Associations Tintinnides (Ciliophora, Tintinnina) - Dinoflagellés (Dinophyceae) autotrophes potentiellement nuisibles au niveau de la Baie de Tunis et de deux lagunes associées: Ghar El Melh et Tunis Sud (Méditerranée Sud Occidentale)

Mohamed Néjib Dalý Yahia*, Ons Dalý Yahia-Kefl, Sami Souissi², Fadhila Maamouri³ et Patricia Aïssa⁴.

Abstract : Une étude des Tintinnides et des Dinoflagellés autotrophes susceptibles d’être nuisibles a été réalisée mensuellement dans la baie de Tunis et au niveau de deux lagunes associées: Ghar El Melh et Tunis Sud. Les résultats obtenus montrent que du point de vue qualitatif, les communautés lagunaires de Tintinnides sont très influencées par les populations marines avoisinantes. En effet, 61 espèces de Tintinnides ont été recensées dans la baie de Tunis, 15 espèces dans la lagune de Ghar El Melh, et seulement 12 dans la lagune de Tunis Sud. De plus, toutes les espèces rencontrées au moins dans l’une de ces lagunes n’avaient été présentes dans la baie de Tunis. Le décompte des principales espèces montre que les densités moyennes annuelles atteintes en milieux lagunaires (Lagune de Tunis Sud : 223,1 cellules·litre⁻¹ ; Lagune de Ghar El Melh : 62,3 cellules·l) sont supérieures à celles enregistrées en mer (baie de Tunis: 49,1 cellules·l⁻¹). Le développement des principales espèces de Tintinnides comme Pavella ehrenbergi, Tintinnopsis spp et Stenosemella nivalis est associé aux poussées de Dinophysis acuminata, Alexandrium spp et Prorocentrum lima. Cette "hypothèse trophique" a été testée par des classifications hiérarchiques qui ont permis d’identifier des associations spécifiques entre les espèces de Tintinnides dominantes et de Dinoflagellés susceptibles d’être nuisibles.

Keywords : Tintinnides; Dinoflagellates; Specific Association; SW Mediterranean

1. INTRODUCTION

Les Tintinnides, mieux connus que les autres...

En raison de leur petite taille comprise généralement entre 20 et 200 µm, ils appartiennent au microzooplancton (Conover, 1982; Harris et al., 2000) et constituent des proies non négligeables pour des organismes zooplanctoniques tels que les Copépodes, les Cladocères, les Chaetognathes, les Tuniciers, certaines Scyphoméduses ainsi que les larves de Poissons (Conover, 1982; Kentouri et Dinanach, 1986; Ayukai, 1987; Gifford et Dagg, 1991; Grad et al., 1994).

Les données en Méditerranée Sud Occidentale, notamment pour la baie de Tunis et les lagunes de Ghar El Melh et de Tunis Sud restent fragmentaires en ce qui concerne les assemblages spécifiques de Tintinnides et de Dinoflagellés. Ainsi, dans la baie de Tunis, une étude hydrologique antérieure a montré qu'il existe un gradient nutritif croissant depuis la région sud-ouest vers le secteur nord-est, associé à un important développement de Tintinnides dans la zone eutrophe proche de la ville de Tunis (Daly Yahia, 1998; Souissi et al., 2000). Les Dinoflagellés ont fait l'objet de quelques travaux récents du point de vue taxonomique (Daly Yahia-KEFI et Daly Yahia, 1997; Daly Yahia-KEFI et al., 2001a) et écologique (Romdhane et al., 1998; Daly Yahia-KEFI et al., 2001b) et qui concernent surtout la baie de Tunis. Les travaux sur le microzooplanton et plus particulièrement sur les Tintinnides sont plus rares et relatifs à la lagune de Ghar El Melh (Ben Fredj et al., 2001).

La présente étude se propose de combler cette lacune et d'effectuer un suivi annuel de la taxonomie et de la dynamique des Tintinnides, dans la baie de Tunis et dans deux milieux lagunaires environnants (les lagunes de Ghar El Melh et de Tunis Sud), en parallèle avec une analyse des associations spécifiques entre Tintinnides hétérotrophes et Dinoflagellés autotrophes, ces derniers étant potentiellement nuisibles.

