cases is considered in the time, three years at most, if the cooling period
present paper. of temperature does not exist. The occurrence
SEKINE et al. (1985) analyzed the time variation of the cooling of the cold water mass is supposed
of the cold water mass accompanied with the to be related to the longer lifetime of the cold
* Received March 10, 1986 water mass and the large meander of the Kuro-
** Hydrographic Department, Maritime Safety shio.
Agency of Japan, Chuo-ku, Tokyo, 104 Japan In the present study, the time variation of the
*#% Institute of Geosciences and Astronomy, The short-period meander and its cold water mass

National Defense Academy, Yokosuka, 239 Japan is analyzed from the above viewpoint. Because.
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very little hydrographic data of the short-period
meander formed in 1950 is available, the main
analysis of the short-period meander is made for
that formed in 1969. In what follows, the
difference in current path during the” formation
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Fig. 1. Change in the path of the Kuroshio
during the transition periods from no meander
path (a) after YOSHIDA (1961), (b} after SHOJI
(1972), (c) after Kosuact (1978) and (d) based
on data of the Hydrographic Department.
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period of large meander between the short-period
meander and the long-period meanders is examin-
ed in the next section. In the section three, the
time variation in the temperature of the cold
water mass of short-period meander is examined
and the result is compared with those of long-peri-
od meanders formed in 1975 and in 198l. Sum-
mary and discussion are made in section four.

2. Time variation in current path during the
formation period of the short-period large
meander of the Kuroshio
Figure 1 displays the four cases of the time

variation of the Kuroshio path during the for-

mation process of the large meander path from
no meander path. The case of Fig. 1(b) cbserved
in 1969 is a short-period meander and the other
three cases observed in 1959, 1975 and 1981 are
long-period meanders (see Table 1). It is found
that the variation in current path of the Kuro-
shio during the transition process is almost
common to all the cases; a small meander is
generated to the southeast of Kyushu, and it
moves eastward. Relatively sudden amplification
of the small meander occurs near 137-138°E,
which is a final process of the formation of the
large meander path of the Kuroshio. It is found
from Fig. 1 that there are no apparent differences
in the current path pattern in the formation
process and in the accomplished large meander
path between the short-period meander and the
long-period meanders. Although the detailed
comparison is difficult due to the lack of the
observational data, it is inferred that the life-
time of a cold water mass depends on the
process after the accomplishment of the for-

Table 1. Lifetime of the cold water mass of
the Kuroshio.

Case Periods of presence of Lifetime
no. the cold water mass (in years)
I Aug. 1951-Apr. 1952¢ 0.8
I Sept. 1953-Dec. 1955% 2.3
i July 1959-Dec. 1962%% 3.5
v May 1969-May 1970° 1.0
Y Aug. 1975-Aug. 1980° 5.0
Nl Nov. 1981-Aug. 1984? 2.9

o After OKADA and NISHIMOTO (1978).
b Based on data from Hydrographic Department of
the Maritime Safety Agency of Japan.
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mation of the Kuroshio large meander south of
Japan.

3. Time variation in temperature of the cold
water mass accompanied by short-period
meander
The temperature variation in the deep layer

near the center of the cold water mass formed

in 1969 is shown in Fig. 2. The temperature
is estimated as the average of the lowest three
temperature data near the center of the cold
water mass (for the locations of the lowest three

It is shown that

the temperature has a tendency to increase

during the total lifetime.
temperature variation shown in Fig. 2 almost

temperature data, see Fig. 3).

The tendency of

B3I TTTT IO T T T T T T T

3.2 n

3.1 =

1000m

il
¢

TEMPERATURE (C)
TH—T
1 |

/ 1500m

[ ]
L bbb iy

13 69 19 70

Fig. 2. Time variation of temperature at depths
of 1,600 m and 1,500 m in the cold water mass
of the Kuroshio. The temperature is defined
as the average of the lowest three data near
the center of the cold water mass of which
locations are shown by larger symbols of station
points in Fig. 3. Data sources are Maritime
Safety Agency and Japan Meteorological Agency.
The black band at the bottom shows the period
when the center of the cold water mass exists
in the eastern side of the Izu Ridge.

coincides with those of the Gulf Stream cyclonic
rings; the warming of the cold dome is found
throughout the lifetime (e.g., CHENEY and RICH-
ARDSON, 1976).

Horizontal distribution of the temperature
displayed in Fig. 3 shows that the horizontal
scale of the cold water mass diminishes by the
lapse of time and the center of the cold water
mass shifts to the eastern side of the Izu Ridge.
The cold water mass attenuates rapidly in the
eastern side of the Izu Ridge and the large
meander of the Kuroshio disappears in a short
time. The phenomenon that the center of the
cold water mass and large meander of the
Kuroshio shift to the eastern side of the Izu
Ridge in its last stage is common to all the
large meanders (e.g. NISHIDA, 1982). Small
temperature decrease at a depth of 1,000 m is
detected in Fig. 2, after the cold water mass of
the Kuroshio shifted to the eastern side of the
Izu Ridge. However, the cold water mass may
not be intensified in the eastern side of the Izu
Ridge.

The temperature variation in the deep layer
for the cases of long-period meanders formed in
1975 and in 1981 is shown in Fig. 4(a) and (b),
respectively. The temperature tends to increase
gradually by the lapse of time, but there exist
some cooling periods. The cooling has a ten-
dency to occur in late spring to summer. We
should notice here that the decrease in temper-
ature of the cold water mass in the Shikoku
Basin (western side of the Izu Ridge) has not
been observed in the lifetime of short-period
meander formed in 1969 as shown in Fig. 2.

Horizontal distributions of temperature during
the cooling periods shown in Fig. 4 are displayed
in Fig. 5 and Fig. 6. It is clear that the de-
crease in temperature of the cold water mass
and the expansion of the horizontal scale of the
cold water mass of the long-period meander
occur in the western side of the Izu Ridge,
which is not found in the case of short-period
meander shown in Figs. 2 and 3. Because the
cooling of a deep layer is caused by the ascent
of the isotherms, such a cooling is considered
to be a spin-up of the cold water mass (for the
detailed description of the cooling period of Fig.
A(a), see SEKINE et al., 1985). From this, no
occurrence of the cooling in the western side of
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Fig. 3. Horizontal distribution of temperature (°C) at depths of 1,000 m and

1,500 m during the short period meander formed in 1969. Also shown
are surface current axes of the Kuroshio (thick lines with arrows) based
on the Quick Bulletin of Ocean Conditions published twice a month by
Hydrographic Department of Maritime Safety Agency of Japan. Symbols
show the observational stations of temperature of Takuyo (@) and Kaiyo
(#9) of Hydrographic Department, and Shunpu Maru (®) and Ryofu Maru
(@) of Japan Meteorological Agency. The larger three symbols show stations
of the lowest three temperatures, of which averages are displayed in Fig. 2.
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Fig. 4. Time variation of temperature at depths
of 1,600m and 1,500 m in the cold water mass
of the Kuroshio accompanied by the long-
period large meanders formed in 1975 (a) and
in 1981 (b). The temperature is defined as the
average of the lowest three data near the center
of the cold water mass. Data are provided by
Maritime Safety Agency of Japan, Japan
Meteorological Agency, Japan Oceanographic
Data Center and Fisheries Agency. The black
band at the bottom shows the period when the
center of the cold water mass exists in the
eastern side of the Izu Ridge.

the Izu Ridge indicates no occurrence of the
spin-up of the cold water mass accompanied with
the short-period meander. In constrast to this,

long-period meanders formed in 1975 and in 1981
have spin-up periods of the cold water mass.
It is thus pointed out that the occurrence of a
spin-up of the cold water mass is associated with
the longer lifetime of the large meander of the
Kuroshio.

