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Benthic microalgal biomass in the estuarine tidal flat of the
Mae Klong River, Thailand: Relationship with environmental
factors at the sediment-water interface

Nattapong LOASSACHANY, Shettapong MEKSUMPUN” " and Kuninao TADA”

Abstract: The present study describes and quantifies the short—term variations of microphyto-
benthic biomass and associated limiting factors in the tidal mudflat of the Mae Klong River es-
tuary. Surficial sediment (0-0.5 cm) was collected during exposure in September (wet
monsoon) and November (post monsoon) 2006 at 25 stations, covering the entire tidal flat area
in order to determine microphytobenthic biomass (benthic chlorophyll @), loss on ignition
(LOD and nutrients in pore water. The average microphytobenthic biomass of September (8.49
£2.86 mg m™?) was 63% higher than that of November (5.21+2.58 mg m*), and statistically
different between two—month observations (P<0.0001) due to the available irradiance during
aerial exposure. The higher microphytobenthic productions in September have also contributed
largely to the sedimentary composition in surficial sediments. Furthermore, the longer aerial
exposure periods might allow the sediment-water interface to become oxic conditions, resulting
in increasing NO. +NO: concentration in pore water via nitrification processes, and contribu-
tion of NO, +NO; was calculated as 52.5% to dissolved inorganic nitrogen (DIN; NO, +
NO; -N+NH,"-N). These results suggested that variability of microphytobenthos have been
regulated largely by the supplied irradiance during exposure, and may have great role on sedi-
mentary composition in the estuarine tidal flat of the Mae Klong River.

Keywords: microphytobenthos, chlorophyll a, nutrients, sediment—water interface, estuary,
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1. Introduction
The microphytobenthos play a great role in
estuaries and shallow water ecosystems, where
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the available irradiance extends to the seafloor,
and much attention has recently been paid to
their potentially important production. The
microphytobenthos are well documented, fre-
quently referred to as the major primary car-
bon source for the shallow ecosystem food web,
and also serve as an important component in
nutrient cycles in tidal estuaries (MACINTYRE
et al., 1996 and references therein). According
to the previous studies, the microphytobenthos
may contribute up to 50% of the entire pri-
mary production, depending on environmental
factors (FIELDING et al., 1988; de JONGE and
CoL1IN, 1994; BLACKFORD, 2002). Furthermore,
the microphytobenthos can regulate oxygen
concentration, which can mediate nutrient
transformations and fluxes between the sedi-
ment and overlying water via their photo-
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synthesis and also play an important role in
sediment stability (SUNDBACK et al., 1991;
CaHooN and COOKE, 1992; BARRANGUET, 1997;
WELKER et al., 2002).

The production and biomass of microphyto-
benthos are largely influenced by several envi-
ronmental  factors including  nutrients,
substrate types, tidal rhythm and irradiance,
and biological factors such as herbivore graz-
ing (BARRANGUET et al., 1998; LIGHT and
BEARDALL, 1998; SMITH and UNDERWOOD, 2000;
BLACKFORD, 2002; R1AuXx—GOBIN and BOURGOIN,
2002; PERKINS et al., 2004; CARTAXANA et al.,
2006; SKINNER et al., 2006; KoH et al., 2007;
YAMAGUCHI et al., 2007; Du et al., 2009; JEsUs
et al., 2009; LOASSACHAN et al., 2009). There
have been some reports that microphyto-
benthos and their primary production influ-
enced sediment stability and nutrient fluxes in
an estuarine area (GERBERSDORF et al., 2004;
WILSON and BRENNAN, 2004; CiBIC et al., 2007).
BARRANGUET (1997) found the production and
biomass of microphytobenthos play a great
role in regulating oxygen concentration at the
sediment-water interface in a mussel cultured
area. Moreover, the oxygenation of the organi-
cally enriched sediments by microphytobenthos
may influence the abundance of the macro-
benthic fauna in the western Seto Inland Sea
(Yamacguctr et al., 2007). A negative correla-
tion among Chl a contents in surface sediments
and measured silicic acid fluxes using core in-
cubation technique was documented in a
coastal shallow ecosystem (Shido Bay, the Seto
Inland Sea), suggesting that the microphyto-
benthos greatly reduced the upward silicic acid
flux of sediment-water interface during their
nutrient uptake requirement (SRITHONGOUTHAI
et al., 2003). LOASSACHAN et al. (2009) also
found that the microphytobenthos have a great
effect on the nutrient availability, especially
silicic acid at the sediment-water interface dur-
ing the large supply of irradiance (winter peri-
ods) for their photosynthetic growth in a
coastal shallow water, the Seto Inland Sea, Ja-
pan.

The present study aims to examine the tem-
poral dynamics of microphytobenthic biomass
at the estuarine intertidal flat and its relation
to the environmental factors at the sediment—

water interface. This study provides consider-
able information on microphytobenthos, a pri-
mary producer, in the Mae Klong River
estuarine system, which is a highly productive
area and important fishing ground in the up-
per Gulf of Thailand.

2. Materials and Methods
2.1 Study site

The Mae Klong is one of the most important
large rivers, which discharge fresh water into
the upper Gulf of Thailand, and is also consid-
ered as an important source of nutrients and
materials loaded into the western part of the
head of the Gulf of Thailand. This river is
strongly influenced by the wet southwest mon-
soon from May to October, and the dry north-
east monsoon from November to April.

The Mae Klong River estuary is one of the
most important fishing grounds in the upper
Gulf of Thailand with its high production of
commercial aquatic species, such as razor clams
(Solen spp.), blood clams (Anadara granosa),
and green mussels (Perna viridis), and is the
largest habitat of the razor clam in Thailand.
Furthermore, the tidal flat of the Mae Klong
River estuary (Don Hoi Lot) has been listed in
the Ramsar Convention as an international im-
portant natural wetland (www.ramsar.org).
The estuarine area consists of a large tidal flat
and coastal wetland. The tidal flats are gener-
ally characterized as muddy fine sand (>50%
of grain size fractions are 125-250 um) and ac-
cumulated from the Mae Klong River, covering
an area of 875 km® (87,500 ha).

2.2 Sampling strategies

Observations were carried out in September
and November 2006 at 25 stations, covering the
entire area of the tidal flat (Fig. 1). All the
observation and sampling were performed dur-
ing exposure. Duplicate undisturbed cores were
collected carefully at each station using an
acrylic pipe of 4 ecm in diameter. The surficial
sediment (0-0.5 cm) from one core sample was
carefully sliced off into a glass vial for analysis
of chlorophyll a (Chl @), and the surficial sedi-
ment from another core was also cut—off into a
plastic bag for analysis of water content, loss
on ignition (LOI) and extraction of pore water.
All samples were stored in a cooler box for
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Fig. 1. Sampling stations in the tidal flat (gray zones) of Mae Klong River estuary.

several hours until further analysis in a labora-
tory.

