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Island-trapped shelf waves®

Motoyasu MIYATA*

Abstract : A theoretical model is presented of low-frequency oscillations around an island
with sloping beach. It is shown that shelf waves with various radial modes and azimuthal
wavenumbers can be trapped, but there exists a low wavenumber cut-off for each trapped
mode. The results are compared with observations from the Hawaiian Islands.

I. Introduction

The trapping of low-frequency (i.e., less than
inertial frequency) waves by islands has been a
topic of much interest in the past decade, al-
though it has been studied less extensively than
trapping by straight coastlines. A good sum-
mary of the topic is contained in a review paper
by Mysak (1979). Mivara and Groves (1968) de-
tected a two-day oscillation around the island of
Oahu by analyzing the tide gauge records from
Honolulu and Mokuoloe. CarpweLL and EipE
(1976) verified in a laboratory experiment that
such an oscillation could in fact be excited
around Oahu as a shelf wave.

The first theoretical study of island—trapped,
sub-inertial waves was made by Mvsax (1967),
but his theory applied only for a large island
(modelling Australia) with a narrow, sloping
shelf in the non-divergent limit (rigid lid ap-
proximation). On the other hand, Ruines (1969)
suggested that near a small island with sloping
sides it was possible for trapped oscillations of
shelf wave type to exist. A more complete study
of island-trapped shelf waves was made by L
oncuer-Hiccins (1970). He considered an island
of circular symmetry when the depth (h) was
given as a function of the radial distance (r),
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hi()* a< 1<b

h= b 1.1
hx(z)a, bSr

where (a) is the radius of the island, (b—a) the
shelf width, and (@) any constant. On the
other hand, Samnt-Guiy (1972) examined the
trapped low-frequency modes for an island with
para-bolically sloped beach that extends to in-
finity oo:

h = hi(r*—a?, a<r<co 1.2

This model also produces trapped shelf wave
solutions. The results of Samnt-GuiLy, however,
differ quite distinctly from those of Longuet-
Higgins. That is, the model topography (1.2)
produces only a finite number of trapped modes
for a given azimuthal wavenumber, whereas the
model (1.1) yields an infinite number of modes
for each wavenumber. The reason for this dis-
crepancy has not been discussed as yet.

Three major differnces between the models of
Loncuer-Hiceins (1.1) and Saint-Guiny (1.2) are:

1. Model (1.1) has a surrounding ocean of fi-

nite depth whereas (1.2) has an infinitely deep

ocean;

2. A beach with shoreline (h = 0 at r = a)

is included in (1.2) but not in (1.1) which has

a vertical wall at the perimeter of the island;

3. Loncurr-Hicaixs used the rigid lid approxi-

mation, whereas Saint-Guily allowed horizon-

tal divergence.

The main purpose of this paper is to examine
the trapped modes for a model island that is a
combination of (1.1) and (1.2), and to deter-
mine which of the three differences is the source
of the aforementioned discrepancy. The model
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Fig. 1.

employed here is:

b= {hu"‘5 (r—a) a<r<b,

hib°(b—a) b<r (1.3)

where & 1is an arbitrary constant.

Modelling and formulation are explained in
the following section. The solutions are given in
Section III. It will be shown that the presence of
the shoreline in the model (1.3) plays an essen-
tial role. The results obtained will be discussed
and applied to observations from the islands of
Oahu and Hawaii.