Next we see a critical condition of the shift
of the cold water mass to the eastern side of
the Izu Ridge, which is commonly observed for
the decay period of the cold water mass and
large meander of the Kuroshio. The periods
when the cold water mass is in the eastern side
of the Izu Ridge are displayed by the black
bands in FFigs. 2 and 4. It is demonstrated from
Figs. 2 and 4 that the shift of the cold water
mass occurs when the temperature at a depth
of 1,500 m near the center of the cold water
mass exceeds about 2.4°C. The existence of
the critical value of temperature is considered
as follows. On the basis of the gradient flow
balance on the deep layer circulation of the cold
water mass, the larger horizontal gradient of
the temperature at a deep level indicates the
existence of larger current velocity down to that
level, and vice versa. Because the averaged
depth of the Izu Ridge is shallower than 1,000 m,
the cold water mass is supposed to have a
contact with the bottom topography of the Izu
Ridge. It is well-known from the theory of the
geophysical fluid dynamics (e.g., PEDLOSKY,
1979) that the current in the deep layer has a
tendency to flow along the isopleth of the depth.
Therefore, the cold water mass with the larger
current velocity in the deep layer is not able to
go over the Izu Ridge to its eastern side, unless
the current velocity in lower layer is weakened.
It is thus suggested that the critical velocity
which allows the cold water mass to shift to
the eastern side of the Izu Ridge is represented
by the temperature of about 2.4°C at a depth
of 1,500 m, in which averaged temperature at a
depth of 1,500 m south of Japan is about 2.6-
2.9°C (e.g. TAFT, 1978). However, this critical
condition on the shift of the cold water mass
should be examined quantitatively by use of
simulating model.

4, Summary and discussion
The time variation of the short-period cold
water mass accompanied by large meander of
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Horizontal distribution of the temperature during the low temperature

period of the cold water mass of the Kuroshio accompanied by the long-

period meander formed in 1975.

Data sources are the same as in Fig. 4.

The symbols of the stations are the same as in Fig. 2.

the Kuroshio formed in 1969 has been studied
and the results are compared with those ac-
companied by
in 1975 and
present study

(1) There
current path variations during the formation
process of the large meander of the Kuroshio
between the short-period meander and the long-

the long-period meanders formed
1981. of the

are summarized as follows:

Main conclusions

exists no apparent difference in

period meanders. The lifetimes of the cold water

mass and large meander of the Kuroshio are
supposed to be due to the process after the
accomplishment of the large meander path for-
mation.

(2) The deep layer temperature at depths of
1,000 m and 1,500 m near the center of the cold
water mass accompanied by the short-period
meander shows no cooling period in the western
side of the Izu Ridge. In contrast to this, the
cold water mass with the long-period meanders
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Fig. 6. Horizontal distribution of temperature during the low temperature

period of the cold water mass of the Kuroshio accompanied by the long-
period meander formed in 1981. Data sources are the same as in Fig. 4.
The symbols are the same as in Fig. 3, but for Shoyo (O) of Hydro-
graphic Department, Soyo Maru (&) and Syunyo Maru (A) of Fishery

Agency.

has commonly cooling periods of temperature
in the western side of the Izu Ridge. It is
suggested that the occurrence of the cooling of
the cold water mass has some relationship to
its longer lifetime.

(3) Prior to the decay period the large cold
water mass and the large meander of the Kuro-
shio, they shift to the eastern side of the Izu
Ridge. It is found that the cold water mass
and large meander have a tendency to shift to
the eastern side of the Izu Ridge when the tem-
perature at a depth of 1,500 m near the center of
the cold water mass exceeds 2.4°C. Because
the increase of the lower layer temperature of
the cold water mass means the decrease in velo-
city in the deep layer, this represents a critical

condition on the shift of the cold water mass
and large meander of the Kuroshio to an eastern
side of the Izu Ridge.

Finally, we refer to the occurrence of the
spin-up process of the cold water mass of the
Kuroshio, which is only observed in the long-
period meanders. SEKINE ez al. (1985) showed
that the cooling of the cold water mass formed
in 1975 has a tendency to occur in late spring
to summer. The similar tendency is found in
the temperature variation of the cold water mass
formed in 1981 (see, Fig. 4(b)). Therefore, a
relationship between the occurrence of the cool-
ing of the cold water mass and the seasonal
variation of the Kuroshio flow is suggested.
‘When the cooling of the cold water mass does
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not occur in this season, there is a possibility
that the large meander of the Kuroshio and the
cold water mass decay in near future. The
dynamics of the cooling of the cold water mass
and its relationship to the seasonal variation of
the Kuroshio should be investigated in the next
stage of this study.
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High incidence of copepod-bacteria associations
in Tokyo Bay waters and Woods Hole waters*

Sachiko NAGASAWA**

Abstract: SEM examination revealed that calanoid copepods Acartia spp. from Tokyo Bay
waters and Woods Hole waters have a high incidence of bacterial colonization on their body.
In some samples from Tokyo Bay one hundred percent of adult copepods were colonized by
bacteria. Many of these bacteria produced slime. More than 80 % of copepods from Woods
Hole were covered with bacteria and some of these copepods had slime. Small pores and
slots which are scars of bacteria either vertically or horizontally attached to copepods were
observed adjacent to dense colonies of bacteria. Bacteria were sometimes present in the
internal part of body, suggesting that bacterial invasion occurred inside the body. These
findings suggest that copepod-bacteria associations which are global phenomena cannot be

commensalism but parasitism.