Notre choix des compartiments trophiques pré-cités répond aussi bien à une problématique scientifique que socio-économique. En effet, le domaine des ressources marines et lagunaires en terme de pêches est un secteur socio-économique clé en Tunisie. La production de la pêche est sujette en Tunisie comme d'ailleurs en Méditerranée et dans l'Océan mondial à un déclin en raison d'une surexploitation associée à des captures de tailles de plus en plus petites ("fishing down"). Parallèlement en Tunisie depuis une vingtième d'année, les milieux lagunaires Tunisiens subissent une importante eutrophisation d'origine anthropique et naturelle. Cette dernière semble être associée à des mortalités massives de poissons sauvages (Daly Yahia-KEFI and Daly Yahia, 1997; Romdhane et al., 1998). Déterminer quels sont les facteurs susceptibles d'exercer un contrôle dans la dynamique des efflorescences de Dinoflagellés représente une priorité essentielle dans de tels écosystèmes où les activités de pêche sont développées depuis longtemps.

2. MATERIELS ET METHODES

La zone d'étude fait partie de l'ensemble du golfe de Tunis, compris entre 10° 10' et 11° 5' de longitude est et 36° 38' et 37° 10' de latitude nord, et situé au sud de la mer Tyrrenhienne, dans le bassin Siculo-Tunisien, sur lequel il s'ouvre largement sur près de 75 miles de côtes (figure 1). Sa limite géographique nord-est est représentée par une radiale joignant Cap Farina au Cap Bon (figure 1).

La baie de Tunis, située au sud du golfe de Tunis, communique directement dans sa région ouest avec la lagune de Tunis Sud. Plus au nord, la lagune de Ghar El Melh s'ouvre sur le littoral ouest du golfe de Tunis (figure 1).

Les caractéristiques géographique, bathymétrique et physico-chimique des trois biotopes étudiés ainsi que les stations d'échantillonnages sont indiquées sur la figure 1 et le tableau 1.

La température et la salinité des eaux de surface sont mesurées, mensuellement, à l'aide d'un salinomètre de terrain type WTW LF196 muni d'une sonde de température.

Les échantillons mensuels de plancton sont
Fig. 1. Situation géographique et emplacement des différentes stations d'étude au niveau de la baie de Tunis et des lagunes de Ghar El Melh et Tunis Sud.

<table>
<thead>
<tr>
<th>Milieux</th>
<th>Superficie (Km²)</th>
<th>Profondeur moyenne (m)</th>
<th>Période d'étude</th>
<th>Nombre de stations</th>
<th>Température moyenne minimale</th>
<th>Température moyenne maximale</th>
<th>Salinité moyenne minimale</th>
<th>Salinité moyenne maximale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baie de Tunis</td>
<td>360</td>
<td>15</td>
<td>1993-1994</td>
<td>17</td>
<td>13,2°C (janvier)</td>
<td>28,9°C (août)</td>
<td>36,81 (octobre)</td>
<td>37,87 (août)</td>
</tr>
<tr>
<td>Lac Sud de Tunis</td>
<td>13</td>
<td>0,35</td>
<td>1996-1997</td>
<td>10</td>
<td>13°C (janvier)</td>
<td>34°C (août)</td>
<td>24,5 (février)</td>
<td>40,2 (août)</td>
</tr>
<tr>
<td>Lagune de</td>
<td>30</td>
<td>1</td>
<td>1994-1995</td>
<td>3</td>
<td>10,4°C (janvier)</td>
<td>27,4°C (août)</td>
<td>32,8 (février)</td>
<td>42,24 (août)</td>
</tr>
<tr>
<td>Ghar El Melh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

prélevés à l'aide d'une bouteille Ruttner (2L) pour l'analyse quantitative et à l'aide d'un petit filet à plancton de forme conique (55 μm de vide de maille) utilisé pour l'étude qualitative en traits horizontaux de surface en milieu lagunaire, en raison de leur faible profondeur moyenne (Tableau 1) et en traits verticaux fond-surface dans la baie de Tunis. Les échantillons prélevés respectivement au cours des années 1994, 1995 et 1997 au niveau de la Baie de Tunis, de la lagune de Ghar El Melh et de la lagune de Tunis Sud, sont immédiatement fixés au formol neutralisé au borate de soude (2%) puis conservés dans une chambre froide à l'obscurité et à une température de 4°C jusqu'à l'analyse microscopique.

La méthode standard de sédimentation d’Utermöhl (Utermöhl, 1958) est utilisée sur microscope inversé (Leitz) pour l'identification et le comptage des Dinoflagellées et des Tintinnides. Sachant qu'il existe une perte significative du nombre de cellules dans les échantillons fixés au formaldéhyde (Stoeker et al, 1994 ; Gifford et Caron, 2000), une analyse statistique du volume aliquote permettant une stabilisation du nombre...
d’individus comptés par échantillon a été réalisée pour chaque écosystème et un volume de 25ml a été choisi pour le comptage des Dinoflagellés et des Tintinnidés. Après sédimentation de l’échantillon à analyser, l’ensemble des protistes contenus dans la chambre de comptage sont identifiés et comptés.

