疑似永久機関の作動シミュレーション

亀谷 茂樹**・矢田 貞美**

Study on the working simulation of suspected perpetual engine

Shigeki KAMETANI** and Sadami YADA**

Abstract: As for a perpetual engine which continues working to the outside without decreasing the energy, the existence is denied by various laws of thermodynamics. However, this can be converted into dynamic energy by using the thermal heat energy etc. which exists in the physical world. In this paper, the authors paid attention to the operation principle of a so-called drinking duck and analyzed a basic theory concerning operation. Moreover, the dynamic characteristic by changing in an environmental condition were simulated and the application to the aeration equipment related to the fishery was examined.

1. はじめに

常温域近傍の低レベル熱エネルギーを、実用的な機械エネルギーへ変換することは極めて困難である（平井、1988）。これは、低レベル熱エネルギーが保存するエネルギーの蓄積が少ないためである（例えば、斎藤ら、1995）。エネルギーの濃縮が困難であるとも換言できる。しかし、江戸時代にその原型が存在したといわれる伝統的玩具の「木鳥（田中、1990）は、一定の条件下で自らが微少な温度差を作り出し、内部作動流体の蒸気圧差を巧みに機械的エネルギーに変換して運動を続ける。このように、何らかの方法によりエネルギーの循環サイクルを利用し、かつこのサイクルが持続するならば、この系は疑似に永久運動を続ける（小山、1994）。永久機関は熱力学の第二法則によりその存在が否定されているが、たとえ微少なエネルギーレベルであっても、外部環境からの連続的なエネルギー供給が可能ならば、あとから永久機関のような作動が可能であることを考える、本報ではこのような機関を疑似永久機関（小中、1984：小野、1992）（以降、機関と略称する）と呼ぶこととする。

筆者らは、この「水飲み鳥」の原理に着目し、この作動原理について解析・検討した。次に、周囲環境条件の相違による同機関の作動特性についてシミュレーションし、その結果から異なる環境条件における理論的動力について考察した。さらに、これを動力源とする生物飼育用のエアレーション装置を考え定して、その最大仕事量およびエネルギー性について計算し、実際の水産関連機器への適用性について考察した。

なお、このような微弱な温度差に機械的エネルギーに変換する機関としては、例えば作動流体による直接タービン駆動発電システムや多層液層等の温度差生成による吸収発熱を利用したタービン駆動法（田中、1980）が考えられ、実験室レベルでのモデル化等が行われているが、本機関のような直接的作動仕事に機械仕事が可能とするモデルに関しての研究例は、見当たらない。

2. 疑似永久機関の作動機構
2.1 機関の概要

本機関の構成および主要な寸法をFig.1(a)に示す。本機関は、冷却材に相当する部品Aと加熱材に相当する部品Bおよび両部品の連絡管で構成され、その駆動源は駆動管内壁に近傍で開放されている。機関各部の寸法は、その取得可能な動力、慣性モーメント、流体の移動速度
および管壁の厚さを考慮して決定した。また、その材質は機関重量の軽減および熱抵抗性、熱伝導率の物性値上、検討から、Table 1 に示すアルミニウムとした。なお、選択管中央の支点部、管外部に固定されたボールベアリング仕様とした。

本機関内の作動流体に要求められる理化学的性状、環境温度以上の沸点、高価の密度、環境温度付近での飽和蒸気圧変動幅の高価、比熱容量の低価、動粘性の低価等がある。本報では、本機関で取得される熱量や駆動力の検討から、作動流体として Table 2 に示す性状をもつ塩化メチレン (CH₂Cl₂) を選択し（BUDANOV, 1966 ; HODGMAN and WEAST, 1960), またその総流量を 0.11m³とした。Fig 2 に、塩化メチレンの温度に対する飽和上記圧力を示す。なお、作動流体としてエタノール等のアルコール類についても検討を行ったが、特に標準外気温近傍での蒸気圧変動幅が小さいため（例えば、エタナー

Fig. 2. Saturated vapor pressure of methylene chloride.

\[P = \text{saturated vapor pressure of methylene chloride.} \]

\[t = \text{temperature of methylene chloride.} \log P = 7.409 - (1.325/(t + 252.6)) \]

Table 1. Physical properties of aluminium (at 295.15K)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>2710 kg/m³</td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>0.896 kJ/(kg·K)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>204 W/(m·K)</td>
</tr>
</tbody>
</table>