1. Intreduction

Bacterial epibionts of copepods have been ex-
amined in coastal waters (SOCHARD et al., 1979;
COLWELL et al., 1980; HUQ ez al., 1983; NAGA-
SAWA et al., 1985a; NAGASAWA and NEMOTO,
1986, in press; NAGASAWA, 1986) as well as
lakes (HOLLAND and HERGENRADER, 1981)
using scanning electron microscopy. One measure
of this association, incidence of copepods with
bacteria (ICWB), has been obtained from samples
in coastal waters in different parts of the world
(NAGASAWA, 1986; NAGASAWA and NEMOTO,
in press). Values of ICWB ranged from 0 to
849,. So far Woods IHole samples had the
highest incidence, 84 %, but in general ICWB
was less than 1095 (NAGASAWA, 1986). Seventy-
five percent of the adult calanoid copepods Diapto-
mus spp. were colonized as compared to only
10.59% of the copepodites at three lakes in
Nebraska (HOLLAND and HERGENRADER, 1981).
Bacteria capable of producing polysaccharides
occurred on calanoid copepods Acartia spp. from
Woods Hole, San Francisco Bay and Vera Cruz
(NAGASAWA, 1986).

The present study provides information on
variation of ICWDB at two stations in Shinhamako
(Tokyo Bay) where at times all adult copepods

* Received March 17, 1986
** Qcean Research Institute, University of Tokyo,
Minamidai 1-15-1, Nakano-ku, Tokyo, 164 Japan

Acartia spp. are colonized by bacteria as well
as with attached bacteria including production
of polysaccharides. Discussion is focused on the
ecological aspects of the frequent occurrence of
copepods with bacteria, and of the mutual re-
lation between copepods and bacteria.

2. Materials and methods

Tokyo Bay and Woods Hole samples were
used in this study; the former includes Acartia
omorii and A. plumosa obtained from Shin-
hamako, a saline lake which is connected to
Tokyo Bay (see NAGASAWA, 1984) and the
latter includes A. #omsa from Woods Hole.
Copepods known as A. clausi in Japanese coastal
and inlet waters consist of two species, A. omorii
and A. hudsonica (UEDA, 1986). He also men-
tions that samples from almost all areas are
composed of A. omorii. Waters of Shinhamako
cover an area of 300,000 square meters and here-
after are referred to as Tokyo Bay waters, since
water from Tokyo Bay flows into and out of
this lake through a sluice gate. The Tokyo
Bay samples are composed of 25 collections taken
from January 6 through November 4, 1976 at
two stations separated by about 1,000 m. The
Woods Hole sample consists of only one sample
collected on September 1, 1984. Each sample
was preserved in 5% neutralized formalin sea-
water solution immediately after collection. The
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seasonal cycle of Acartia was described by FURO-
TA (1979) for Shinhamako where A. omorii was
dominant from November through June and was
replaced in dominance during summer by A.
plumosa. Three samples taken in June and
November include both species of copepods. The
other 22 samples were composed of either A.
omorii (11 samples) or A. plumosa (11 samples).

In most cases 100-200 Acartia adults were
removed from preserved plankton samples, and
examined in a JSM-35 scanning electron micro-
scope following the preparation procedure de-

Table 1.
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scribed by NAGASAWA et al. (1985a). After
critical-point drying some specimens collected on
August 15, 1976 were cut transversely or exo-
skeletons of copepods were cut open so that
internal tissue could be seen easily. These also
were then coated with gold and examined in an
SEM.

The density of bacteria is defined as number
of bacteria per unit surface area: when several
to several tens bacteria are dispersed, the density
is low; when more than 100 to several hundreds
bacteria are colonized, the density is high. The

Data on copepod collections used in the present study, incidence of copepods with

bacteria (O and P in parentheses represent A. omorii and A. plumosa, respectively) and

characteristics of bacteria attached to copepods.

ND indicates no data.

Date No. of  Incidence of Characteristics of bacteria
Station (1&376) copepods copepods with— — — ——— — — _—
examined bacteria (%) 1) Attachment 2) Density 3) Shape 4) Slime
Tokyo (Shinhamako) Bay
1 Jan. 6 126 0 (O) ND ND ND ND
2 Jan. 6 127 0 (O) ND ND ND ND
1 Jan. 21 216 0.5 (0) Head only High Slender rods Absent
2 Jan. 21 113 0 (O ND ND ND ND
1 Feb. 10 215 100.0 (O) Everywhere Low Short or indented  Absent
rods
2 Feb. 27 59 6 (O) ND ND ND ND
1 Mar. 31 113 160.0 (O) Everywhere Low, rarely high Short or long rods, Present
spiral
2 Mar. 31 103 2.9 (0O) Selective Low Short or long rods  Absent
1 Apr. 16 158 92.4 (O) Everywhere Low, rarely high Short or longrods, Present
spiral
2 Apr. 16 139 3.6 (O) Selective Low, rarely high Short or long rods ~ Absent
1 May 7 127 160.0 (O) Everywhere High Short or indented  Present
rods, spiral
1 June 19 52 3.8 (O,P) Selective Low Short or long rods Absent
2 June 19 23 o O,P) ND ND ND ND
2 July 9 66 ¢ (P) ND ND ND ND
1 July 27 86 ¢ (P) ND ND ND ND
2 July 27 150 6 (P) ND ND ND ND
1 Aug. 15 130 43.1 (P) Selective, Low, on the back Short or long rods Present
dorsal high
2 Aug. 156 208 54.3 (P) Selective, Low, rarely high Short or long rods Absent
dorsal
1 Sept. 5 137 12.4 (P) Selective Low Short or long rods Present
2 Sept. 5 142 25.4 (P) Selective  Low, rarely high Short or long rods Absent
1 Sept. 30 174 100.0 (P) Everywhere High Short, long or Present
indented rods
2 Sept. 30 66 16.7 (P) Selective Low Short or long rods Absent
1 Oct. 17 190 160.0 (P) Selective Low Short or long rods Absent
2 Cet. 17 158 16.5 (P) Selective  Low, rarely high  Short, long or Absent
indented rods
2 Nov. 4 125 47.2 (O, P) Selective  Low, sometimes Short or long rods, Absent
high beaded
Woods Hole
1 Sept. 1,
1984 117 83.8 Selective, High, rarely low Short or long rods Present

dorsal
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Fig. 1. Scanning electron micrographs of bacteria attached to copepods obtained from Tokyo Bay
waters. Specimens were collected on February 10, 1976 (A), March 31, 1976 (B and C), April
16, 1976 (D), May 7, 1976 (E and F), August 15, 1976 (G) and September 30, 1976 (H-L). Twelve
different specimens were used in the following 12 pictures. Scale bars indicate 5 (A-G and J-L)
and 50 um (H and I). (A) A small number of indented bacteria are attached to the head of
copepod. No slime was found on other February specimens. (B) Long or short rods colonize
the body surface together with slime. (C) A quantity of slime is present on the tail segment
together with bacteria. (D) A small number of long or short rods with slime are found on the
ventral side. (E) Most of bacteria which cover the dorsal side are indented, producing a slime
layer. (F) Indented bacteria which slightly produce slime are present on the dorsal side. (G)
Heavy colonization of bacteria occurs on the dorsal side. Slime covers part of colony. (H) A
copepod showing heavy colonization of bacteria on most of the back. (I) Lateral view of head
which is covered with bacteria and slime, looking filmy. (J) Slime is more marked than bacteria
on the ventral side. (K) Bacteria and slime are striking on the ventral side. (L) A colony of
bacteria is on the maxilla. A slime layer covers bacteria in small quantities.
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definition of ICWB is the percentage of number
of copepods with bacteria to number of those
examined for each sample (NAGASAWA, 1986;
NAGASAWA and NEMOTO, in press). Water
temperature and salinity were measured for
Tokyo Bay waters at a depth of 5m.