Water content, LOI and Chl a concentrations
were immediately determined on the fresh sedi-
ment samples. The residual sediments from wa-
ter content analysis were homogenized and
divided into two sub—samples for LOI determi-
nation and pore water extraction. Aliquots of
the sediment samples were centrifuged to ex-
tract the pore water (3,000 rpm, 15 min at 4°C),
and the supernatant was then filtered through
a Whatman GF/F filter for inorganic nutrient
analysis. The filtered pore water samples were
kept at —20°C until the nutrients were ana-
lyzed.

2.8 Analysis

The water content of the sediment was deter-
mined from the weight loss after drying the
wet sediment at 105°C until a constant weight
was obtained (approximately 24 h). For LOI
determination, sediment samples were dried to
constant weight at 60°C for 3 days, ignited in a
muffle furnace at 550°C for 3 h, and then LOI

was calculated from the loss of weight after
combusting the dried sediment samples. For
Chl a determination, the sediment samples
were extracted in 90% acetone and kept at ca.
4°C in the dark for 24 h. The Chl a concentra-
tions were analyzed following the spectro-
photometric method of LoreENzEN (1967)
described in PARSONS et al. (1984) using a spec-
trophotometer (Cecil, 1000 series). LOI and Chl
a contents were expressed as mg m * DW,
which was calculated from the sediment core
area. The concentrations of inorganic nutrient
in pore water, ammonium (NH, -N), nitrite
and nitrate (NO, +NO; -N), phosphate
(PO, -P) and silicic acid (Si (OH),~Si) were
analyzed using a nutrient auto analyzer
(SKALAR, The SAN™ Segmented Flow Ana-
lyzer), and the nutrient concentrations were
expressed as umol 1 '. Microphytobenthos spe-
cies were also roughly observed by a micro-
scope. Moreover, the entire exposure periods in
the present study were calculated from the tide
table.
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2.4 Statistical methods

Differences in microphytobenthic biomass,
LOI, Chl a/LOI ratio and nutrient concentra-

tions in pore water during two—month observa-

tions were tested through non—parametric tests
followed by Mann-Whitney U Test. The
between microphytobenthic
biomass and other parameters were examined
by Spearman’s rank correlation coefficient.
These analyses were performed using SPSS

16.0 for Microsoft Windows.
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(b) LOI in surficial sediment layer (0-0.5 cm).

3. Results
3.1 Chlorophyll a concentration and loss on ig-

nition in the surficial sediments

The variability of benthic Chl a concentra-
tion within the surficial sediments (0-0.5 cm)
is shown in Fig. 2a. In September, the benthic
Chl a ranged between 3.09 mg m * (at Stn. 5)
and 15.2 mg m * (at Stn. 25), averaging 8.49
mg m °. While the benthic Chl a of November
varied from 2.04 mg m * (at Stn. 11) to 10.2 mg
m ° (at Stn. 20) with an average of 5.21 mg
m % this was statistically lower than those of
Chl a contents collected in September (P
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<0.0001, n=50). The variability of LOI in
surficial sediments is illustrated in Fig. 2b. The
LOI of September ranged between 181,000 mg
m* (at Stn. 3) and 472, 000 mg m * (at Stn.
25), averaging 333,000 mg m *. In November,
the LOI ranged from 247,000 mg m * (at Stn.
10) to 664,000 mg m *at (Stn. 18) with an aver-
age of 372,000 mg m °. However, there was no
significant difference in the sedimentary LOI
in the surficial layer in the estuarine tidal flat
between September and November observation.
3.2 Variability of inorganic nutrients in pore

water

Concentrations of the inorganic nutrient in
pore water are presented in Fig. 3. In Septem-
ber, NH,"—N concentration varied from 11.3 «
mol-N 17" (at Stn. 24) to 579 £mol-N 1! (at
Stn. 21), averaging 145 umol-N 1 '. Concentra-
tion of NO,  +NO; —-N ranged from 128 #mol—
N1 (at Stn.19) to 258 umol-N 17" (at Stn. 10),
with an average of 160 umol-N 1°'. PO, -P
concentration was between 0.806 umol-P 1" (at
Stn. 17) and 9.75 umol-P 17! (at Stn. 5), with
an average of 4.22 umol-P 1 *. Si (OH) ~Si con-
centration varied between 33.4 umol-Si 1 ' (at
Stn. 14) and 265 #mol-Sil ' (at Stn. 8), averag-
ing 113 gmol-Si 1. In November, NH, ~N con-
centration varied from 68.9 umol-N 1" (at Stn.
16) to 566 umol-N 17! (at Stn. 25), with an av-
erage of 216 umol-N1"". Concentration of NO,~
+NO; -N ranged from 36.1 umol-N 1" (at Stn.
1) to 100 umol-N 1! (at Stn. 20), averaging
63.9 umol-N 17". PO,> —P concentration was be-
tween 0.162 yumol-P 1! (at Stn. 13) and 19.6 ¢
mol-P 1" (at Stn. 10), with an average of 2.72
umol-P 1. Si (OH) ,Si concentration varied
between 57.1 umol-Si 1 (at Stn. 13) and 319
umol-Si 1! (at Stn. 25), averaging 135 ymol-
Sil™'. However, there was no significant differ-

ence in the nutrient concentrations in the pore
water in the estuarine tidal flat between Sep-
tember and November, except the concentra-
tion of NO: +NO; —N. The higher NO, +
NO; -N concentration was observed through-
out September observations (Fig. 3b).

4. Discussion
4.1 Temporal variation of microphytobenthic
biomass (Chl a) in the surficial sediments

Benthic Chl a content is widely used to deter-
mine the microphytobenthic biomass in sedi-
ments. This biomass in the intertidal mudflat
estuary has been regulated by various environ-
mental factors. Although we have no quantita-
tive data on the abundance of microphyto-
benthos in the current study, we usually
microscopically observed various species of
pennate diatoms, e.g. Navicula spp. and
Nitzschia spp. contained in surficial sediment
samples.

In the present study, the average micro-
phytobenthic biomass of September was 63%
higher than that of November. The difference
in microphytobenthic biomass between two ob-
servations might be explained by considering
the available irradiance during exposure. Un-
fortunately, we have no irradiance data at sur-
face sediment, whereas the exposure periods
obtained from the tide table were used for dis-
cussion in the present study. Table 1 shows the
entire aerial exposure periods and the aerial ex-
posure periods in daytime (from 6 a.m.) at the
tidal flat of the Maklong River estuary
(Hydrographic Department, Royal Thai Navy,
2006). In August and September, the tidal flat
was entirely exposed for 113 and 87 h, with a
daily average of 3.65 and 2.90 h day™', respec-
tively, and the aerial exposure periods in day-

Table 1. Entire aerial exposure periods (to air) and daytime aerial exposure periods (to sunlight from 6 a.m.)

at the tidal flat of Maklong River estuary.