Les Dinoflagellés quant à eux ont été identifiés spécifiquement dans plusieurs travaux antérieurs par Daly Yahia–Kefi et Daly Yahia (1997), Daly Yahia–Kefi et al. (2001a) et Daly Yahia–Kefi et al. (2001b). Suites aux mortalités massives de poissons sauvages dans divers écosystèmes lagunaires tunisiens (Daly Yahia–Kefi et Daly Yahia, 1997; Romdhane et al., 1998), et afin de mieux comprendre les phénomènes enregistrés, seules les espèces autotrophes susceptibles d’êtres nuisibles ont été prises en considération dans ce travail.

Afin de détecter les associations entre Tintinnidés hétérotrophes et Dinoflagellés autotrophes des classifications hiérarchiques permettant d’aboutir à des dendrogrammes ont été réalisées sous le logiciel d’analyses statistiques STATISTICA en utilisant la méthode d’agglomération basée sur la moyenne pondérée des groupes associés. Pour chaque site, la matrice de données brutes représentant les abondances des espèces sélectionnées de Tintinnidés et Dinoflagellés (p colonnes) en fonction des dates d’échantillonnage (n dates) a été composée. Nous avons calculé la matrice des corrélations (r de Pearson) entre toutes les dates après transformation logarithmique des données brutes. Par la suite la simple transformation arithmétique (1−r Pearson) donne une matrice de distances entre espèces (pxp) qui a été utilisée pour réaliser la classification hiérarchique. Le dendrogramme obtenu est particulier et correspond à un corrélogramme.

3. RESULTATS

Hydrologie

Le cycle de la température montre un minimum en janvier (13,2°C) et un maximum en août (28,9°C) au niveau de la baie de Tunis. L’écart annuel de la température des eaux est plus important en milieu lacunaire en raison de la faible profondeur enregistrée (Tableau 1). Si la salinité moyenne des eaux marines de la baie de Tunis est largement influencée par les eaux Atlantiques (Sousié et al., 2000), les écarts halins saisonniers sont beaucoup plus importants. Ainsi, dans les deux lagunes considérées, les minima sont enregistrés en hiver après les fortes pluies tandis que les valeurs les plus élevées ont dépassé 40 psu dans saison estivale, au cours du mois d’août caractérisé par les plus fortes températures de l’air et la plus forte insolation.

Il apparaît donc qu’au point de vue physico-chimique, les milieux lagunaires environnants beaucoup plus instables, amplifient les variations climatologiques et anthropiques locales, en raison de leur confinement et de leur faible profondeur moyenne.

Analyse systématique

Du point de vue qualitatif, 61 espèces de Tintinnidés ont été inventoriées dans la baie de Tunis, 15 espèces dans la lagune de Ghar El Melh, et seulement 12 dans le Lac Sud de Tunis (Tableau 2).

Les Dinoflagellés ont été quant à eux bien représentés dans l’ensemble du complexe
Tableau 2. Inventaire taxonomique comparé des Tintinnides dans les trois milieux d’études.