3. Results
1) Characteristics of bacteria attached to copepods
Some features of bacteria attached to copepods
are found in Table 1. In most cases attachment
of bacteria to copepods was selective as reported
by NAGASAWA et al. (1985a), NAGASAWA
(1986), and NAGASAWA and NEMOTO (1986, in
press). Bacteria were found more frequently on
the ventro-lateral side than on the dorsal side.
These examples are referred to as ‘‘selective’
in Table 1. However, in some copepods bacteria
were found everywhere on the ventral, lateral
and dorsal sides of copepods; they are referred

to as ‘‘everywhere’’ (Table 1). Attachment of
bacteria to the back of copepods (Fig. 1G, H;
Fig. 2D, E, F) -occurred intensively only on
samples obtained on August 15 and September
30, 1976 in Tokyo Bay and September 1, 1984
in Woods Hole.

The density of bacteria in Tokyo Bay was
usually low, which suggests that bacteria were
just beginning to attach. Woods Hole specimens
usually had a large number of bacteria. Al-
though accurate estimates of bacterial density
on copepods were not obtained, counts based
on the photographs indicate an order of at most
10%-10°% cells per copepod.
observed close to the dense colonies of bacteria
for the first time (Fig. 2E, F), but on uninfested
copepods there were no pores.

Most bacteria were rods of various shapes—
short, long, indented (Fig. 1A, E, F) or slender.
Occasionally spiral bacteria were found in Tokyo

Small pores were

Fig. 2. Scanning electron micrographs of bacteria attached to copepods obtained from Woods Hole
waters on September 1, 1984. Five different specimens were used in the following 6 pictures.
Scale bars indicate 1 (F), 5 (A-C and E) and 50 #gm (D). (A) Bacteria producing exopolymers are
attached to the lateral side of copepod. Attachment of diatoms may be due to sticky exopolymers.
(B) Organic polymers cover the labrum in large quantities. (C) Heavy colonization of bacteria
occurs near the joints of segments. Organic polymers slightly cover a colony of bacteria. (D)

Bacteria are present on the whole area of back.

(E) Higher magnification of part of (D). Small

pores are observed adjacent to bacteria. (F) Bacteria and slime are present on the dorsal side.

Like the picture (E) small pores are found.
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Bay samples. Beaded bacteria were observed
rarely in Tokyo Bay samples, and were also seen
in copepods from Vera Cruz INAGASAWA, 1986).

Two types of bacterial attachment were ob-
served on copepods: bacteria attached along.the
entire length of the cell and those attached to
the exoskeleton at one end perpendicular to the
skeletal surface. I refer to the former as hori-
zontal and the latter as polar attachment. The

horizontal attachment usually was more frequent-
ly than polar attachment. In the Tokyo Bay
samples horizontal attachment was common as
shown in Fig. 1, whereas in Woods Hole polar
attachment occurred more frequently than in
Tokyo Bay. The polar attachment was observed
dorsally on prosome segments of copepods (Fig.
2). Copepods from other areas than Tokyo Bay
and Woods Hole so far investigated were some-

Fig. 3. Scanning electron micrographs of bacteria attached to inside the body of copepods obtained
from Tokyo Bay waters on August 15, 1976. Four different specimens were used in the following
9 pictures. Scale bars indicate 5 (B-F and H-I) and 50 #gm (A and G). (A) A cross section of

copepod. (B) Enlargement of part in (A).

A small number of bacteria are present. (C) Bacteria

are dispersed in the inside of body where exoskeleton came off. (D) An internal part which came
out after cutting open exoskeleton. Arrows with figures indicate the presence of bacteria. (E)

Enlargement of the part marked 1"’ in (D).

(F) Higher magnification of the part marked ‘2"’

in (D). (G) Exoskeleton cut roughly open and the inner part of copepod. (H) Enlarged view of
the part marked ‘1>’ in (G). A large number of bacteria are colonized inside the copepod. (I)
Higher magnification of the part marked ‘“2”’ in (G). Bacteria densely colonize the inside of body.
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times covered with bacteria which are attached
polarly to the skeletal surface, but horizontal
attachment usually predominated as was the
case in three lakes reported by HOLLAND and
HERGENRADER (1981). There is no information
about mechanisms or causes of these different
attachments.

Bacteria which produce exopolysaccharides
(SUTHERLAND, 1977) occurred in some samples
(Table 1); bacteria capable of producing slime
were present on copepods obtained only from
Stn. 1. Slime was found on the dorsal (Fig.
1B, C, E, F, G, H; Fig. 2D, E, F), ventral
(Fig. 1D, J, L; Fig. 2B) and lateral (Fig. 1I;
Fig. 2A) surfaces and appeared as filaments,
interconnected fibers, or film.

2) Bacterial colonization of the inside of copepods

Evidence of the bacterial attachment to the
inside of copepods is shown in Fig. 3. These
bacteria appeared as a huge mass of cells (Fig.
3G, H, I). Specimens whose inside was attacked
by bacteria also were colonized by bacteria on
the body surface, although the number of bacteria
attached externally to these specimens was not
numerous. The of copepods with
interior bacteria was not determined due to
observations on several specimens of copepods.
NAGASAWA (1985) and NAGASAWA et al. (1985b)
reported bacterial colonization of chaetognaths
inside the body, among thin lateral bands of the
As a result of such

incidence

body-wall musculature.
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bacterial infection, the chaetognaths’ shape
changed and they looked abnormal. In contrast,
copepods did not appear morphologically ab-
normal. Nevertheless, the marked growth of
bacteria inside the body of copepod may be dis-
advantageous to swimming.