Entire aerial exposure periods (to air) Daytime aerial exposure periods (to sunlight)
Total (h) Daily Average (hd ") Total (h) Daily Average (hd ")
August 113 3.6 93 3.0
September 87 2.9 o4 1.8
October 48 1.5 14 0.5
November 29 1.0 0 0.0

* Data were obtained from Tide tables of Thai waters (Hydrographic Department, Royal Thai Navy, 2006).
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time accounted for 82.3% and 62.1% of the en-
tire exposure periods, respectively. Otherwise,
the aerial exposure periods decreased continu-
ally to 1 h day ', and without aerial exposure in
daytime in November. The longer daytime aer-
ial exposure periods in September may well
provide sufficient photosynthetically active ra-
diation (PAR), which promotes the increase of
the microphybenthos biomass in the tidal flat.
On the other hand, the tidal flat was exposed a
few hours during the night, and flooded
throughout daytime in November; thus, the
available PAR on the tidal flat would be less
than that of September.

Irradiance is one of the most important fac-
tors that can regulate the variability of the
microphytobenthos (MACINTYRE et al., 1996;
BARRANGUET et al., 1998; YAMAGUCHI et al.,
2007; LOASSACHAN et al., 2009). SUNDBACK and
GRANELI (1988) found that microphytobenthic
biomass (measured as Chl a content) decreased
slightly and remained at a constant level for
several weeks during exposure to no-light con-
ditions, and increased markedly when exposed
to light. Kon et al. (2007) also recently re-
ported that the increase of surficial benthic Chl
a (at 0-0.5 cm) reached 1649%, accounting for
52 mg m * h ' during daytime aerial exposure
in the intertidal mudflat Ariake Sea, Japan.
Furthermore, ADMIRAAL (1977) previously re-
ported that the minimal daily quantum

irradiance for light-saturated growth of
estuarine benthic diatom investigated in a cul-
ture experiment ranged from 29 to 58 xmol
photon m *s'. The growth of Nitzschia sp. iso-
lated from surface sediment of Kaita Bay in Hi-
roshima, Japan showed a peak at 50 ¢ mol
photon m * s, and its growth was inhibited
under higher irradiance that (YAMAMOTO et
al., 2004). In contrast, COLIJIN and VAN BUURT
(1975) reported the photosynthetic rate of
microphytobenthos collected from the eastern
part of the Dutch Waddensea was saturated by
a light intensity of approximately 185 ¢ mol
photon m *s ' (~10,000 lux), and no photo-in-
hibition was found at higher irradiance. In ad-
dition, MONTANI et al. (2003) also demon-
strated that the photosynthetic rate of
Navicula sp. isolated from an estuarine sand
flat of the Seto Inland Sea was saturated at a
light intensity of 165 #mol photon m * s ' at
21°C, and no photo-inhibition was found at
higher irradiance up to 400 zmol photon m ’
s '. Moreover, PINCKNEY and ZINGMARK (1993)
also reported that the daily production of the
microphytobenthos was highly variable, pri-
marily due to the daily fluctuations in
irradiance.
4.2 Relationship between microphytobenthos

and sedimentary parameter

In the present study, however, there was no
significant difference in the sedimentary LOI
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Fig. 4. Variability of benthic Chl a content to LOI ratio in surficial sediments.
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in the surficial layer in the estuarine tidal flat
between September and November. On the
other hand, the Chl a to LOI ratio (Fig. 4) was
statistically different between September and
November (P<0.0001, n=>50). The ratio of Chl
a to LOI in September was significantly higher
than that of November. Chl a to LOI ratio pro-
vides an index of sediment photo—autotrophy
(LiGHT and BEARDALL, 1998), where high val-
ues correspond to high photo—autotrophic ca-
pacity relative to sedimentary organic matter.
The result clearly suggested that the presence
of higher microphytobenthic biomass observed
in September contributed greatly to the sedi-
mentary organic matter rather than that of
November. This result corresponded well with
the result of microphytobenthic biomass (dis-
cussed above). Chl a contents seem to be a
small fraction of LOI in the sediments, because
LOI contents did not change following the in-
creasing Chl a contents in sediments. However,
the increase in Chl a contents in September
might result in the change of sedimentary or-
ganic matter in the tidal flat.

The inorganic nutrients at the sediment-wa-
ter interface are one of the most important fac-
tors that control the variability of microphyto-
benthic production. On the other hand,
microphytobenthos may also influence the nu-
trient concentrations at the sediment-water in-
terface, acting as a filter (SUNDBACK et al.,
1991; WELKER et al., 2002). Unfortunately, the
correlations between benthic Chl @ and NH, -
N, PO,* P and Si (OH),-Si contents in pore
water, and also the difference of NH, -N,
PO,* -P and Si (OH) ,-Si concentrations in
pore water among two observations were not
observed significantly in the present study.
However, the significant correlation found be-
tween benthic Chl @ and NO, +NO; —N concen-
tration in pore water (r=0.569, P<0.01, n=>50)
coincided well with a previous study.
TANTANASARIT and MEKSUMPUN (2007) re-
ported a good relationship between Chl a con-
centration and NO, +NO; —N concentration in
the water column at the Mae Klong River
estuary. They concluded that NO, +NO; -N
should be one of the most important factors
regulating the growth of phytoplankton in the
Mae Klong River estuary. Theses results

400

O NOx
NH4

300 A

DIN (umol-N17)
1]
(=3
(=]
!

100 7

September November

Fig. 5. Average concentrations of DIN (NO,-+NQO;_—
N-+NH,"-N) in pore water.

suggested that NO, +NO; —N may also be the
one of the important factors controlling photo-
synthetic growth of phytoplankton and micro-
phytobenthos in the estuary.

In the present study, moreover, the higher
NO, +NO; -N concentration was observed
throughout September observations (Fig. 3b),
and also statistically different from those ob-
served in November (P<0.001, n=50). Other-
wise, no significant difference in NH, -N and
DIN (NO; +NO; -N+NH, -N) was observed
between the two sampling months (Fig. 3b and
Fig. 5). In addition, the average NO, +NO, -N
concentrations of 160 umol-N 1! were found in
September observation, contributing to the
52.5% to DIN concentration in pore water, and
the contribution of NO, +NO; —N to DIN re-
duced to 22.8% (63.9 umol-N 1) in November
(Fig. 5). These results might be explained by
considering that the oxygenation at the sedi-
ment-water interface was influenced by a
longer aerial exposure period in September
(discussed above), which might allow sedi-
ments at the sediment—air interface to reach
aerobic conditions (THORNTON et al., 1999).
Also, the photosynthesis of microphytobenthos
during daytime exposure might contribute par-
tially to the oxygenation in the tidal flat,
resulting in a higher NO, +NO; -N concen-
tration in pore water via nitrification processes
in the tidal flat of the Mae Klong River estu-
ary.