2. Formulation

The linear unforced shallow water equations for
a homogeneous, inviscid ocean with an axisym-
metric depth profile h(r) are given in cylindrical
coordinates:

Ou . _ __ 0

ot IV &5y 2.1

ov _ 100

ot +fu = —g r 60 ° 2.2

0L 1 9(¢hw , 1 6¢hv) _

ot Tt or Tt a0 — 0
2.3)

where (u) and (v) are radial and azimuthal ve-
locities, ( ¢ ) is surface displacement, (g) is

Examples of cross-section of the model island shelf given by (2.11) for B=1.5.
Numbers (8,7, ...,-3) indicate values of §.

gravity acceleration, and (f) denotes the con-
stant Coriolis parameter. Introducing the non-
dimensional variables, t=f"'t", r=as, h=hH
(s), where (a) is the radius of the island and
(ho) is the depth as r—>oo, and assuming the
wave solutions around the island, (u,v, )=
(—ivgho U, v/ gho V, heZ)e®® =7/ %> then the
equations (2.1), (2.2) and (2.3) become

_ 1 dZ
wU +V = 4 ds 2.4
_ n -
wV+U = s 7, (2.5)
1o d _n _
wZ+ Ls ds (sHU) ,USHV 0, (2.6)

where w =% is the non-dimensional frequency,
and the variables U, V, Z are functions of (s)
only. The parameter (1) is the ratio of the ra-
dius of the island to the Rossby radius of defor-
mation,

2.7
From (2.4) and (2.5) we obtain

N 1 n, dZ
U= (T D) (~S 7 e ), (2.8
- 1 dZ 1o
. V= u(lfwz) ( dS S Z) (29)

Substituting (2.8) and (2.9) into (2.6) yields
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Fig. 2. Non-demensional despersion relation for § =0, B=1.8, £ =0.01. P and Q are for

Fig. 3.

d dZ 21 3 n’H
E(SHF “{ﬂ - w?s+

S

n dH

‘*ZSTET]ZZO' (2.10)

The depth profile (1.3) is now in the non-
dimensional form:

Cs®(s—1) 1<s<B
1 B < s

where C = B~ ?(B—1) "' and B=2. Some exam-
ple profiles are given in Fig. 1. Now the problem
is to solve Eq. (2.10) with the boundary condi-
tions:

H:{ 2.1

Z,U, V—=>0,ass —> oo,
UH =0, ats = 1.

212
(2.13)

The condition (2.12) is required because we are
seeking trapped waves only, and (2.13) specifies
no normal flow condition at the island.

3. Solutions and Discussions
For s > B, Eq. (2.10) is simply

4692y (- w)s/H+ Loyz=0.
3.1

This is a Sturm-Liouville type equation and the
character of the solution is determined by the
sign of the second term. As u?(1— w?s/H
dominates over n’/s sufficiently far from an

(X :1st mode; O : 2nd mode; A : 3rd mode; @ : 4th mode)

island or shelf, (1 —w?) must be positive in
order for the solutions to be trapped. The solu-
tion can be expressed as

L= AK, (/1525 ) (3.2

where K. is the modified Bessel function of the
order (n) and (I) indicates the region outside the
shelf.

It is assumed that for any s, 1<s<B,
n‘H n dH
ni(1l—w?) K s “ws ds | - (38.3)
This assumption is equivalent to neglecting
horizontal divergence in this region (rigid lid
approximation). Now equation (2.10) can be re-
written as

‘d%" s (s—1) % - {nQSH(sfl)

n_d .. _

+2 —Lso(s- D) 70, (3.40)
Then the appropriate solution over the shelf

region is found(see e.g. GoLpsteEIN and Browx,

1973) to be

ZH:A1157£7% F(y¢ +m, £ —m,1; 1—%),

(3.5)

where (ID) indicates the region over the shelf and
(F) denotes the hypergeometric function with:

0=30—y/an+ L 8) 4t 8))
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(a) Non-dimensional sea level Z, radial and azimuthal volume transports HV

(b) Non-dimensional sea level Z, radial and azimuthal volume transports HV and

HU for the wave Q in Fig. 2.

m:—%v 4 +200 4 5
)
At the edge of the shelf s=B, both the dis-
placement and velocities must be continuous, so
that

ZI:ZH at S:B, (36)

%ZSI :% at  s=B. 3.7
These conditions yield

dK, dF ., 6.