3) Incidence of copepods with bacteria

In January, June and July very few copepods
with bacteria occurred in Tokyo Bay samples
(Table 1), but in other months extremely high
values of ICWB (92-100 95) were obtained at
Stn. 1; copepods at Stn. 2 showed lower values
of ICWB. In Augustthe ICWB at both stations
was similar, whereas in September (September
5) it was 2 times higher at Stn. 2 than at Stn.
1. Values of ICWB were also higher (17-54 %)
at Stn. 2 between August and November than
at that station in other months. At Stn. 1 both
species (A. omorii and A. plumosa) having bac-
teria ranged from 0 to 100 9%, whereas at Stn.
2 ICWB of A. omorii ranged from 0 to 3.6 %
and that of A. plumosa from Q to 54.3 %, (Table
1). Such difference in ICWB may depend on
the locality rather than species, since TAKA-
HASHI and FUROTA (1977) stated that chloro-
phyll @ was higher at Stn. 1 than at Stn. 2 as
well as dissolved oxygen.

Water temperatures and salinities at Stn. 1
were similar to those at Stn. 2 (Fig. 4). Most
specimens of A. omorii with attached bacteria
inhabited water with temperatures ranging from
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Fig. 4. Water temperature (T) and salinity (S) from January 6 through November 4, 1976 at
a depth of 5m. Salinity records were not available on February 10. Solid circle for Stn.

1 and open circle for Stn. 2.
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Fig. 5. Scanning electron micrographs of copepods collected at Stn. 7 in Tokyo Bay (see NAGASAWA
and NEMOTO, in press) on June 10, 1984. Scale bars indicate 5 (B) and 50 gm (A). (A) Dark
spots are present together with large numbers of tiny spots which are mass of either pores or
slots on the lateral side of copepod. An arrow indicates the location of attachment of bacteria.
(B) Enlargement of the part indicated by an arrow in (A). Two types of bacterial attachment,
horizontal and polar attachments, are observed. Small pores and slots are found.

5.5 to 15.3°C and salinities from 28.7 to 30.2 %o
S: most specimens of A. plumosa with bacteria
were found at 16.0 to 26.1°C and from 24.8 to
29.5 %0 S, respectively (Table 1, Fig. 4). UYE
(1982) reported that ecological longevities of adult
A. clausi s.l. vary from 9.8 to 1.4 days at
temperatures ranging from 5.9 to 21.9°C. The
ecological longevities of Tokyo Bay copepods
may be similar to those estimate: the adults of
each sample probably belong to different cohorts.

Woods Hole copepods had a high value of
ICWB (83.8%). The hydroids in Woods Hole
harbor are reported to be particularly healthy
and free from bacterial growths and debris in
the early spring months, but in mid-summer
contaminating organisms affect hydroids adversely
(GRAVE, 1933). Woods Hole copepods may
have a similar seasonal history of infection with
bacteria.

4. Discussion

The presence of pores (Figs. 2 & 5) and slots
(Fig. 5) on the skeleton adjacent to dense colonies
of bacteria may represent sites of previous bac-
terial attachment. Sizes of these scars indicate
either polar or horizontal attachment. Large
numbers of scars, looking like dark spots, present

a rough appearance. These scars suggest that
bacterial attachment may damage copepod exo-
skeleton and may indicate that the relationship
is not commensalism but parasitism. Another
evidence supporting this hypothesis is bacterial
invasion of the inner part of copepod (Fig. 3).
In Tokyo Bay waters during several months
all adult copepods examined were colonized by
bacteria. Similar results have been reported for
adults of Diaptomus nevadensis in Goose Lake,
Nebraska and those of D. siciloides in Branched
QOak Lake, Nebraska (HOLLAND and HERGEN-
RADER, 1981). High incidences of copepods with
bacteria do not seem to be correlated with locality
or season. This has serious implications for
experimental studies of copepods. During ex-
perimental studies of physiological parameters
of copepods (e.g. oxygen consumption) animals
should be examined to determine the extent of
bacterial attachment. The weight specific respi-
ration rate or the Qo, of Acartia clausi s.1. and
bacteria is 2-6 (IKEDA, 1974) and 1,000-3,000 g/
O;/mg dry weight/h (GALE, 1951), respectively.
Adults of A. clausi are 1 mm in length and
bacteria attached to this copepod are 1 #m long.
Weight of bacteria is obtained from a length-
weight relationship and corresponds to 1079 of
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that of Acartia. In this study the highest den-
sity of bacteria is estimated as 10%-10° per
copepod. Therefore, the Qq, of bacteria with
this density is calculated as 10-2-10-! p/ 0;/mg
dry weight/h which accounts for 1-10 % of the
Qo, of copepod. The degree of infestation (>10%
cells per copepod) may affect differences in
respiratory rate for the same species which
previously was interpreted as the result of differ-
ent generations (GAULD and RAYMONT, 1953),
size differences (MARSHALL and ORR, 1958),
regional (CONOVER, 1959) and seasonal (MAR-
SHALL and ORR, 1958; CONOVER, 1959; BER-
NER, 1962) variations. Antibiotics are some-
times added to prevent bacterial growth in water
during experiments (see IKEDA, 1970). How-
ever, the effect of these antibiotics on bacteria
previously established on the exoskeleton has
not been determined. Substances which speci-
fically suppress bacterial respiration may be more
useful for future physiological studies.
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A note on ocean sound fields off Noshiro and the 1983 Japan Sea Tsunami*

Shigehisa NAKAMURA**

Abstract:

Vertical profiles of sound speed off Noshiro and arouud the epicenter of the 1983

Japan Sea Earthquake are presented. The oceanographic structure near the epicenter shows

that a sound channel was formed only in August and disappeared in March 1983.

Vertical

profiles of sound speed in shelf and coastal waters are also presented relerring to the observed

data obtained in May, June and July.

Assuming a simplified sound speed field off Noshiro,

a theoretical model is constructed to study an oceanographic mecanism that they had never
heard or been aware of any sound like a boom of a gun at the 1983 Japan Sea Tsunami as a
precursor which is possible on the south coast of Japan Islands facing the Pacific.
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Fig. 1. Bathymetry of the study area.
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Station
H-4 shows one of the oceanographic stations
of Maizurn Marine Observatory. Stations A
(40° 13’ N, 139°27.5’E), B (40°N, 139°35’E)
and C (40°N, 137°57’E) are the stations of the
Akita Prefecture Fisheries Center. Two survey
lines stretched westward from Noshiro and
from Nyudosaki are for the oceanographic
sections by the Akita Fisheries Center. Station
S is the epicenter of the 1983 Japan Sea
Farthquake. Depth contours are shown for

O 0 and 3,000 m. The land areas
s are hatched.
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Fig. 2. Vertical distributions of water tempera-
ture, salinity and sound speed at Station H-4
in March and August 1983. The differences
of water temperature, salinity and sound speed
in March and August 1983 are hardly significant
for the deeper part more than about 500 m in
the diagram.
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Fig. 7. Definition sketch of a model of acoustic rays in the sea radiated from a source at
the sea bed. Vertical distribution of a sound speed is assumed as shown at the left side.
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in the sea for vertical distribution of the sound speed in

455 m/s at Z;=100m and C;=1,490 m/s at

The acoustic rays in the upper part from the sea surface to the layer of

100 m deep are shown in a vertically stretched diagram as shown at the bottom in order
to clarify whether any caustics is formed or not.
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Fig. 9. Computed acoustic rays in the sea for vertical distribution of the sound speed in
March 1983 (Cs=1,460 m/s at Zs=0m, C;=1,455m/s at Z;=100m and C:=1,490m/s at Z;=
2,500m). The acoustic rays in the upper part from the sea surface to the layer of 100 m

eep are shown in a vertically stretched diagram as shown at the bottom in order to clarify

whether any caustics is formed or not.
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Zs=0m, C:=1,480m/s at Z;=1,000m and C;=1,520m/s at Z;=3,000 m).