Unfortunately, we planed firstly to investi-
gate the spatial distribution of microphyto-
benthos in the tidal flat, whereas the all
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sedimentary parameter data between an each
zone (3 zones) were not significantly different.
Hence, we could not discuss clearly about spa-
tial distribution of all parameters in the pre-
sent study.

5. Conclusion

This study describes and quantifies the short
—term variation of microphytobenthic biomass
and associated controlling factors, as well as
the influence of the microphytobenthic produc-
tion on sediment quality in the tidal mudflat of
the Mae Klong River estuary. Our results dem-
onstrated that: (1) the difference of micro-
phytobenthic biomass among two observations
was due to irradiance available during aerial
exposure in daytime, and (2) the higher
microphytobenthic biomass might change the
sedimentary composition in surficial sedi-
ments. Finally, (3) the oxygenation at sedi-
ment-water interface influenced by longer
aerial exposure periods might allow sediments
at the sediment-water interface to become
aerobic conditions, resulting in increase of
NO, +NO; —-N concentration in pore water via
nitrification processes in the tidal flat of the
Mae Klong River estuary.
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Biomass of marine macrophyte debris on the ocean floor
southeast of Hokkaido Island adjusted by experimental

catch efficiency estimates

Yutaka KokuBu"*, Teruhisa KomaTsu”, Masaki IT0?,
Tsutomu HATTORI” and Yoji NARIMATSU”

Abstract: Most marine macrophytes detach from the bottom substrate after attaining highest
biomass in their maturation season. Some marine macrophytes washes ashore or remain in the
beds in coastal waters, the others are transported to offshore waters. There is little informa-
tion on the fate of transported macrophytes. To estimate the biomass of marine macrophyte
debris on the offshore deep—sea floor of the northwestern Pacific Ocean (off the southeastern
coast of Hokkaido, Japan), we conducted bottom trawl surveys on the continental shelf and
slope at depths from 330m to 920m during the summer season in 2008. The nets retrieved sam-
ples of macrophyte debris in 20 (83%) of 24 trawl tows. To quantify the in situ biomass, we cal-
culated the catch efficiency of the bottom trawl net. We used two procedures to estimate a catch
efficiency of 16.7% for Sargassum horneri fragments. Subsequently, we calculated that an av-
erage biomass density of macrophyte debris was 50.0 mg wet weight m * in our study area.
Macrophyte debris included sargassaceous fucoid (70.0%), kelp (22.1%), seagrass (7.8%), and
other brown and red algae (0.1%). We suggest that offshore transport of detached marine
macrophytes, especially sargassaceous fucoid, constitutes an important pathway of organic

carbon from coastal surface euphotic waters to the offshore deep ocean floor.

Keywords: marine macrophyte debris, ocean floor, bottom trawl net, catch efficiency

Introduction

Macrophyte beds of seaweed and seagrass in
shallow coastal waters of the world’s oceans
are among the highest primary producer sys-
tems on the planet (SmrTH, 1981; UNEP, 2009).
Net primary production in macrophyte beds
(i.e., mass of CO; fixed per unit area) is much
higher than in phytoplankton blooms or in
mangroves and closely similar to that in terres-
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trial rain forests (SmrTH, 1981; Suzukl, 1997).

Most macrophytes are removed from the
coastal seafloor by waves and currents, after
attaining their highest biomass in their season
of maturation (YosHIDA, 1963; YATSUYA et al.,
2007; Ito et al., 2009; KOMATSU et al., 2009).
Two surveys conducted in a bay on the Pacific
coast of Japan (M1kaMI 2007) and in a bay fac-
ing the Sea of Japan (YATSUYA et al. 2007) re-
ported that 80% of the annual primary
production of sargassaceous fucoid fronds
drifted from their beds with seaward outflow.
After becoming detached from the substratum,
macrophytes with positive buoyancy, including
sargassaceous fucoid and seagrass, can float on
the sea surface. These rafts of drifting
macrophytes occur in ocean waters worldwide
(TuieL  and  Gutow, 2005, HERNANDEZ-
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CARMONA et al., 2006; HIN0JOSA et al., 2010). In
the waters surrounding Japan, drifting
sargassaceous fucoid with positive buoyancy is
the most common floating macrophyte
(YosHIDA, 1963; Onno, 1984; HIRATA et al.,
2001; KOMATSU et al., 2007).

After buoyant macrophytes lose positive
buoyancy, they sink to the seafloor at velocities
of 119-160m h ' (in the case of sargassaceous
fucoid) (ScHOENER and Rowe, 1970; JOHNSON
and RICHARDSON, 1977; Mikami, 2007) and 98-
120m h™' in the seagrass species Zostera
caulescens Miki (author’s unpubl. data). Con-
sequently, sinking macrophyte rafts may reach
depths of about 2500m in one day.

Clumps of sargassaceous fucoid debris have
been photographed in abyssal waters
(ScHOENER and Roweg, 1970). Several photo-
graphic surveys using ROVs have found ma-
rine macrophyte debris aggregated in concave
areas of the seafloor such as ocean basins and
submarine canyons, where benthic material can
easily accumulate (TORBEN, 1976; SmitH, 1978;
LowsoN et al., 1993; HARROLD et al, 1998;
VETTER and DAYTON, 1999). Non-buoyant
macrophytes such as Eckloniopsis radicosa
(Kjellman) Okamura, Undaria pinnatifida
(Harvey) Suringar, and Undaria undarioides
(Yendo) Okamura have been found on the
slopes of steep submarine valleys at depths of
200-400m off the coast of Suruga Bay, Japan
(TAKAI et al., 2010).

We suggest that buoyant macrophytes
transported offshore by surface currents will
eventually sink and become widely distributed
on the ocean floor, while non-buoyant
macrophytes heavier than seawater will be
transported by bottom currents and gravity to
offshore seafloors.

Hokkaido, the most northern major island of
Japan, is in the subarctic North Pacific Ocean.
Non-buoyant macrophyte species of kelp occur
in this cold water region. Some cold water spe-
cies of buoyant macrophyte, seagrass and
sargassaceous fucoid, are also distributed
around the island. IKEHARA (2004) observed
sargassaceous fucoid of Cystoseira hako-
datensis (Yendo) Fensholt floating in the wa-
ters offshore from southern Hokkaido (in the
present study, C. hakodatensis was included in

sargassaceous fucoid for simplicity, following
HIRATA et al., 2001).

Non-buoyant kelp species that grow inshore
around Hokkaido may be transported to off-
shore seafloors when their blades erode. Buoy-
ant macrophytes such as sargassaceous fucoid
may eventually sink to offshore seafloors when
their gas bladders deflate and lose their posi-
tive buoyancy. To determine the fates of non—
buoyant and buoyant macrophytes, we con-
ducted a field survey offshore from Hokkaido
searching for fragments of macrophyte debris
on the deep—sea floor.