<table>
<thead>
<tr>
<th>Unité systématique</th>
<th>Bâle de Tunis</th>
<th>Lac Sud de Tunis</th>
<th>Legues de Clar El Mell</th>
<th>Richesse spécifique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codonaria cistellula (Fol, 1884)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Codonella galea Heeckel, 1873</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Codonella nationalis Brandt, 1906</td>
<td>+</td>
<td>—</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Codonelopsis ecaudata (Brandt, 1906)</td>
<td>+</td>
<td>—</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Codonelopsis morchella Jorgensen, 1924</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Codonelopsis orthoceras (Heeckel, 1873)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Codonelopsis tesselata (Brandt, 1906)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Cyttarocyclus cassisi (Heeckel, 1873)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Cyttarocyclus magnus (Brandt, 1906)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Dadayiella balbosa (Brandt, 1906)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Dictyostyla lepida Ehrenberg, 1854</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Epiplocyclus acuminata (Daday, 1887)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Eutintinnus frahni (Daday, 1887)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Eutintinnus iusus undae (Entz, 1885)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Eutintinnus macilentus (Jorgensen, 1924)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Eutintinnus sp</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Favelia azorica (Cleve, 1900)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Favelia ehrenbergi (Clapède et Lachmann, 1858)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Favelia markuszowska (Daday, 1887)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Favelia meunieri Kofoid et Campbell, 1929</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Favelia serrata (Mobius, 1887)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Helicostomella edentata (Fauré-Fremiet, 1908)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Helicostomella kiliensis (Lachmann, 1906)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Helicostomella subulata (Ehrenberg, 1833)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Leprotintinnus bottnicus (Nordqvist, 1890)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Leprotintinnus sp</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Metacyclus jorgensenii (Cleve, 1902)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Metacyclus sp</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Parafavelia sp</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Parandrella grandis Kofoid et Campbell, 1929</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Petalotriricha ampulla (Fol, 1881)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Petalotriricha major Jorgensen, 1924</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Prolectella claparedi (Entz, 1855)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Rhabdonella elegans Jorgensen, 1924</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Rhabdonella kenseni Brandt, 1906</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Rhabdonella spiralis (Fol, 1881)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Salpingella acuminata (Clapède et Lachmann, 1858)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Salpingella decurtata Jorgensen, 1924</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Salpingella gracilis Kofoid et Campbell, 1929</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Salpingellasecea (Brandt, 1896)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Steenstrupiella steenstrupii (Clapède et Lachmann, 1858)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Stenosemella invisus (Meunier, 1910)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Stenosemella ventricosa (Clapède et Lachmann, 1858)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis berodea Stein, 1867</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis brandti (Nordquist, 1890)</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis butschlii Dayal, 1887</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis campanula (Ehrenberg, 1840)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis cineta (Clapède et Lachmann, 1858)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis cythus Dayal, 1887</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis fimбриata Meunier, 1919</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis lobiancoi Dayal, 1887</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis major Meunier, 1910</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis radix Imhof, 1886</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis strigosae Meunier, 1919</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis tubulosa Levander, 1900</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis undella Meunier, 1910</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis urnula Meunier, 1910</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Tintinnopsis inquinum (O.F. Muller, 1776)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Undella hyalinna Dayal, 1887</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Xystonella lohmani (Brandt, 1906)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Xystonella trefori (Daday, 1887)</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
</tbody>
</table>
Fig. 2. Variations saisonnières de l’abondance (cell./l.) des Tintinnides et des Dinoflagellés. A : dans la lagune de Ghar El Melh, B : dans le Lac Sud de Tunis, C : dans la baie de Tunis. (Les lignes verticales indiquent l’erreur standard : ES)

<table>
<thead>
<tr>
<th>Dinoflagellés</th>
<th>Code</th>
<th>Tintinnides</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandrium spp.</td>
<td>ALEX.SPP</td>
<td>Codosoma galea HAACKEL 1873</td>
<td>CODO.GAL</td>
</tr>
<tr>
<td>Dinophysis araminata Claparède et Lachman 1859</td>
<td>DINO.ACU</td>
<td>Codoselopsis ecaudata (BRANDT 1906)</td>
<td>CODO.ECA</td>
</tr>
<tr>
<td>Dinophysis caudata Saville-Kent 1881</td>
<td>DINO.CAU</td>
<td>Dictyocysta leptida ENHRENBERG 1854</td>
<td>DICT.LEP</td>
</tr>
<tr>
<td>Dinophysis sacculus STEIN 1883</td>
<td>DINO.SAC</td>
<td>Eutintinnus fraxnii (Daday 1887)</td>
<td>EUTL.FRA</td>
</tr>
<tr>
<td>Gonyaulax spp.</td>
<td>GONY.SPP</td>
<td>Eutintinnus busus undae (Entz 1885)</td>
<td>EUTL.LUS</td>
</tr>
<tr>
<td>Gonyaulax verior Sournia 1973</td>
<td>GONY.VER</td>
<td>Eutintinnus sp.</td>
<td>EUTL.SP</td>
</tr>
<tr>
<td>Gymnodinium mikimotoi Miike et Kominnami ex Oka 1955</td>
<td>GYMN.MIK</td>
<td>Favella ehrenbergi (CLARAPÉE et LACHMANN 1898)</td>
<td>FAVE.EHR</td>
</tr>
<tr>
<td>Gymnodinium sanguineum HIRASAKA 1922</td>
<td>GYMN.SAN</td>
<td>Favella spp.</td>
<td>FAVE.SPP</td>
</tr>
<tr>
<td>Gymnodinium sp.</td>
<td>GYMN.SP</td>
<td>Helicostonella hiliensis (LACHMANN 1906)</td>
<td>HELI.KIL</td>
</tr>
<tr>
<td>Gyrodictium spirale KOFOID et SWEEZY 1921</td>
<td>GYRO.SPI</td>
<td>Leptotintinnus bottnicus (NORDQUIST 1890)</td>
<td>LEPR.ROBOT</td>
</tr>
<tr>
<td>Peridinium quinquecorne Abé 1936</td>
<td>PERL.QU</td>
<td>Leptotintinnus sp.</td>
<td>LEPR.SP</td>
</tr>
<tr>
<td>Procentrum lima (EHRENBERG) Dodge 1975</td>
<td>PROR.LIM</td>
<td>Metacylis sp.</td>
<td>META.SP</td>
</tr>
<tr>
<td>Procentrum mexicanum TAFFAL 1942</td>
<td>PROR.MEX</td>
<td>Stenosemella nivalis (MEUNIER 1910)</td>
<td>STEN.NIV</td>
</tr>
<tr>
<td>Procentrum minimum (Pavillard) SCHILLER 1933</td>
<td>PROR.MIN</td>
<td>Tintinnopsis butschlii Daday 1887</td>
<td>TINT.BUT</td>
</tr>
<tr>
<td>Tintinnopsis cananoi (EHRENBERG 1840)</td>
<td></td>
<td></td>
<td>TINT.CAM</td>
</tr>
<tr>
<td>Tintinnopsis sacculus BRANDT 1896</td>
<td></td>
<td></td>
<td>TINT.SAC</td>
</tr>
<tr>
<td>Tintinnopsis spp.</td>
<td></td>
<td></td>
<td>TINT.SPP</td>
</tr>
</tbody>
</table>