ds F_K"[ ds a 2)S F} ’

at  s=B. 3.8

The equation (8.8) determines the eigenvalue
w for a given n, thus providing the dispersion
relation. Fig. 2 shows a dispersion relation
when 6 =0., B=1.8, and x =0.01. It is seen
that  is always negative (corresponding to
right-bounded waves) and the absolute value of

 1is less than unity. In this sense, the result is
similar to that of continental shelf waves for a
straight coastline (Mysak, 1968) with a sloping
beach. Island-trapped shelf waves, however,
have two unique properties. One is that as there
is an integral number of wavelengths around the
island, the dispersion relationship exists only
for discrete wavenumbers. The other unique
property is that there is a low wavenumber cut-
off in the spectrum. In Fg. 2, the lowest possi-
ble azimuthal wavenumber for the first radial
mode is 4. It can be seen that the higher the ra-
dial mode number, the greater the cut-off
wavenumber. It is interesting to note that
Mysaks (1968) solutions show similar low
wavenumber cut-off in the trapped gravity
wave spectrum but not in the shelf wave region.
This property does not appear in LoONGUET-
Hiceins’ result (1970), which shows that for
given n, there exist an infinite number of
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trapped modes. This descrepancy is attributed
to the differences between models (1.1) and
(1.3): the latter includes a realistic shoreline. In
fact, Saint-GuiLy's model (1.2) also has a shore-
line and yields the dispersion relation with low
wavenumber cut-off, in spite of the fact that his
shape for the island topography is quite differ-
ent from the present one. It is also interesting
to note that in the case of a cylindrical island
with vertical walls surrounded by water of con-
stant depth (ho), low-frequency Kelvin-type
waves can be trapped if n (n—1) <u? which is
a high wavenumber cut-off condition (LoNGUET-
Hiceins, 1969).

In Fig. 3(a) and (b) are plotted the non-di-
mensional eigenfunctions Z, HU and HV repre-

senting sea level, radial and azimuthal volume
transports for the first two modes correspond-
ing to P and Q indicated in Fig. 2. Fig. 3 (a) and
3(b) show radial variation of the eigenfunctions
for the first and second mode with the
azimuthal wavenumber 6. Notice that the Z
graph crosses the s-axis once in (a) but twice in
(b). Thus, the number of crossings for the jth
mode will be j. Both figures show the general
characteristic of shelf waves: large longshore
velocity in the vicinity of the shore and small
sea level displacement. [Note that the scale of
7Z is enlarged by a factor of 20. For normaliza-
tion Arx was taken to be unity.)] It may be
worthwhile to note that in the open ocaen (s>
B) both velocity components (H being one in
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Kahuku, island of Oahu (dotted line) and its
approximation (solid line).

this region) rapidly tend to zero as (s) increases
and that U and V have appproximately the same
values with opposite signs. To see this more
clearly, we use an approximate formula for a
modified Bessel function with small argument

x 1 Ku(G0+ R P (50

(see, e.g., ABravowrrz and SteGan, 1972). Then
from (2.8), (2.9) and (3.2) we obtain

175
Z=Cs™,
n —n-1
(U, V) = (C, *C)W‘E s
for s > B, 3.9
where

C=B-¢ o2 F(f+m, £ -m,1; 1—%).

The constant A: is determined by the condition
(3.6) with Az = 1. Eq. (3.9) indicates that Z, U
and H tend to zero as s™ or s™ "', so that the
shorter waves are more closely trapped by the is-
land.

Fig. 4(a) shows the graphs of the nondimen-
sional frequency as a function of B when & =0
and ¢ =0.01. The symbol (j, n) represents the
j’th mode with wavenumber n. In the figure
there are three groups of curves corresponding
to the first three modes. Each group consists of
an infinite number of curves for each
wavenumber n, but the solutions for n = 9 or
larger are not shown. In each group, the lowest
wavenumber is not 1 ((1,1), (1.2), (2,1),...etc.
are missing) , reflecting the fact that the low
wavenumber cut-off exists. It is seen that the
frequency increases rather rapidly as B increases
from 1 to 2, after which variation becomes grad-
ual. This implies that the wave characteristic
crucially depends on the shelf width when it is
narrower than the island radius; but as the shelf
becomes broader, the waves are less influenced
by its width. As B becomes smaller, however,
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Dispersion relation for the model island of Oahu.