The circle

shows where the most concentrated part of the acoustic rays on the caustics which is
formed as an envelope of the acoustic rays radiated from the source at the sea bed. The
degree of this concentration suggests how is relative intensity of local sound.
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Formation of a tombolo between the upheaving

two conical islands*

Masahiro HASHIMA**

Abstract: This paper is concerned with the formation of a tombolo between the upheaving
two circular islands. One of the islands is large and the other is small. The formation of
tombolos behind a circular island is a common geographical phenomenon. On the upwave
side of the island, sand is transported toward the island lee by longshore currents. If the
island is small, a single tombolo is formed at the center of the shadow. However, for the
larger island, two sand spits appear on the sides of the shadow axis. These phenomena are
used to explain the presence of a single tombolo that is observed at the volcanic island Iwo-
Jima. The longshore circulations caused by waves breaking along the beach around a circular

island are calculated numerically.
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Fig. 3. Wave rays for case I.
Dotted line; 100m contour.

Fig. 4. Wave rays for case II.
Dotted line; 50 m contour.

Fig. 5. Wave rays for case III.
Dotted line; O m contour.
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Fig. 6. Streamline contours for case Values
of stream function ¢ are in m®/s. The radial
coordinate is distorted according to eq. 17;
the actual distance is labeled on the island axis
in m. Dotted line; breaking line.

Streamline contours for case II.

Fig. 7.
See caption of Fig. 6.

Fig. 8. Streamline contours for case III.
See caption of Fig. 6.
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A note on sound attenuation in sea water*

Shigehisa NAKAMURA**

Abstract: Sound attenuation due to sound absorption in sea water is discussed. A remarkabie
concerns to contributions of magnesium sulphate MgSQO: and of boric acid B(OH); to the
attenuation rates due to the relaxation processes even for a sound as a plane wave in sea
water after the diagram introduced by CLAY and MEDWIN (1977). Attenuation rate of sound
propagating as a spherical wave is also considered as a function of radial distance from a source
as well as that for case of a plane wave in order to clarify difference of a sound generated
by a nuclear bomb under the sea like a point source and a sound as a big tsunami precursor
of boom out of a fairly large source area. The previous studies for an acoustic tsunami
precursor by NAKAMURA (1986a,b,c) can be understood as some special cases of cylindrical

propagation of sound from the epicenter of an earthquake at the sea bed.
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Fig. 1. Attenuation rate «(dB/m) due to ab-

sorptin in fresh- and sea-waters as functions of
frequency f (Hz) at the sea level for 14°C. B
(dashed line), contribution of boric asid B(OH),
due to relaxation process in sea water; F
(straight line), fresh water; M (dashed line),
contribution of magnesium sulphate MgSQO, due
to relaxation process in sea water; S (curve of
full line), sea water of salinity 35 %o under the
water temperature of 14°C at the sea level as
a resultant of the contributions due to the
relaxation process of MgSOs and B(OH)s.
(after CLAY and MEDWIN, 1977).
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A numerical simulation of suspended sediments
flocculation in the estuary*

Tetsuo YANAGI**, Kumiko AZETSU*** Katsuhisa HONDA***

and Ryo TATSUKAWA*#*

Abstract: A steady state numerical model has been developed in order to investigate the
behavior of suspended sediments in a partially mixed estuary. The model includes the floccu-
lation process of suspended sediments, that is, suspended sediments change their radius and
density in the model. The turbidity maximum of suspended sediments in the middle layer
at the central part of the estuary is formed only in the case where the model includes the
flocculation precess. The age and residence time of each suspended sediment are also discussed.

1. Introduction

It has been well known that suspended sedi-
ments play important roles in the material
transport process from the land to the sea.
Suspended sediments in the river water usually
change their electric property and flocculate to
settle in the estuary when they come in contact
with saline water. Furthermore they often form
the turbidity maximum above the halocline in
the estuary. The flocculation and the turbidity
maximum of suspended sediments were observed
in detail at the St. Lawrence Estuary by
KrRANCK (1979). FESTA and HANSEN (1978)
showed by use of a steady state numerical model
that the estuarine dynamics is primarily respon-
sible for the occurrence of the turbidity maximum
in partially mixed estuaries. That is, the tur-
bidity maximum 1is formed at the place where
the settling velocity of suspended sediment
balances the upward velocity of estuarine circu-
lation. However, their model does not include
the flocculation process. As suspended sedi-
ments change their settling velocities by the
flocculation, it will be interesting to investigate
the relation between the formation of turbidity
maximum and the flocculation process.

In this paper, we shall show at first the distri-
bution of suspended sediments and their for-

* Received March 28, 1986
** Department of Ocean Engineering, Ehime Univer-
sity, Bunkyo 3, Matsuyama, 790 Japan
*#¥% Department of Environment Conservation, Ehime
University, Tarumi 3-5-7, Matsuyama, 790 Japan

mations of turbidity maxima in the Yoshino
River estuary, Japan. Moreover we shall in-
vestigate the detailed behavior of suspended
sediment in a partially mixed estuary with a
Euler-Lagrangian numerical mcdel which includes
the flocculation process of suspended sediments.

2. Field observations

The field observation was carried out at the
Yoshino River estuary on 27 May 1980 (Fig. 1).
Station 1 in Fig. 1 is situated upstream of the
tidal weir and is occupied with cnly freshwater
and Stn. 9 is situated in the sea. The salinity
was observed continuously frem surface to bottom
by a conductivity meter. Water sampling was
carried out every 50 cm from surface to bottom
with a magnet pump. The concentration of
suspended sediments was determined after ship-
board filteration through 0.45 gm Millipore filter,
Then the size distribution was measured by an
Elzone particle counter (Model 190XY, Particle
Data Inc.). The results of the observation are
shown in Fig. 2. The distribution of salinity is
near the weakly mixed state. Turbidity maxima
are seen at three regions; one is near the river
head, another in the intermediate layer at the
central part and the other in the bottom layer
at the river mouth. Moreover, large size parti-
cles are accumulated in the turbidity maximum
regions.