Bottom trawling was used to survey the con-
tinental shelf and the continental slope between
depths of 330 and 920m, at distances approxi-
mately 10-60km offshore from the southeast-
ern coast of Hokkaido. Bottom trawl nets have
a wide net mouth that enables collection of
samples on the flat seafloors. Hence, this gear
is commonly used for efficient sampling of deep
benthic organisms (SPENGLER and COSTA,
2008). Substantial amounts of marine debris
are frequently brought to the surface as
bycatch in bottom trawl nets (PRENA et al.,
1999; PROBERT et al., 1997).

An estimate of the catch efficiency of sam-
pling gear 1is crucial in calculations of
macrophyte biomass on the ocean floor. We
used two different procedures to estimate the
catch efficiency of the bottom trawl net and
then proceeded with biomass calculations. We
also determined the proportions of non—buoy-
ant and buoyant species in the seafloor
macrophyte debris accumulations.

Materials and Methods
Bottom trawling

We conducted systematic surveys southeast
of Hokkaido from June to July 2008 using the
R/V Wakataka—maru belonging to Tohoku
National Fisheries Research Institute. We sam-
pled the waters of the continental shelf and
slope by trawls towed at depths of 330-920m at
24 stations (Fig. 1). The bottom trawl net had
a wingspread of about 20m, a 27.4m head rope,
and a 38m ground rope. The net was rigged
with bridles and otter windows. A cylindrical
rubber bobbin with a diameter of 150mm and
steel sinkers were attached to the ground rope.
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Fig. 1. Research area and macrophyte debris collection sites. Locations of bottom trawl casts in relation to
bathymetric contours (m). Bathymetric depths are shown by a grayscale, with darker color indicating
greater depth. Each trawl tow is represented by a circle plotted at the midpoint of deployment. Black

scale bar=>50km.

The bottom trawl net was composed of a two—
layered structure, each layer with a different
mesh size: 50mm for the inner net, and 8mm for
the outer net. The mean towing time from
landing on the bottom to lifting the net from
the bottom was 20 min at speeds of 2.5 to 3.5
knots. Every object captured in the bottom
trawl was carefully investigated and analyzed
immediately on board.

Sample treatment

Samples collected by bottom trawling may
include floating macrophytes that are caught
during the ascent or descent of the net. To dis-
tinguish between macrophyte debris from the
seafloor and floating macrophytes, the relative
densities of the samples in relation to seawater
were examined onboard as follows. Macro-
phyte samples were immediately transported
to a tank filled with surface seawater. Samples
that were heavier than the water were classi-
fied as macrophyte debris obtained from the
seafloor, while those that were lighter were
classified as buoyant macrophytes and ex-
cluded from the analysis.

Macrophyte debris was weighed, identified to
species, and preserved in a freezer at —40°C. All
samples were photographed with a digital

camera to record colors, and the images were
used to verify species identifications.

Estimation of trawl catch efficiency

The catch efficiency of the bottom trawl net
for macrophyte debris was examined by two
procedures: a “frame-trawl experiment” and
an “extra—net experiment.”

Frame-trawl experiment

An experimental frame—trawl net was de-
ployed using the same ground rope as used on
the actual bottom trawl net (Fig. 2). Two
video cameras (Panasonic, DMC-FT1) were
mounted on the center of the upper part of the
frame trawl mouth and were oriented to view
the entire length of the ground rope.

Sargassum horneri (Turner) C. Agardh was
used for the experiment. It was freshly har-
vested from the sargassaceous fucoid bed in
Funakoshi Bay, northeastern Japan, on 8 July
2009. We converted S. horneri to debris by re-
moving all of the airbladders, thus eliminating
positive buoyancy. Two hundred S. horneri de-
bris fragments of 50 g each were prepared and
randomly submerged on a sandy seafloor in a
20m square experimental area in Funakoshi
Bay at a depth of 15 m (the center of the
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Fig. 2. Image showing the frame-trawl net used in the experimental catch efficiency test of the bottom
trawl net. The ground-rope of this net was identical to that used in the actual bottom—trawl net assem-

bly. Black scale bar=50cm.

experimental area was at 39°23.0'N, 141°56.5'
E). Fragments of S. horneri were collected with
the experimental frame—trawl net and images
of the ground rope were captured by video cam-
eras. All trawls were towed at a speed of 2.0
knots.

Using the video images, we counted the num-
ber of S. horneri fragments that passed
through the mouth of the frame—trawl in each
tow. We calculated the efficiency of the bottom
trawl net by comparing the numbers of S.
horneri passing through the mouth and the
numbers of fragments caught in the net. Sandy
substratum dominated both the experimental
site and the locations where we performed the
bottom trawl surveys.

Extra—net experiment

The macrophyte debris catch efficiency of the
bottom trawl net was also examined in 23 sam-
pling tows in waters off the Pacific coast of
northeastern Japan at bottom depths of 150—
450m during April 2010. Trawls were deployed
from the T/V Tanshu-maru belonging to
Kasumi Senior High School, Hyogo Prefecture.

The exterior of the net was covered by an extra
net with an 8mm mesh and a chain ground rope
(Fig. 3). Assuming that the catch efficiency
(E) of the extra net was 100%, we estimated
the efficiency of the bottom trawl net by com-
paring the masses of macrophyte debris caught
by the regular and extra nets, expressed as the
ratio of catch in the trawl net (7N) and catch
in the extra net (EN) for each tow: E=TN/
(TN+EN). The mean towing duration was 10
min and towing speeds were those used in the
normal bottom trawling survey (2.5 to 3.5
knots).

Estimation of biomass density

To estimate the density of macrophyte de-
bris, the wet weight of each catch was divided
by the area swept in each tow (following calcu-
lation procedures of KiTaAGAwA and HATTORI,
1998). The wingspread of the bottom trawl net
was measured with an otter recorder (Furuno,
CN-22A) 10 min before ascent of the net from
the seafloor. Differential GPS was used to cal-
culate towing distance. To measure the dura-
tion of each tow, the times when the net
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Fig. 3. Schematic of the extra—net used in the bottom—trawl net catch efficiency experiment. The experimen-
tal extra—net with a chain ground rope enveloped the bottom-trawl net.