(X :1st mode; O : 2nd mode; A : 3rd mode; @ : 4th mode]
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the 1st mode wave with n=7 in Fig. 6.

there are fewer solutions and only a high
wavenumber spectrum is possible. That is, for a
narrow and steep shelf, only short waves can be
trappped.

The non-demensional frequencies depend also
on & which is a measure of the bottom slope.
As seen from Fig. 4(a) through (e), the frequen-
cies for greater & have higher values. The low
wavenumber cut-off also increases as ¢ 1in-
creases, resulting in fewer curves in the graphs
for greater 6. (In Fig. 4 (b) through (e), the so-
lutions for n=11 or larger are not shown.)
These figures are drawn for a fixed value of ¢« =
0.01; varying ¢ from 0.005 to 0.2 made no sig-
nificant change in the results, which indicates
that the effect of horizontal divergence can be
neglected. For further confirmation, the solu-
tions without assuming (3.3) in the shelf region
were obtained for & =1 and 2. The solution
(3.5) still holds except that now £ or m should
be modified to:

6=1: £ =t—y/ 0+ 414 40— 09,

5=2: m:\/;‘*’Q—:) +1— 11— w?.

Calculations with these modified parameters
with £ = 0.2 showed no appreciable difference
either in eigenvalues or eigenfunctions. Thus,
the rigid lid approximation (3.3) is justified.
Although the model discussed above may be

0.0

H 0.5

Fig. 8. Non-dimensional depth profile off
Hilo, island of Hawaii (dotted line) and its
approximation (solid line).

too simple to be applied to real islands, one nev-
ertheless might expect some trapped modes
around roughly circular islands. To compare the
present theory with the two-day oscillations
found by Mivara and Groves (1968) around the
island of Oahu, a typical depth profile offshore
from Oahu is assumed by (2.11) for 6 =4 and
B=2.4 (Fig. 5). The corresponding dispersion
relationship (« is taken to be 0.005) is shown in
Fig. 6. As seen from the figure, the simplest
possible trapped wave is the first mode with
wavenumber 7. This wave has a non-dimen-
sional frequency of 0.644, which corresponds to
0.47 cpd at the latitude of Oahu (21.5°). Thus,
it is not unreasonable to identify this frequency
with the observed two-day oscillation. LoNgugr-
Hiceins (1971) offered the same kind of explana-
tion using his model (1.1), but the reason for his
selection of first mode with wavenumbers 4 and
5, rather than 1, 2 or 3, was not given. The
eigenfunctions Z, HU, and HV corresponding to
this particular wave are shown in Fig. 7.

As another example of application, the island
of Hawaii is chosen and its typical offshore to-
pography is plotted in Fig. 8. In this case, the
computed dispersion relation (Fig. 9) differs
slightly from that for Oahu, in accordance with
the change of parameters (6 =4, B=1.8, u=0.
01). The simplest possible trapped wave now is
the first mode with wavenumber 8, at a non-
dimensional frequency of 0.579. This is equiva-
lent to 0.39 cpd, the latitude being taken as 19.
7°. Thus, one should expect the trapped wave
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with this frequency around Hawaii. The ob-
served peak in the sea level spectrum at Hilo
(Fig. 10) suggests the presence of such waves.

4. Conclusion

It has been shown that shelf waves trapped by
an island with sloping beach and shoreline have
a unique property: a low wavenumber cut-off
for each radial mode. This property, together
with the fact that the dispersion relation exists

only for discrete wavenumbers, makes it easier
to identify trapped waves from sea level spec-
tra. The results are successfully applied to ob-
servations from the Hawaiian Islands.
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