Another observation shows that the tidal
changes of such distributions are small because
the maximum tidal range is only 1.0m at the
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Fig. 1. Map of the Yoshino River estuary.

river mouth (HONDA et al., 1985). Therefore,
such distributions of salinity and suspended
sediments can be considered as in quasi-steady
state.

We try to reproduce two turbidity maxima
near the river head and at the central part of
the estuary in a numerical model because they
should play important roles in the material
The tur-
bidity maximum at the river mouth is considered
to be formed by the sea-born suspended sedi-
ments.

transport from the land to the sea.

3. Numerical model experiment

Here we try to develop a numerical model to
investigate the behavior of suspended sediments
in the estuary. The present study is concerned
with not only the Lagrangian behaviors of sus-
pended sediments but also the Eulerian concen-
tration distributions, so that the method of
Euler-Lagrangian numerical model (YANAGI and
OKAMOTO, 1984) is used. Such approach is
suitable for studying the flocculation, defloccu-
lation and absorption processes of pollutants in
the estuary. Here the partially mixed state
estuary is dealt with in order to study the
flocculation process, because it is the intermediate

state between the strongly mixed and weakly
mixed states.

8.1. Salinity and velocity distributions

A steady state, two-dimensional, laterally
homogeneous estuary is set up. The co-ordinate
system is Cartesian in x and 2z, where z is
positive downward from the water surface and
x increases from the river head toward the sea.
A linear equation of state is assumed,

p=p;(1+05), 1

where p is the density of water, o; the density
of freshwater, 0 the coefficient of salt con-
traction and S the salinity. The horizontal
momentum balance, continuity of flow and
concentration of salinity with use of the Bous-
sinesq approximation are given by

Ju Oou ou 1 oP
= +u——+w— =
ot ox 0z o Ox
0% 0%u
+Ah a“‘xg +Av 822 » <2>
ou  Ow
ox 022 =0 (3)
P=g\ odz, (4
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Fig. 2. The longitudinal vertical distributions
of salinity (top), mass of suspended sediments
(middle) and mode of grain diameter of sus-
pended sediments (bottom) in the Yoshino

River estuary on May 27, 1980.
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Here # and w are the horizontal and vertical
components of velocity, respectively, p the ver-
tically average density, P the hydrostatically
reduced pressure, H the depth, Ax, Ay and K},
K, the horizontal and vertical exchange co-
efficients of momentum and salt, respectively,
and ¢ the gravitational Tidal
fluctuations have been averaged out, while the
tides are considered to be the primary source of

acceleration.

Table 1. Parameters used in the numerical model.

or: 1.0 g : 980 cmsec™®
d: 7.75X107* %0t 2 0.0115cm?sec™t

Ah: 10*cm?sec! Us: 50cmsec™!

Ay: 5cm?sec? Se: 30 %o

Kp: 10*cm®sec™! Hpax: 6m

Ky: 1cm®sec™t L: 12km

Dr: 10°cm®sec! a: 0.01 % 'sect

Dy: 0.1 cm?sec!

energy for turbulent mixing. The exchange
coefficients are, therefore, a measure of the
strength of tidal mixing. For simplicity, these
coeflicients are chosen to be constant as tabulated
in Table 1. The magnitude of each coefficient
is within commonly used one. It is confirmed
that the principal results of the numerical ex-
periments are not sensible to small changes in
their magnitudes.

The boundary conditions to be satisfied at the
river head, which is occupied with only the
freshwater, are zero salinity and the constant
river flow U;. At the bottom boundary, the
no-slip condition and zero vertical flux of salt
are specified. At the top boundary, the slip
condition and zero vertical flux of salt are speci-
fied. These are expressed by

S=0, u=U; at z=0 and =2=0, (7)

A
98 5, %o ar z=0, (8)
0z oz

——a—‘g:O, u=0 at z=H. (9)
Oz

The remaining boundary conditions to be speci-
fied are those at the mouth of the estuary.
The salinity at the bottom of the seaward
boundary is fixed to be Sz and horizontal dif-
fusive fluxes of salt and momentum are required
to be constant, but unspecified after FESTA and
HANSEN (1976). These are expressed by

S=Sp at z=L and z=H, (10)
%S 0%u
5&7— , 7;;2_*0 at x=1. (11)

Here L is the length of the estuary and is
12 km in this case. The maximum depth Hpg.
is 6m. Equations (2) and (6) are approximated
by finite difference with a time step of 10 seconds
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Salinity . (%/so)

Fig. 3. Calculated salinity distribution in the
numerical model.

Velocity
100 cmv/s
0.05cm/s

Horizontal Velocity Field (em/s)

Vertical Velocity Field (cm/s)

Fig. 4. Calculated velocity distributions in the
numerical model.

and a grid size of 4xr=500m and 42=60cm
and are solved by the primitive method with
boundary conditions (7) to (11). The initial
conditions are set up in such a way that the
salinity, horizontal and vertical velocities are zero
throughout the area. We considered that the
steady state was achieved when the time change
rate become less than 19, in magnitude of other
terms in Eq. (2). The partially mixed state is
reproduced as shown in Fig. 3 and the gravi-
tational circulation pattern is reproduced as shown

in Fig. 4.

8.2. Suspended sediments behavior

Some assumptions are needed to study such
complex phenomenon as suspended sediments
flocculation in the estuary. It is assumed that
1) suspended sediments are composed of many
elementary particles with their own radius and
density, 2) the principle of superposition for the
movement of each particle due to the gravitational
circulation, their own settling velocity and the
turbulence is valid, and 3) resuspension of settled
suspended sediments from the bottom is not
considered. The movement of a labeled particle
is traced. Imagine that a labeled particle exists
Position of the
labeled particle (x®!, 2"*') at time n+1, 4t
time after, is traced by the following formula,

at a point (", ") at time 7.

"=z u(z", 27 di+ R, (2

zn-H ="+ [w(xn: z'n)

+w3(‘0"’ 7’”)] 'A[+RZ; (13>

where R, and R, are the movements due to the
turbulence in x and 2z direction, respectively.
The original Lagrangian expression for tracing
the particle has more terms than Egs. (12) and
(13), but the spatial gradient terms of velocity
are neglected because the velocity field is steady
and the time step used for calculation is too
short to ‘“‘feel”” critically the spatial gradients
of wvelocity. Horizontal velocity u(z”, z*) and
vertical velocity w(x®, 2") are interpolated from
Eulerian velocities at four grid points surround-
ing the particle.