Distribution quantitative et associations spécifiques entre Tintinnides et Dinoflagellés

Les densités numériques des Tintinnides totaux (figure 2) ont montré d’importantes fluctuations mensuelles avec :

- dans la lagune de Ghar El Melh au cours de l’année 1995 (figure 2A), une densité moyenne annuelle de 62,3 cellules.1-1 oscillant entre un minimum en avril de 4,2 cellules.1-1 (ES = 1,4) et un maximum à la fin du printemps qui atteint 276 cellules.1-1 (ES = 79,9).

- dans la lagune de Tunis Sud (figure 2B), milieu plus confiné et très pollué, la moyenne annuelle a été durant l’année 1997, de 223,1 cellules.1-1, avec une poussée estivale de Tintinnides de 224,9 cellules.1-1 (ES = 102,3) en juillet, suivie par un développement hivernal atteignant 1452,5 cellules.1-1 (ES = 1380,2) en janvier et chutant à 547,5 cellules.1-1 (ES = 205,4) en février. Le minimum a été relevé en novembre avec 6,3 cellules.1-1 (ES = 3,2).

- dans la baie de Tunis (figure 2C), l’année 1994 se caractérise par deux périodes de fortes abondances: la première en avril-mai, avec des densités respectives de 138,1 cellules.1-1 (ES = 34,1) et 105,5 cellules.1-1 (ES = 22,3); la deuxième en novembre-décembre avec respectivement 100,6 cellules.1-1 (ES = 19,4) et 92 cellules.1-1 (ES = 18,2).

Les corrélogrammes obtenus, sur la base des Tintinnides dominants et des Dinoflagellés, autotrophes susceptibles d’être nuisibles (Tableau 3), montrent l’existence d’associations entre les espèces de ces deux groupes planctoniques qui pourraient s’expliquer par
Fig. 3. Corrélogramme représentant les associations spécifiques (Tintinnides-Dinoflagellés toxiques) au niveau de la baie de Tunis.

Fig. 4. Corrélogramme représentant les associations spécifiques (Tintinnides-Dinoflagellés toxiques) au niveau de la lagune de Tunis Sud.

des relations trophiques.
En adoptant une coupure au seuil de 0,5 (figure 3) huit assemblages spécifiques ont été identifiés au niveau de la baie de Tunis. Quatre d’entre eux (A3, A4, A5 et A8) regroupent des espèces de Dinoflagellés et de Tintinnides. C’est ainsi que Proorocentrum lima (Ehrenberg) Dodge 1975, P. mexicanum Tafall 1942 et Gymnodinium sanguineum Hiraseka 1922 sont associés à Stenoselita nivalis (Meunier, 1910), Tintinnopsis sacculus Brandt, 1896 et Eutintinnus sp (A3). Au contraire, Proorocentrum minimum (Pavillard) Schiller 1933 n’est corrélé qu’avec Codonella galea
Fig. 5. Corrélégramme représentant les associations spécifiques (Tintinnides-Dinoflagellés toxiques) au niveau de la lagune de Ghar El Melh.

HAECKEL, 1873 (A4).

Le corrélégramme obtenu pour la lagune de Tunis Sud (figure 4) met en évidence quatre groupes d’espèces dont deux (B1 et B3) sont pluri-séries. L’association B1, la plus remarquable, regroupe les Dinoflagellés Alexandrium spp HALIM 1960, Gymnodinium sp STEIN 1878 et Prorocentrum minimum avec les Tintinnides Pavalia spp, Leprotintinnus bottnicus (NORDQVIST, 1890), Codonella galea et Codonellopsis acaudata (BRANDT, 1906).