Table 2. Properties of methylene chloride.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
<td>1.325 kN</td>
</tr>
<tr>
<td>Formula weight</td>
<td>84.93</td>
</tr>
<tr>
<td>Melting point</td>
<td>176.35K</td>
</tr>
<tr>
<td>Boiling point</td>
<td>313.1K</td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>1.205 kJ/(kg·K)</td>
</tr>
<tr>
<td>Heat of vaporization</td>
<td>31.2kJ/mol</td>
</tr>
</tbody>
</table>

ルで基準温度 30℃の場合、35℃：244mmHg, 25℃：194mmHg）、機間寸法が大きくなる場合には不適当であるとの結論を得た。

2.2 作動原理

Fig 1 (b) に想定する本機関の作動過程を示す。頭部を吸水性に富む材質（本報では、フェルト材を想定）で被覆すると、前過程において吸水された水分が蒸発する際の潜熱奪取により、頭部の内圧を降下する。これに対して、胴内の内部温度は周囲環境温度に近いため、その温度差に相当する飽和蒸気圧差より作動流体は頭部に移動し、流体質量により下方に降下する。本機関が水平に位置すれば、頭部および胴側部は直結され、圧力が平衡すると同時に、重力により作動流体は胴部に移動する。すなわち、環境温度域における頭部での熱放出
この手法では、吸水した水分が蒸発し、熱伝達と物質移動とが同時に生じる場合、その推進力としての温度差と温度差の合成力としてエンタルピ差を用いる。このエンタルピ差による推進力を用いる方法は、後述の物質移動係数と比熱の比が1となるルイスの関係（Lewin, 1922）が成立するという仮定上。熱収支の近似などを含むものであるが、水・空気系のしか面気温差がさほど高くない場合には、この計算方法は不合理である（上塚・藤川, 1983）。

本機関頭部における伝熱モデルは、Fig. 3に示すように、熱伝達の駆動推進力は、作動流体から伝熱面への気・液界面までの過程と気・液界面から満充空気への影響の2つの過程により形成される。ここで、前者の過程では温度差のみを考慮推進され、その熱流れには次の場合の熱抵抗が存在する。

1) 作動流体の頭部管内壁への伝熱抵抗 \(r_e \):

\[
r_e = A_e / h_e A_e .
\]

2) 頭部管壁の伝熱抵抗 \(r_t \):

\[
r_t = \delta_e A_e / \lambda_e A_e .
\]

3) 冷却水膜の伝熱面への熱抵抗 \(r_w \):

\[
r_w = 1 / h_w .
\]

4) 冷却水の伝熱抵抗 \(r_w' \):

\[
r_w' = \delta_e / \lambda_e .
\]

ここで、

- \(A_e \)：頭部管壁の伝熱表面積 (m²)
- \(A_w \)：頭部外壁の伝熱表面積 (m²)
- \(h_e \)：作動流体の管内壁への熱伝達係数 (kJ/m²·s·K)
- \(h_w \)：作動流体と冷却水膜との熱伝達係数 (kJ/m²·s·K)
- \(h_{w'} \)：液膜の伝熱面への熱伝達係数 (kJ/m²·s·K)
- \(\delta_e \)：管壁の厚さ (m)
- \(\delta_e' \)：冷却水膜の厚さ (m)
- \(\lambda_e \)：管壁の熱伝導率 (kJ/m·h·K)
- \(\lambda_w \)：水の熱伝導率 (kJ/m·h·K)

である。

なお、頭部を被覆する吸水性材料の熱抵抗については、次項5) に示す管端部と冷却水膜間における伝熱面の汚れる熱抵抗として扱った。

5) 伝熱面の汚れ熱抵抗 \(r_{sa} \):

\[
r_{sa} = 1 / u_{sa}
\]

ここで、\(u_{sa} \)：伝熱面の汚れ係数 (kJ/m²·s·K)

また、厳密には、管内流体および頭部冷却水の汚れに起因する伝熱面の熱抵抗も考慮する必要があるが、解析を容易にするため本試算過程では省略した。

- 気・液界面の状態値は、その測定が困難であるため、
- 便宜上、界面の温度として冷却水膜温度を \(t_w \) とすると、
- 作動流体から気・液界面への熱伝達は、次式で表される。

\[
dq = c_G d t = h_w (t_w - t) dA
\]