Table 1. Marine macrophyte species netted in the survey trawls measured in terms of wet weight and frequen-
cies of occurrence. The species are listed in decreasing order of weight. Catch efficiency of the bottom
trawl net was not taken into consideration. Numbers in parentheses are frequencies of occurrence.
Total number of hauls and areas sampled by the bottom trawl net were 24 and 0.60 km®, respectively.

tvpe ecies name wet weight (g)
ypes species (number of occurrence)
cenoTass Zostera marina Linnaeus
g Phyllospadix iwatensis Makino 372 (1D
Cystoseira hakodatensis (Yendo) Fensholt 2292 (12)
AT eASSACEOUS Sargassum horneri (Turner) C. Agardh 595 (3)
fucfi d Sargassum siliquastrum (Turner) C. Agardh 34 (1)
Sargassum muticum (Yendo) Fensholt 23 (D
q Sargassum sp. 18 (1
seawee el Arthrothamnus bifidus (Gmelin) Ruprecht 6500 (1)
P Costaria costata (C. Agardh) Saunders 250 (3)
Coilodesme japonica Yamada 72
other algae Petalonia binghamiae (J. Agardh) Vinogradova 4 (D
Ptilota filicina J. Agardh 6 (D

reached and left the bottom were determined
acoustically using a net-mounted probe at-
tached to the head rope. Based on the measured
wingspread and towing distance, the swept
area was calculated (mean=SD) as 0.025km *
+0.009km*. The biomass density D (mg wet
weight m *) of each towing location was esti-
mated as follows:

De W e, €))

where A and W are the swept area and the wet

weights of macrophyte debris samples collected
from each towing location, respectively. To cor-
rect biomass density estimations, the calcu-
lated W/A was multiplied by the reciprocal of
experimental catch efficiency E.

Results
Marine macrophyte debris

Marine macrophyte debris was collected
from a wide area of the continental shelf
and gentle slope in the study area. Eleven
species of seagrasses and seaweeds (brown and
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Fig. 4. Examples of frequently collected marine macrophyte debris. Fresh sample of Cystoseira hakodatensi
(A) collected from a bottom depth of 880m at 41°50.00'N,143° 53.26'E. (B) Seagrass (a mix of Zostera
marina and Phyllospadix iwatensis) collected from a bottom depth of 330m at 42°3.47'N, 143" 41.07'E.
Most seagrass blades were discolored (dark green or black) and were presumed to be dead. (C) Kelp
species (Arthrothamnus bifidus) collected from a bottom depth of 770m at 42°17.38'N, 143" 54.88'E.
Black scale bar=5cm.

red algae) were collected (Table 1). The
most abundant was sargassaceous fucoid.
Among the species of sargassaceous fucoid, C.
hakodatensis was dominant in the wet biomass
(Fig. 4, A). Cystoseira hakodatensis occurs
only in northern regions of Japan, mainly
around Hokkaido (YosHiDA, 1963; YOSHIDA,
1984). Two seagrass species, Zostera marina
Linnaeus and Phyllospadix iwatensis Makino
were also common (Fig. 4, B). Two kelp spe-
cies, Arthrothamnus  bifidus  (Gmelin)
Ruprecht and Costaria costata (C. Agardh)
Saunders, were found. A large 6500 g fragment
of A. bifidus debris was sampled at a bottom
depth of 770 m (42°17.38' N, 143°54.88" E)
(Fig. 4, C). Most of the sargassaceous fucoid
samples appeared fresh, whereas most of the
seagrasses were discolored (black) and ap-
peared to be old.

Sargassaceous fucoid occurred in 14 of the 24
tows. The frequencies of kelp and seagrass oc-
currence were 4 and 17 of 24 tows, respectively.
The quantity of seagrass collected was small,
while their frequency of occurrence was high.

Catch efficiency of bottom trawling
Frame-trawl experiment

In video images, S. horneri fragments were
seen to escape entrapment by the ground rope
of experimental frame trawl (Fig. 5). Compar-
ing the amount of S. horneri passing through
the mouth with the amount caught in the net,
we calculated a catch efficiency of 19% (N=35,
SD=14.0).

Extra—net experiment

In 10 of 23 tows, fragments of S. horneri de-
bris were caught in either the regular or extra
nets. In 4 of 23 tows, S. horneri was caught in
“both” nets at the same time and the catch effi-
ciency was estimated as 14.5% (N=4, SD=17.3)
(Table 2). Other types of macrophyte debris
were not netted during the experiments.

Biomass estimations of marine macrophyte
debris

The catch efficiencies estimated from the
frame-trawl and extra—net experiments were
similar at 19% and 14.5%, respectively. The
similar estimates based on two quite different
approaches convinced us that our calculations
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Fig. 5. Video image showing the frame—trawl net ground rope and S. horneri fragments in front of it during
the frame-trawl experiment. Black scale bar=10cm.

Table 2. Catch efficiency of marine macrophyte fragments (Sargassum horneri) captured with the bottom trawl
net, estimated from experimental trawls with an extra net deployed outside of the main net. The total
catch by the main net was divided by the catch of the extra net.

Location oDeiI;tt}; d T(;t}il Eitg)lnby Total catch by the | Catch efficiency (%)
p(m) trawl net, (TN) (g) extra net (EN) (g) TN/ (TN+EN)
1 38°25.8'N | 141°59.7E 350 10 80 11.1
2 | 38°55.6N | 142°54'E 350 20 110 154
3 38°24.9'N | 142°3.4E 450 3 38 7.3
4 |38 249N | 142°3.4E 450 9 28 24.3

145 £ 7.3*
* Average bottom trawl net catch efficiency =SD
SD: Standard deviation

of catch efficiency were suitable for biomass es-
timation. We averaged the two estimates and
obtained 16.7% for the catch efficiency of the
bottom trawl.

This catch efficiency was applied to all other
samples to adjust biomass densities, except for

kelp which was always collected in large
clumps. Because the large kelp clumps would
not pass readily beneath the bottom trawl, we
used a catch efficiency of 100% for kelp
biomass estimation.

We calculated the average biomass density of
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Fig. 6. Density distributions of macrophyte debris (mg wet weight m *). (A) Distribution of sargassaceous
fucoid debris. (B) Distribution of kelp debris. (C) Distribution of seagrass debris. Biomass density at
each station is indicated by the size of the circles.

total macrophyte debris as 50.0 mg wet weight
m * (N=24, SD=67.0) across the entire study
area. The total biomass in the survey area was
composed mainly of species of sargassaceous
fucoid, kelp, seagrass, and other brown and red
algae in rank order. The average biomass den-
sity of sargassaceous fucoid was 35.0 mg wet
weight m? (N=24, SD=52.9) (Table 3).
Sargassaceous fucoid was made up with C.
hakodatensis, S. hornert, and “other” sar-
gassaceous species, constituting of 77%, 20%,
and 3%, respectively. The average biomass

density of kelp and seagrass were 11.0 mg wet
weight m > (N=24, SD=51.0) and 3.9 mg wet
weight m * (N=24, SD=17.6), respectively.

The distribution of macrophyte debris on the
seafloor is shown in Figure 6. The frequently
collected sargassaceous fucoid and seagrass
were widely distributed and there were no dis-
cernible trends in their spatial distribution pat-
terns within the survey area.