Enfin, dans la lagune de Ghar El Melh, trois assemblages dont deux pluri-séries (C1 et C2) ont été mis en évidence (figure 5). L’association spécifique C1 regroupe Alexandrium spp et Gymnodinium sanguineum avec Tintinnopsis spp, Codonellopsis acaudata et Dictyocysta lepida EHRENBERG, 1854.

Il faut toutefois éliminer de ces associations Gymnodinium sanguineum dont la taille moyenne dépasse le diamètre oral des différentes espèces de Tintinnides auquel elle est associée. Il en est de même pour Dinophysis acaudata que l’on retrouve dans l’association A8 (figure 3). La présence de ces deux espèces résulterait plutôt de leurs préférences environnementales.

4. DISCUSSION

Comparé à d’autres écosystèmes côtiers, la Baie de Tunis avec 62 espèces de Tintinnides apparaît plus riche que la Baie d’Alger, la Baie de Villefranche Sur Mer, la Baie de Mali Ston en Adriatique Sud ou encore la Baie de d’Izmir en mer Égée (Tableau 4). De plus c’est sur le littoral Est méditerranéen (côtes Nord libanaises) que le nombre de Tintinnides le plus élevé a été enregistré avec 90 espèces et s’oppose à certains écosystèmes estuariens ou lagunaires confinés et pollués comme la lagune de Tunis Sud et l’estuaire de Bahia Blanca avec respectivement seulement, 13 et 11 espèces inventoriées. Les travaux réalisés par DOLAN (2000) sur l’ensemble de la méditerranée, en période printanière confirment l’existence d’un gradient croissant d’Ouest en Est aussi bien du nombre d’espèces que de l’indice de diversité spécifique H’ des Tintinnides. Toutefois, le nombre de 16 espèces récoltées dans la lagune de Ghar El Melh est relativement faible et apparaît proche de celui enregistré dans le golfe de Marseille (TRAVERS, 1973). Cependant, selon TRAVERS (1973) le nombre d’espèces recensées dans son travail ne reflète pas la biodiversité des Tintinnides dans cet écosystème côtier.

Les résultats, obtenus dans notre étude,

<table>
<thead>
<tr>
<th>Écosystèmes étudiés</th>
<th>Nombre d’espèces</th>
<th>Abondance moyenne (cellules. l.(^{-1}))</th>
<th>Densités maximales (cellules. l.(^{-1}))</th>
<th>Auteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etang de Thau</td>
<td>21</td>
<td>75,7</td>
<td>276,6</td>
<td>Lam-Hoai (1997)</td>
</tr>
<tr>
<td>Estuaire de Bahía Blanca (Argentine)</td>
<td>11</td>
<td>-</td>
<td>2300</td>
<td>Barria De Cao et al. (1997)</td>
</tr>
<tr>
<td>Golfe de Marseille</td>
<td>15*</td>
<td>375</td>
<td>2000</td>
<td>TRAVERS (1973)</td>
</tr>
<tr>
<td>Ville-franche sur Mer</td>
<td>24</td>
<td>146,5</td>
<td>1000</td>
<td>RASSOULZADegan (1979)</td>
</tr>
<tr>
<td>Ville-franche sur Mer</td>
<td>40</td>
<td>40</td>
<td>500</td>
<td>CARIOU et al. (1999)</td>
</tr>
<tr>
<td>Baie d’Alger</td>
<td>42</td>
<td>8,1</td>
<td>30,6</td>
<td>Vitiello (1964)</td>
</tr>
<tr>
<td>Méditerranée Occidentale et Oriental (milieu océanique)</td>
<td>90</td>
<td>25</td>
<td>115</td>
<td>DOLAN (2000)</td>
</tr>
<tr>
<td>Adriatique Sud (Baie de Mali Ston)</td>
<td>60</td>
<td>14,5</td>
<td>1495</td>
<td>Krsinic (1977)</td>
</tr>
<tr>
<td>Adriatique Est (Dalmatie)</td>
<td>33</td>
<td>-</td>
<td>123,3</td>
<td>Krsinic (1977)</td>
</tr>
<tr>
<td>Côtes libanaises</td>
<td>35</td>
<td>-</td>
<td>200</td>
<td>Lakkis and Novel-Lakkis (1985)</td>
</tr>
<tr>
<td>Baie d’Izmir</td>
<td>44</td>
<td>-</td>
<td>-</td>
<td>Koray and Ozel (1983)</td>
</tr>
<tr>
<td>Baie de Tunis</td>
<td>62</td>
<td>49,1</td>
<td>138,1</td>
<td>Présent travail</td>
</tr>
<tr>
<td>Lac Sud de Tunis</td>
<td>13</td>
<td>223,1</td>
<td>1452,5</td>
<td>Présent travail</td>
</tr>
<tr>
<td>Lagune Ghar El Melh</td>
<td>16</td>
<td>62,3</td>
<td>276</td>
<td>Présent travail</td>
</tr>
</tbody>
</table>