ここで、
A：気・液の接触表面積
qL：作動流体から気・液界面への伝達熱量

[c]：作動流体の定容比熱
[G]：作動流体の質量
[hL]：作動流体の冷却水膜との伝熱係数
[tL]：作動流体温度
[tw]：冷却水膜温度

である。

また、この過程における伝熱係数と熱交換の各熱抵抗との間には、次式が成立する。

\[\frac{1}{h_L} = \frac{1}{h_0} + \frac{1}{r_0} + \frac{1}{r_e} \] (2)

次に後者の気・液界面から湿り空気の伝熱過程では、
温熱は熱伝達の他に物質移動によっても伝達され、蒸発
冷却過程での全伝達熱量 \(dq' \) は次式で表される。

\[dq' = dq + dA = h(t_a - t_L)dA + rK_a(x_a - x_L)dA \] (3)

ここで、

A：気・液の接触面積

\[h_0 \]：湿り空気の熱伝達係数
\[k_a \]：絶対湿度基準の物質移動係数
\[q_L \]：蒸発伝達熱量
\[q_w \]：乾燥伝達熱量
\[q' \]：気・液界面から湿り空気への全伝達熱量

\[r \]：0℃での水の蒸発潜熱

\[t_a \]：湿り空気の乾球温度
\[t_{tw} \]：冷却水膜温度
\[x_a \]：湿り空気の絶対湿度
\[x_{tw} \]：冷却水温度に相当する飽和空気の絶対湿度

\[x_a = 0.622 \times \frac{p_a}{P - p_v} \] (8)

\[p_v = \frac{p_a}{0.622 + x_a} \] (9)

\[\phi = \frac{p_a}{p_v} \times 100 \] (10)

\[\phi = \frac{x_a}{x_{tw}} \times 100 \] (11)

\[v = (R_a + x_{tw}) \text{T}/P \] (12)

\[c_{sa} = c_{sa} + c_{sa}x_a \] (13)

\[i = 1.005 \text{T} + x_{(1.846 \text{T} + 2501)} \] (14)

\[x_a = (\text{湿り空気の比エンタルピー}) \] (k/kg)
\[c_{sa} = (\text{湿り空気の定圧比熱}) \] (kJ/(kg・K))
\[c_{sa} = (\text{乾き空気の定圧比熱}) \] (kJ/(kg・K))
\[c_{sa} = (\text{水蒸気の定圧比熱}) \] (kJ/(kg・K))
\[P = (\text{空気の全圧力}) \] (kPa)
\[P_v = (\text{水蒸気圧力}) \] (kPa)
\[p_v = (\text{飽和空気の水蒸気圧力}) \] (kPa)
\[R_a = \text{乾き空気の気体定数} \] (kJ/kg・K)
\[R_s = \text{水蒸気の気体定数} \] (kJ/kg・K)
\[T = \text{絶対温度} \] (K)
\[x_a = (\text{湿り空気の絶対湿度}) \] (kg/kg)
x́ : 靜和空気の絶対湿度 (kg/kg(DA))
φ : 相対湿度 (%)
ψ : 比較湿度 (%)

である。

(2) 頭部および連結管における伝熱機構

頭部壁における伝熱機構では、頭部のように管壁と接
触する冷却水が存在しないため、周囲環境から頭部壁
面への熱取得のみを考慮すればよい。ここで、初期時の
作動流体温度は、近似的には周囲温度と同様として取
扱っても差し支えないものと考えられる。しかし、水平
線と連結管との間隔が水平近傍に達して頭・頭部面
が直角される際には、頭部において冷却された作動流体
の混合による頭部の温度下降を考慮する必要がある。そ
かで、本論では、両部の作動流体温度の平均値から頭
部作動流体の温度下降を求める。周囲空気から頭部伝
熱による温度上昇に要する時間的遅れを考慮した。本試算
時には、空気の平均熱流束を一定とする球形の頭部の、
いわゆる「球回り」の強制対流熱伝達率α。を用いた頭
部の取熱量Qを次式により求めた（一関・北山 1981）。

q̂ = α̂(t̂ − t̂) A
(15)
α̂ = Nu λ / d
(16)
Nu = 2 + 0.52Re^{1/2} Pr^{-1/3}
(17)

ここで、

A : 頭部の表面積 (m²)
d : 頭部の壁厚さ (m)
Nu : ネルソ数
q̂ : 頭部の取熱量 (kJ)
t̂ : 作動流体温度 (°C)
t̂ : 管外壁面温度 (°C)
α̂ : 対流熱伝達率 (kJ/m²•h•K)
λ : 熱伝導率 (kJ/m•h•K)

