Relationship between turbidity of water and visual acuity of fish

(3) Fish reaction to small bait target in turbid water*

Yoshihiko Nakamura** and Kanau Matsuike**

Abstract: Influence of water turbidity on fish visual acuity was experimentally investigated with Japanese parrotfish Opistognathus fasciatus. The reactive distance of the fish to small target was examined with different target sizes at different beam attenuation coefficients. Visual acuity of the fish in clear water was estimated to be 0.09. It decreased exponentially with increasing beam attenuation coefficient. It was confirmed that the present results were consistent with those of previous papers.

1. 緒言

内湾や沿岸域の海水は混ざっており、光束放射程度は海域により季節により変化する。水中の混ざりは光の透過を妨げ、混ざの明るさを低下させるばかりでなく、魚の生理・生態に様々な悪影響を与えることは容易に推察される。なかでも、視覚への影響は魚や魚種など水中ターゲットに対する反応や回避に密接に関係するので非常に重要な課題である。

水中の混ざりと魚の視覚に関する第 1 報 (Matsuike et al., 1981) では実験魚としてコイ Cyprinus carpio を用い、混ざに水における視覚を条件反射手法で求めた。

次に、光束放射程度は（全放射長 480 nm）増した場合、魚の視覚がどの様な影響を受けるかを調べ、その原因について検討し理論式を求めた。第 2 報（中村・松生, 1985）では小さなターゲットの光学物理量の特性を明らかにし、光束放射程度が増した場合に魚が小さなターゲットをどれほどの距離から視覚化できるかを調べた。

本報では実験魚として自由に遊泳する満漁魚のインダイス Opistognathus fasciatus を用い、小さいターゲット（餌）に対する反応距離をターゲットの大きさおよび光束放射程度を変えて観察し、視覚距離を求める。さらに、第 1、2 報の条件反射手法により得られた結果が、実験で影響を受けていない満漁魚に適用されるか否かを検証した。

* 1989年4月11日受理 Received April 11, 1989
** 1988年5月学術研究発表会において一部発表
** 東京水産大学 東京都港区港南4-5-5
 Tokyo University of Fisheries, Konan-ku, Tokyo, 118 Japan
2. 実験装置および方法

2-1 実験装置

魚の反応の測定には長さ 200 cm、幅 60 cm、水深 30 cmの実験水槽を製作して用了。その観察用と平面図の概略を Fig. 1 に示す。水槽内部は黒色布地で覆い、前後から 75 cm の所で、前部と後部に仕切った。仕切りの中央には幅 16 cm の門を、その両側には誘導装置を設けた。門から後端までの距離は 125 cm であり、その底部には 5 cm 間隔で目盛りを刻んだ。水槽内の照明には、10 W の白色蛍光灯 4 本を水槽の後部上方にオーバークロスを介して設置した。また、後部の斜め上方にはビデオカメラを取り付けた。

濁り物質として海底土を混入して懸濁させ、40分間放置した後、その上澄み液を用いた。海底土を海底の川口付近で採取し、2 日間にわたり天日乾燥した後、殺菌用オーブンに入れて 120℃で 2 時間乾燥、乾燥・脱臭して用いた。水槽に懸濁海水を水深 30 cm まで注入し、この上澄み液を加えることにより、光束消散係数（重力波長 486 nm）が 0.2（懸濁海水）、1.0、2.0、3.0 および 5.0 m⁻¹ の 4 種類の懸濁水を調整した。

懸濁粒子に関しては粒子数と粒径分布を測定した。

粒径分布（リポアフィルター HA 0.45 μm）で濁った後、70℃で約 1 時間乾燥し、秤量した。光束消散係数 a (m⁻¹) と懸濁海底土の乾燥重量 G (mg/ℓ) の関係を Fig. 2 に示す。両者の間に次の実験式で示すような直線関係があり、相関は非常に高い（相関係数 0.9）。

\[a = 0.38G + 0.30 \]

(1)

Fig. 2. Relationship between suspended particles (mg/ℓ) and the turbidity (beam attenuation coefficient; wavelength of gravity center, 486 nm).

Fig. 3. Particle size distribution in turbid seawater prepared with sea bottom mud.

関係を Fig. 2 に示す。両者の関には次の実験式で示すような直線関係があり、相関は非常に高い（相関係数 0.9）。
水中の魚と鰹の視力との関係

このことから、鰹の物性は光の消粛係数（浸没波長486 nm）で示した。なお、(1)式の(2)項は透光率の物性質による吸収のためと考えられる。また、

粒子分布は、コールターカウンターを用いて1 μmから30 μmまでの粒子について測定した。粒子分布はFig. 3に示すような正规分布をしており、表面積平均粒子は4.0 μmであった。

ターゲットとしての魚にはイカを円形に切ったものを使用した。その大きさは直径が2 mm、3 mm、6 mmおよび8 mmであり、厚さについては県とほぼ同じ大きさに切り抜えた。

光の消粛係数と距離の変化に基づく魚のアペリビクトラストC(r)は、次のような DUNLEY (1962)の式を用いて求めた。

\[C(r) = C(0) \exp(-ar) \] (2)

ここで、rは魚の前から相手までの距離(m)、aは光の消粛係数(m⁻¹)、C(0)は距離0においてアペリビクトラストである。なお、C(0)は魚の反射率を測定し、減光における背景の反射率を0.02(TYLER, 1968)として算出した。

Table 1. Apparent contrast of bait at a distance of
1 m for different turbidities.