mettent aussi en évidence qu’en milieu lagunaire les pics de densités de Tintinnides observés sont largement supérieurs à ceux enregistrés en mer. Plusieurs hypothèses peuvent expliquer ce phénomène :

- Les conditions physico-chimiques, trophiques, ainsi que le confinement et le faible hydrodynamisme des milieux lagunaires opposé à l’importante turbulence constatée dans la baie de Tunis, favoriseraient la croissance et la production des Tintinnides dans ces biotopes.

- Les kystes de Tintinnides qui s’accumulent d’années en années semblent beaucoup plus protégés en milieu lagunaire qu’en milieu marin ouvert.

- L’importante variabilité annuelle et spatiale enregistrée par divers auteurs dans le bassin méditerranéen doit être prise en compte dans ce travail, d’autant plus que les trois écosystèmes étudiés ont été prospectés à différentes années. En effet, le tableau 4 montre, qu’aussi bien le nombre d’espèces de Tintinnides recensées dans divers écosystèmes côtiers méditerranéens ou atlantiques, que les densités moyennes ou maximales enregistrées varient fortement. C’est ainsi que dans la Baie de Villefranche Sur Mer, les densités moyennes annuelles ont diminué considérablement après réduction des émissaires d’égouts dans la rade (RASSOULZADegan, 1979 ; CARIOU et al. 1999). Les périodes d’abondances des Tintinnides dans les trois biotopes étudiés sont apparues assez différentes. Il semble que ces différences résultent d’une forte variabilité saisonnière liée aux conditions environnementales propres à chaque écosystème. Cette variabilité concerne l’abondance des proies principales de
Associations Tintinnides-Dinoflagellés sur les côtes nord de la Tunisie.

Tintinnides, les Dinoflagellés, mais aussi de leurs prédateurs et en particulier de deux espèces de scyphoméduses très prolifiques depuis ces dix dernières années, Rhizostoma pulmo (Maki, 1778) et Cotylorhiza tuberculata (Maki, 1778) (données non publiées). En effet, les figures 2A, 2B et 2C montrent clairement que les blooms de Dinoflagellés ont généralement lieu au cours des périodes de développement des Tintinnides. Ceci nous permet donc de suggérer une relation de cause à effet, à condition de tenir compte de la taille moyenne des populations de Dinoflagellés associées à la taille moyenne du diamètre oral des Tintinnides qui les contrôlent.

Il ressort nettement de ce travail que, le plus souvent, chaque espèce de Dinoflagellés, susceptibles d'être nuisibles, est associée à un ou plusieurs Tintinnides. De plus, la dynamique de ces Dinoflagellés apparaît beaucoup mieux contrôlée en milieu marin qu'en milieu lagunaire. Ainsi, le nombre de prédateurs potentiels est relativement plus élevé pour un même dinoflagellé en milieu marin. Toutefois, certains Dinoflagellés comme Dinophysis acusculus Stein 1883 et Gyrodinium spirale (Bergh) Kofoid et Swezy 1921 forment au niveau de la baie de Tunis, des entités mono-spécifiques et ne sont associés à aucune espèce de Tintinnides.

Les résultats obtenus nous permettent de comprendre la fragilité de plusieurs lagunes tunisiennes, où des phénomènes d'œufs colorés associés ou non à des mortalités de poissons, s'observent régulièrement en saisons printanière et estivale (Daly Yahia–KEFI et Daly Yahia, 1997 ; Romdhane et al., 1998). Il apparaît clairement que la dynamique des espèces de Dinoflagellés nuisibles ou susceptibles de l'être est contrôlée par un ou plusieurs Tintinnides. Toutefois, certains maillons de la chaîne semblent fragilisés.