Carbon biomass of sargassaceous fucoid
The dry weight of sargassaceous fucoid is
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Table 3. Biomass density (mg wet weight m ?) of sargassaceous fucoid, kelp and seagrass calculated from the es-
timated catch efficiency and the bottom trawl operation. * Catch efficiency of 100% was applied to calculate
the kelp biomass density.

sampling point bottom swept 2008 Spring
latitude(N) | longitude(E) depth 321:)3 sargassaceous fucoid kelp seagrass
catch W.et Vﬁ;i/e ?E;EZ) catc'h \x{et V\?; 1(1};1;2) catc'h Wet VS;?EQIA)
deg | min. | deg. | min. | (m) | (km? |efficiency weight (mg wet gfﬁ— weight (mg wet gff1- weight (mg wet
(B) W) weight ciency | (W) weight ciency | (W) weight
(g) m (B)* (g) N (B) (g) i
42| 48.70 145] 18.65 4801 0.025 0.167 0 0.00 1.00 0 0.00| 0.167 0 0.00
421 47.91 145] 18.85 600| 0.016 0.167 0 0.00 1.00 0 0.00 0.167 3 1.03
421 40.42 144] 51.78 390| 0.016 0.167 7 2.73 1.00 224 14.33| 0.167 1 0.40
421 39.57| 144 33.15 500| 0.025 0.167 0 0.00 1.00 0 0.00 0.167 0 0.00
421 43.92 144] 23.33 450] 0.038 0.167 0 0.00 1.00 0 0.00| 0.167 0 0.00
421 42.92 144] 23.18 540| 0.027 0.167 0 0.00 1.00 10 0.38| 0.167 0 0.00
42| 39.68 1441 21.99 7801 0.021 0.167 13 3.73 1.00 0 0.00| 0.167 14 4.02
421 37.57 1441 23.61 880| 0.021 0.167 24 6.94 1.00 0 0.00| 0.167 11 3.06
42 27.31|  143] 54.12 340| 0.024 0.167 271 67.94 1.00 0 0.00 0.167 8 1.99
421 29.69| 143] 58.39 440| 0.028 0.167 0 0.00 1.00 0 0.00 0.167 170 36.48
421 20.10 143] 57.94 720| 0.016 0.167 154 57.47 1.00 0 0.00| 0.167 6 2.29
421 17.96 144 1.23 880| 0.014 0.167 12 5.08 1.00 0 0.00| 0.167 6 2.63
42| 3.47 143] 41.07 3301 0.035 0.167 573 98.73 1.00 0 0.00| 0.167 52 8.93
421 17.97 143] 46.67 500| 0.026 0.167 637 148.47 1.00 0 0.00] 0.167 0 0.00
42| 16.75 143| 47.49 570| 0.034 0.167 15 2.69 1.00 0 0.00] 0.167 8 1.40
42] 17.38|  143| 54.88 770| 0.026 0.167 0 0.00 1.00] 6500 249.91| 0.167 0 0.00
41| 48.23 143] 44.55 4501 0.048 0.167 0 0.00 1.00 0 0.00| 0.167 13 1.70
41| 48.82 143] 47.28 580| 0.047 0.167 0 0.00 1.00 0 0.00| 0.167 0 0.00
41| 48.02 143] 48.99 650 | 0.027 0.167 49 10.94 1.00 0 0.00| 0.167 1 0.29
411 50.00 143] 53.26 880| 0.012 0.167 332 165.00 1.00 0 0.00| 0.167 20 9.78
41] 46.80|  142| 47.44 550| 0.016 0.167 0 0.00 1.00 0 0.00| 0.167 11 4.18
41 48.23|  142| 46.64 570| 0.024 0.167 236 59.58 1.00 16 0.68| 0.167 1 0.23
411 44.79 142] 44.86 7701 0.021 0.167 299 86.64 1.00 0 0.00| 0.167 27 7.92
411 44.01 142] 38.09 920| 0.016 0.167 332 124.65 1.00 0 0.00| 0.167 20 7.39
Average 123 35.02 281.26 11.05 15.50 3.90
Total 2961 6750 372

generally approximately 20% of wet weight
(TANIGUCHI, 1998; 110 et al., 2009). The carbon
content of sargassaceous fucoid is about 30% of
its dry weight (YosHIDA et al., 2001). Using
these ratios, we estimated the carbon biomass
of sargassaceous fucoid from the wet masses of
samples collected in our survey area. The aver-
age biomass density of sargassaceous fucoid
(35.0 mg wet weight m *) is equivalent to a car-
bon biomass of 2.1 mg C m *. The average car-
bon biomass of sargassaceous fucoid in each of
three bottom layer was calculated (Fig. 7). The

average carbon biomass was high in the bottom
layers deeper than 500 m.

Discussion

Bottom trawling is among the most efficient
methods for sampling organisms on the ocean
floor (SPENGLER and Costa, 2008). We used
this method and successfully obtained samples
of macrophyte debris from the seafloor. How-
ever, the catch efficiency of a bottom trawl net
is not 100%. Thus, the catch efficiency was esti-
mated through two different procedures.
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Fig. 7. Relationship between depth and carbon
biomass of sargassaceous fucoid debris. Average
carbon biomass (mg C m*) was calculated for
depth layers of 330-480, 500-650, and 720-920 m.
N values are the numbers of stations, while error
bars indicate the standard deviation.

The catch efficiency of the bottom trawl net
used in this study had been estimated previ-
ously for snow crab Chionoecetes opilio (FUJITA
et al., 2006). In the snow crab study, the
ground-rope was observed with an underwater
video camera attached at the trawl net mouth
during the towing operation. The number of
crabs caught in the net and the number of
crabs approaching the ground-rope were com-
pared, giving a catch efficiency estimate of
13.0%. Average carapace widths of the snow
crabs measured during the experiment were
11.0ecm for males and 6.8cm for females. In our
“frame—trawl experiment,” the observed di-
ameters of S. horneri fragments in seawater
were about 10-30cm, and the calculated catch
efficiency was 16.7%. Thus, two kinds of
benthic organism of similar size had similar
catch efficiencies with the same net gear, which
will allow some degree of generalization in fu-
ture studies.

Drifting macrophytes with positive buoy-
ancy are the most abundant floating objects on

the world’s oceans (THIEL and Gurow, 2005),
and the most common in Japanese waters are
species of sargassaceous fucoid (YOSHIDA, 1963;
OHNoO, 1984; HIRATA et al., 2001; KOMATSU et
al., 2007). In our study area, sargassaceous
fucoid composed 70.0% of the total biomass of
bottom samples. Sargassaceous fucoid of C.
hakodatensis was the major macrophyte debris
species off southeastern Hokkaido. Our results
agree with those of IKEHARA (2004), who re-
ported this Cystoseira floating in the offshore
waters of southern Hokkaido. The specimens
collected in our survey were still fresh, sug-
gesting that they had sunk to the bottom
shortly before collection. Hence, sargassaceous
fucoid drifting from the coast of southern Hok-
kaido had lost its buoyancy and sunk to the
offshore seafloor.