<table>
<thead>
<tr>
<th>Turbidity (m⁻¹)</th>
<th>0.1</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent contrast</td>
<td>10.9</td>
<td>4.5</td>
<td>1.6</td>
<td>0.6</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 2. Percent of the fish that took bait of different sizes at different turbidities.

<table>
<thead>
<tr>
<th>Turbidity (m⁻¹)</th>
<th>Bait size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>1.0</td>
<td>40</td>
</tr>
<tr>
<td>3.0</td>
<td>20</td>
</tr>
</tbody>
</table>

Fig. 4. Distribution of the reaction distance to bait
2 mm in diameter at different turbidities.
育水槽に配置した。
実験中の水槽中央部における底面の明るさは遮光水槽中で340 lx、光束消散係数が5.0 m⁻¹ では240 lx であり、水温は22～24℃ であった。

3. 結果および考察
3-1 濃い水中における鰀の鰀に対する視認限界距離
鰀を水槽底の後部にランダムに置き戻し、イシダイは後部に入り、鰀を見つけるを遊泳を増して直進し、撮影する行動を繰り返した。Table 2 は底地中海濃度消散係数が増した場合の鰀予測を、鰀の大きさ別に示したものである。鰀予測は、3 尾のイシダイを用い、個体別にそれぞれ10回鰀を与えた場合の鰀予測を示した結果である。

溶媒中海水中（光束消散係数 0.2 m⁻¹）における鰀予測は、鰀の大きさが3 mm および6 mm では90%以上、3 mm では80%以上であるが、2 mm では40%以下で大きく減少した。2 mm の鰀に対しては、10回の測定において全く反応しない個体もあった。この場合でも、イシダイは鰀の上あるいは横の近距離を通過していた。また、光束消散係数が増すると、鰀予測は3 mm 以上の鰀ではほとんど変わらないが、2 mm の鰀では減少している。以上の結果から、鰀の大きさが2 mm 程度では非常に見つけ難いことが分かる。

Fig. 4, Fig. 5 およびFig. 6 は、鰀の大きさがそれぞれ2 mm、3 mm および6 mm の場合について、鰀に対する反応距離を整理し示したものである。同図より、イシダイの鰀に対する反応距離と光束消散係数の関係は鰀の大きさによって変化することが分かる。2 mm の鰀では、反応距離は光束消散係数が増しても変化は少ないと、鰀を3 mm および6 mm に大きくすると、光束消散係数の増加に伴って反応距離が減少する傾向が明らかに認められる。ここで、水中の光束消散係数および鰀の大きさを変えた場合の鰀に対する反応距離の中で最も大きい反応距離を、イシダイが鰀を視認できる限界の距離と考えた。

Fig. 7 は、視認限界距離と光束消散係数との関係を鰀の大きさ別に示したものである。なお、視認限界距離については、イシダイ3 尾につきそれぞれ10回の実験を行い、その反応距離の最大値から求めた。各シンボルマーク△、○、□および ▽ は、鰀の大きさがそれぞれ2 mm、
水中の鰤と魚の視力との関係

3 mm, 6 mm および 8 mm の場合であり、各実験は最小二乗法により求めた回帰曲線である。
光度消散係数が 0.2 m⁻¹, 鰤の大きさが 2 mm, 3 mm, 6 mm および 8 mm の場合の視認限界距離は、それぞれ 62 cm, 93 cm, 116 cm および 117 cm であり、3 mm 以上のターゲットでは距離差が小さい。ターゲットの大きさ 3 mm から 2 mm に減少すると、わずか 1 mm の違いで 30 cm の距離差が生じている。また、光度消散係数が増すと、視認限界距離はどのターゲットでも指標関数的に減少している。

Fig. 7 から、ターゲットの大きさに対する視認限界距離を求めることによってイシダイの視力を算出することができる。前述のように 2 mm のターゲットに対しては反応が悪かったこと、また 6 mm のターゲットに対する視認限界距離は水槽の長さが十分とは言いがたく、その影響が入ることが考えられるので、3 mm の鰤の結果を用いて計算した。

鰤の大きさが 3 mm で、光度消散係数が 0.2 m⁻¹, 0.9 m⁻¹, 2.0 m⁻¹, 2.8 m⁻¹ および 5.2 m⁻¹ の場合における視認限界距離は、それぞれ 93 cm, 83 cm, 71 cm, 70 cm および 56 cm であった。これより、視認限界距離 \(R_y (cm) \) は光度消散係数 \(\alpha (m^{-1}) \) の関数として次式で示される（相関係数 -0.9）。

\[R_y = 91 \exp (-0.10 \alpha) \]

(3)

視力 \(Ac \) は、明るさおよびアパレントコントラストが十分大きいので、距離 \(L \) とターゲットの大きさ \(D \) から次式で求めることができると。

\[Ac = (120 \tan^{-1} \frac{D}{2L})^{-1} \]

(4)

光度消散係数が 0.1 m⁻¹, 鰤の大きさが 3 mm の場合、視認限界距離 90 cm が得られ、(4) 式を用いて計算するとイシダイの視力は 0.09 になる。

イシダイの視力については、生理学的手法を用いて 0.14（川村・下田, 1983）であることが報告されている。この視力は本研究で求めた視力に比べて約 1.6 倍大きい。他の魚種においても生理学的手法で求められた視力の方が大きく、convictfish (YAMANOUCHI, 1956) で 1.4 倍、skipjack tuna (NAKAMURA, 1968) で 1.3 倍

Fig. 7. Relation of the distance to bait at discrimination limit to the turbidity at different bait sizes.

Fig. 8. Relationship between the target size and the distance to bait at discrimination limit under different turbidities.