The dispersion coefficients D, and /), for sus-
pended sediments are defined by the time deriv-
ative of the variance of positions of suspended
sediments as follows,

o

1 dz? 1 dzf )
=, p = . 1«
Dr D= 1D

Therefore, the movements of suspended sedi-
ments due to the turbulence are given by the
following equations,

R.=7.X ¥/2XxdtX Dy, (15)
R,=7.X V2X At X Dy . 16)

Here 7. and 7, denote the random numbers
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whose mean values are zero and whose variances
are 1.0. p" and 7" are the density and radius
of the particle, respectively. ws(o® 7?) denotes
the settling velocity of the particle itself given

by Stokes’ law,

2 o"—p _,
Us 72’ ny — = n , ]777
ws(p", ™) g9 P an

where p and ¢ are the density and viscosity,
respectively, of the surrounding water. The
flocculation process is formulated by KRANCK
(1973) as follows,

r™ ¢, ) =7co—(Feo—ro)e ", as
where 7, denotes the grain radius of original par-
ticle and 7 that of flocculated particle related by
Too=2.80 X 70772, 19)
and a is a numerical constant determined to com-
plete the flocculation process in half an hour with

a salinity of 3 %o after an experiment by KRANCK
(1973). 'When the elementary particles aggregate

T

Frequency

1 2 3 4 5 6 7 8 9 (um]

>
0
=3
o
3
&
@
u
oy

0 1 2 3 4 5 {g/en?)

Fig. 5. Grain radius () and density (o) distri-

butions of particles injected at the river head
(solid circle) and those flown out of the estuary
or settled down to the bottom (open circle) in
Case III.

to the flocculated particles, its density decreases
due to water contained in the flocculate. The
change of particle density by the flocculation is
given, in analogy of radius increasing, by

0™(t, 5)= oot (00— pPoc)e™*, 20

where g, denotes the density of the original
particle and pe that of flocculated particle related
by

—§~ Tro?00® -+ %77(7‘003 —7rd)p

peo=

— 7o’

=o-D(L) 41, @D

e
T

noys2.S A=2.5 un
©1-30 SEC 1300 STEPS

4

ROU=2.5 A:3.S UM
071-30 SEC 1719 STEPS

/i

ngy=2.5 R=4.0 UM
07-30 SEC 2327 SIEPS

/

AQU=2.5 R=4.5 UM
0T-30 SEC 1523 STEPS

Fig. 6. Loci of particles with a constant density
of 2.5gem™ and variable grain radius of 2.5
to 4.5 #m (top to bottom) without the floccu-
lation process.
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where p is 1.0.

The original grain radius and density distri-
butions of injected particles at the river head
are shown in Fig. 5. The modes of grain radius
and density of the original particles are 3.5 pm
and 2.5 gcem™®, respectively. The time step 4z
for tracing each particle is 30 seconds, which is
chosen from the viewpoint that it will take
more than twenty time steps at least for a
pariicle to pass through one mesh.

8.8. Results

Some examples of particle movement with
fixed density, variable grain radius and without
the flocculation process and turbulence are shown
in Fig. 6.
in 10-14 hours, because their settling velocities
are smaller than the water upwelling velocity

Small particles flow out of the estuary

in the estuary. On the other hand, large par-
ticle settles down near the river head in 12
hours, because its settling velecity is larger than
the water upwelling velocity there. If the
flocculation process is introduced in the model,

a particle with a moderate grain radius, flowing
out of the estuary without the flocculation proc-
ess, can settle down to the bottom in 22 hours
as shown in Fig. 7.

Fifty particles are successively injected at each
time step from the river head. The grain
radiuses and densities are determined by random
selection from the normal distributions (Fig. 5)
and the steady state distribution is obtained.

Fig. 7. Locus of a particle with an original
grain radius of 3.5 ym and a constant density
3

of 2.5gem™ with the flecculation process of

grain radius increasing only.

2 e e ©
Ll

Fig. 8. Distributions of particle position (left) and normalized mass concentration (right) of
suspended sediments in the case of no flocculation (Case I), the case of grain radius

increasing only (Case II) and the case of grain radius increasing plus density decreasing

{Case III).
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The upper panel in Fig. 8 shows the distributions
of particle position (left) and mass of suspended
sediments (right), which is calculated by using
particle’s density and grain radius and is nor-
malized to that at the river head mesh, in the
case of no flocculation process (Case 1). There
is one turbidity maximum in the lower layer near
the river head but no turbidity maximum in the
intermediate layer at the central part of the
estuary in Case I. The turbidity maximum in
Case I is formed due to the balance of settling
velocity of suspended sediments and the upward
velocity of estuarine circulation which was al-
ready shown by FESTA and HANSEN (1987).
When the flocculation process of grain radius
increasing only is introduced in the model (Case
II), the turbidity maxima are formed in the
lower layer near the river head and in the
intermediate layer at the central part of the
estuary as shown in the middle panel of Fig. 8.
Moreover, when the flocculation process of grain
radius increasing and density decreasing are
introduced in the model (Case III), the position
of turbidity maximum at the central part of the
estuary slightly shifts to the downstream of the
estuary as shown in the lower panel of Fig. 8.
The grain radius distributicn of suspended sedi-
ments in Case III is shown in Fig. 9. Largest
particles are seen in the lower layer near the
river head and particles larger than ca. 14 pm
in diameter are seen in the intermediate layer
at the central part of the estuary. Comparing
with Figs. 2, 8 and 9, the numerical experiment
well reproduces qualitatively the results of field
observation except the turbidity maximum in
the lower layer near the river mouth. The
turbidity maximum in the lower layer near the

I-20m B s-5um
= 23um B 6-7um

7 3L R 780

Distribution of Grain Slze

Fig. 9. Distribution of grain radius of
suspended sediments in Case III.

river mouth is formed by the sea-born suspended
sediments which are not included in the model.

4. Discussions

The turbidity maxima of suspended sediments
in a partially mixed estuary are successively
reproduced by use of an Euler-Lagrangian nu-
merical model, which enables us to trace each
particle and to investigate the time change of
some properties of each particle. If chemical
problems such as heavy metal behavior in the
estuary are concerned with, this Euler-Lagrangian
model will be more useful. In such cases the
age and residence time of each particle will be
important parameters (TAKEOCKA, 1984). The
distribution of age of particle (the elapse time
from the injection) at the river head is shown
in the upper panel! of Fig. 10. The distribution
of residence time of particle (the expected time
in which the particle flows out of the estuary
or settle down to the bottom) is shown in the
lower panel of Fig. 10. They are in Case III.
The particles in the intermediate layer at the
central part of the estuary have long age and
long residence time. The complex chemical or
biological processes, which will take long time,
may be carried out over the particles which
have long age or long residence time. Such
chemical and biological problems will be investi-

Age

Residence Time

Fig. 10. Distributions of age of particles (top)
and residence time of particles (bottom) in
Case III.
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gated by use of the present Euler-Lagrangian
model in the near future.
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