である。

ここでは、長さxが頭部直径dであり、また、レイノルズ数Reおよびプラントル数Prは、空気調和衛生工
学便覧（1981）より、それぞれ5.84×10⁴および0.71と
した。

なお、頭・頭部を連結する連結管についても熱取得の
詳細な熱収支を解く必要があるが、解析を容易にするた
め、本試算過程では一定とした。

2.4 飽和蒸気圧差による作動流体の動特性

Fig.4 は、作動流体である塩化メチレンの飽和温度差
に対する沸点差の一例（基準温度25°C）を示したもの
で、頭部と頭部の圧力差が大きいほど沸点差は増加す
る。したがって、この沸点差は、周囲環境の温度・湿度

Fig. 4. Liquid height as temperature difference
for methylene chloride.

に依存する。

2.5 取得動力の試算法

作動流体の移動による機関の取得動力の試算には、周
囲環境条件における作動流体の移動速度および移動流体
の質量の計算が必要である。流体の移動速度は、管内面が
滑らかな状態で、かつ流体の粘性抵抗が温度変化によ
って一定と仮定し、水平線と連結管とのなす角度、すな
わち機関角度を考慮して頭・頭部の圧力差により計算した。
この時の機関角度の変動量は、支点を中心とする両側の
質量変化より回転モーメントを算出し、算出した。したがっ
て、本機関の取得動力は、単位時間あたりの頭部の移動
量に作動流体密度を乗じて算出した。なお、支点周辺にお
ける摩擦抵抗は、新機械工学便覧第1編（1995）により
標準化される摩擦係数（μ = 0.15）を用いた。

3. シミュレーション結果による取得動力

以上の結果、本機関は周囲環境温度やその湿度に左
右される。Fig.5 に周囲環境温度を10°C〜35°C、相対湿
度を10%および50%とした場合の理論取得動力を示す。
その動力は、相対温度10%、外気温35°Cで70W程度が得
られる。しかし、実際の環境条件では、このような周
囲環境の変動は困難であり、また、実機に採用す
る場合では、リング機構における摩耗損失等も考慮しな
ければならず、除湿等の環境条件を確保する必要がある。

また、Fig.6 に、相対湿度が10%時に、機関各部を相
似的に大型化した場合の理論取得動力を示す。本機関の
取得動力は、熱交換器部の相対比がつれて増大するが、
連結管長さの長さ目標に伴う作動流体の移動時間の増加お
よびへ径の増大等により、作動流体の容量比に対する
Fig. 5. Theoretical output power as temperature difference and relative humidity for apparatus. ϕ: relative humidity.

Fig. 6. Theoretical output power as similarity ratio for apparatus. r: similarity ratio.

Fig. 7. Discharge air volume as temperature and relative humidity difference for apparatus. ϕ: relative humidity.

冷·温熱の両者を供給可能な未利用熱源（下田ら，1996）の採用による高温・低温の理想的な作業環境を想定した。そこで、未利用熱源とは、廃熱として再利用することなく放出される低レベル熱エネルギーであり、具体的には、発電所の冷却温排水・下水処理水（温熱）、冷凍倉庫廃熱（冷熱）等である。前項3における各周囲条件下から求めた想定エアレーション装置の排出空気量をFig.7に示す。エアレーション機器の最大排出空気量は、外気温35℃、相対湿度10%の場合、最大で640m³/h程度である。今、周囲環境が年間を通じて一定で、かつ同機関が最大効率で転圧できると仮定すると、年間約610kWの一次エネルギーが削減される。これは、二次エネルギー換算では215kWとなる。また、機関を大
疑似永久機関の作動シュミュレーション

文 献

小山慶太 (1994) : 永久機関で活る現代物理学, 築摩書房, pp. 120-123.
下田吉之, 水野薰, 北村茂樹, 百瀬敏成 (1996) : 都市エネルギー利用の活用改革に関する研究 第1報大阪市における各熱源の利用可能数と熱需要に関する調査と分析, 空気調和・衛生工学会論文集, No. 61, pp. 65-75.
新機械工学便覧第1編 (1995) : 新機械工学便覧編集委員会編, pp. 7-1～7-14, 理工学社.

1996年10月29日 受付
1998年4月8日 受理