Ce travail nous a permis de préciser l'importance des ciliés Tintinnides au sein du microzooplancton des milieux nérétiques. En effet, nous constatons après s'être basé sur la dynamique des principaux Dinoflagellés nuisibles de la baie de Tunis, l'importante structuration du compartiment microzooplanctonique et particulièrement le contrôle effectué par les Tintinnides sur les populations de Dinoflagellés. Ils jouent ainsi un rôle non négligeable dans le transport et le transfert de matière et d'énergie à partir des producteurs primaires jusqu'aux consommateurs de deuxième ordre qui sont essentiellement représentés par les organismes du mésozoooplancton (Conover, 1982 ; Margalet, 1982).

A l'issue de cette étude, certaines associations spécifiques peuvent être considérées comme des relations prédateurs–proies car elles s'observent dans les trois écosystèmes étudiés, mais aussi car le diamètre oral des Tintinnides considérés correspond au spectre de taille des Dinoflagellés. C'est ainsi que le tintinnide Codonella galea semble être le prédateur de Prorocentrum minimum (A4 et B1). De même, Codonelopsis eucaudata consommerait préférentiellement Alexandrium sp(B1 et C1).

Les milieux lagunaires et nérétiques tunisiens sont donc propices au développement et à l'étude des ciliés Tintinnides. Leurs proportions élevées dans le zooplancton total (25 à 95%), ainsi que les densités atteintes en période de blooms montrent qu'ils constituent la base de la chaîne alimentaire hétérotrophe. Le confinement naturel, l'eutrophisation et la pollution croissante de ces lagunes en raison des déchets urbains et industriels ont progressivement entraîné une diminution de la diversité spécifique des Tintinnides ainsi que l'ensemble des autres groupes zooplanctoniques (Daly Yahia et Daly Yahia–KEFI, 2004 ; Daly Yahia et al., 2004).

REMERCIEMENTS

Nous tenons à remercier le Professeur Michèle Laval–Peuto de l'Université de Nice–Sophia Antipolis pour avoir bien voulu vérifier l'identification systématique des Tintinnides. Ce travail est une contribution au programme CMCU 2000 de coopération inter–universitaire Tuniso–Française.

References

KRESNIC, F. (1979): The tinninids (Ciliata) from the coastal waters of the Southern Adriatic in the year 1975/76. Nova Thalassia, 3 (suppl.), 199–211.
LAKKIS, S. and V. NOVEL-LAKKIS (1985): Considéra-
LAM-HOAI, T., C. ROUGIER and G. LASSERRE (1997): Tintinnids and rotifers in a northern Mediterra-
MULLIN, M. and S. CASTALDO (2002): Variability and persistence in tintinnid assemblages at a Medi-
RASSOULZADEGAN, F. (1979): Evolution annuelle des Ciliés pélagiques en Méditerranée nord-
occidentale. II. Ciliés Oligotriches. Tintinnides (Tintinnina). Invest Pesq, 43 (2), 417-448.
governmental Oceanographic Commission of UNESCO, Vigo, 80-83.
Tintinnids (Ciliophora, Tintinnina) and Dinoflagellates (Dinophyceae) associations in the Bay of Tunis and two adjacent lagoons: Ghar El Melh and Tunis South (S W Mediterranean).

Mohamed Néjib Daly Yahia1), Ons Daly Yahia-KEFI, Sami SOUSSI, Fadhila MAAMOURI and Patricia Aissa.

Abstract: We present here a study of Tintinnids and potentially harmful autotrophic dinoflagellates through monthly sampling of the Bay of Tunis and two associated lagoons: Ghar El Melh and Tunis South. We found that from the qualitative point of view the populations of tintinnids found in lagoons are a subset of those inhabiting the nearby marine environment. 62 species of tintinnids were found in the Bay of Tunis, 16 species in the lagoon of Ghar El Melh, and only 13 in the lagoon of Tunis South. All species found in lagoons were present in the Bay of Tunis. The density of tintinnids is higher in the lagoons (Tunis South: 223.1 cells.liter⁻¹; Ghar El Melh: 62.3 cells.l.⁻¹) than in the open sea (Bay of Tunis: 49.1 cells.l⁻¹). Blooms of the principal tintinnids species such as Favella ehrenbergi, Tintinnopsis spp and Stenosomella nivealis are associated with Dinophysis acuminata, Alexandrium spp and Prorocentrum lima. In order to test this hypothesis, hierarchical classifications were realised and allowed the identification of specific associations between the different species of dominant tintinnids and the potentially harmful dinoflagellate species.

1) Laboratoire de Biosurveillance de l’Environnement.
Groupe de Recherche en Hydrologie et Planctonologie. Département des Sciences de la Vie. Faculté des Sciences de Bizerte, Republic of Tunisia. 7021, Zarzouma, Bizerte. Fax: 216 72 590 566
E-mail: nejib.daly@fsh.rnu.tn

Received September 29, 2004
Accepted June 13, 2005