The primary organic carbon source for the
ocean floor is generally thought to be sinking
particles that originate mainly from phyto-
plankton in surface waters (JOSEFSON and
CoNLEY, 1997). However, TORBEN (1975) re-
ported several photographic surveys conducted
off the east coast of the USA and in the Carib-
bean Sea showing the utilization of seagrass
debris by benthic isopods as a source of food
and shelter on the deep—sea floor. Our study
also indicates that macrophytes are supplied to
the deep—sea floor off Hokkaido. Marine
macrophytes transported from the coast of
southern Hokkaido may play an important role
in supplying organic carbon to the surround-
ing offshore deep ocean.

On the basis of published reports of carbon
content ratio of sargassaceous fucoid, we esti-
mated that 2.1 mg C m * of sargassaceous
fucoid derived carbon accumulated on the
seafloor throughout our study site. This value
was similar to the biomass of giant kelp,
Macrocystis pyrifera (Linnaeus) C. Agardh, on
the bottom of the continental shelf off Califor-
nia USA (0.5-10 mg C m *) (HARROLD et al.,
1998). Therefore, the amount of seaweed—de-
rived carbon on the continental shelf is similar
off the east and west Pacific coasts. Hence,
there is a global pathway of organic matter
transport from coastal waters to the deep
ocean driven by drifting macrophytes. The pre-
sent study revealed an annual organic carbon
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pathway from temperate coastal waters to the
ocean floor below the euphotic surface ocean,
driven by newly recruited macrophytes grown
up every year. This phenomenon probably also
occurs in drifting seaweeds in boreal and tropi-
cal waters. To elucidate the fate of macrophyte
—derived organic matter in the ocean, we plan
further studies of macrophyte transport from
the coast to the deep ocean.
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Use of mangroves for treatment of wastewater from shrimp
aquaculture ponds: Nitrogen and phosphorus budgets under
increased area ratio of shrimp ponds

D *

Toru SHIMODA

, Yoshimi FuJioka?,

Chumpol SRITHONG” and Chittima ARYUTHAKA”

Abstract: To assess the capacity of uptake of nitrogen and phosphorus by mangrove
Rhizophora mucronata enclosures from shrimp Penaeus monodon aquaculture ponds, we car-
ried out culture experiments at Samut Songkhram, Thailand. The area ratio of the shrimp cul-
ture pond to the mangrove enclosure was 1:1 in the previous study. Shrimp farmers hope that
the area of the mangrove region can be reduced in view of effective economic management. In
this study, an experimental area ratio between the shrimp aquaculture ponds and mangrove
enclosures of 2:1 was conducted and the effect was evaluated. However, it was shown that the
deterioration of the pond sediments could not be prevented in the case that the area ratio be-
tween the shrimp aquaculture ponds to the mangrove enclosure was 2:1. For sustainable pond
usage, the necessity for increasing the area ratio of mangroves to shrimp culture ponds was in-

dicated based on these results.

Keywords: mangrove, shrimp aquaculture, treatment, budgets

1. Introduction

Japan is the second largest shrimp importing
country in the world and is importing more
than 60% of the shrimp produced in brackish
waters from Southeast Asian countries
(HAMANO et al., 2010). Therefore, shrimp aqua-
culture is an important export industry in
these countries and the shrimp farming areas
have been developed in order to acquire foreign
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currency. In these countries, however, man-
grove trees have been cut down in order to con-
struct shrimp aquaculture ponds (BARBIER and
SATHIRATHAL 2004), and the total area of man-
grove in Thailand has decreased by more than
50% since the 1960’s (BHODTHIPUKS, 1988;
CroucH, 1993). Mangrove forests have an im-
portant role in the coastal tropical environ-
ment for purification of effluents from
aquaculture and other terrestrial sources
(ROBERTSON and PuiLLips, 1995; RIVERA—
MONROY et al., 1999).

Intensive shrimp culture needs a large
amount of feed and only 24% of nitrogen and
183% of phosphorus in feed input has been
shown to be incorporated into the shrimp body
(Brigas and FuNGE-SwmrtH, 1994). The remain-
der of the feed flows out into the surrounding
waters or is accumulated in the sediment. After
shrimp ponds are used for several years, they
are disused and left (STEVENSON, 1997; OKUBO
et al., 2004) even if the sediment is removed
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after harvest.

In order to develop sustainable shrimp
aquaculture practices, several methods have
been proposed to decrease the impact of shrimp
effluent (Boyp et al, 1994; SANDIFER and
Hopkins, 1996; DIERBERG and KIATTISIMKUL,
1996; LIN et al., 2003; TsuTsut et al., 2010). Al-
though integrated mangrove—aquaculture sys-
tems have been initiated in Southeast Asia
(RIVERA-MONROY et al, 1999; PRIMAVERA,
2000; PRIMAVERA et al., 2007; ALDON et al.,
2008), they are still at the verification and
early dissemination stage and the use of man-
grove areas for treatment of nutrients from in-
tensive shrimp farming has not been wide-
spread in tropical aquaculture regions
(HAMANO et al., 2010).

When shrimp culture density is high, disease
outbreaks occur (SHIMODA et al., 2005a), and
the feed conversion ratio (FCR) also deterio-
rates and production efficiency decreases even
if the shrimp remain healthy. Between the
pond where water was circulated with man-
groves and the control pond where water was
not circulated, the production, survival rate
and FCR were improved in the circulated pond,
and therefore the aquaculture production effi-
ciency was improved by the circulation with
mangroves where the nutrients were utilized
for enhancing mangrove growth. RIVERA—
MONROY et al. (1999) suggested that an area of
mangrove forest from 0.04 to 0.12 hectares is
required to completely remove the DIN load
from effluents produced by a 1 hectare pond.
On the other hand, ROBERTSON and PHILLIPS
(1995) reported that between 2 and 22 hectares
of forest are required to filter the nitrogen and
phosphorus loads from effluent produced by a
1 hectare pond. PRIMAVERA et al. (2007) sug-
gested that 1.8-5.4 hectares of mangroves are
required to remove nitrate wastes from 1 hec-
tares of shrimp pond in the Central Philippines.
GAUTIER et al. (2001) reported that the effi-
ciency for effluent treatment as a biofilter us-
ing mangrove wetlands is less predictable than
expected. However, these calculations are
largely based on hypothetical theory because
model experiments have not been carried out
quantitatively.

The area ratio of shrimp culture ponds and

mangrove enclosures was carried out at a ratio
of 1:1 in the previous study (SHIMODA et al.,
2005b; SHIMODA et al., 2007). Needless to say,
shrimp farmers hope that the area of the man-
grove region can be reduced in view of economic
management. In this study, to develop sustain-
able shrimp culture methods, an experiment
using an area ratio between shrimp aqua-
culture ponds and mangrove enclosures of 2:1,
was conducted and the effect was evaluated in
comparison to ponds of a ratio of 1:1 and a con-
trol of shrimp aquaculture pond only (no circu-
lation to a mangrove enclosure).

2. Materials and methods

Experiments that involved the circulation of
water between shrimp aquaculture ponds
stocked with Penaeus monodon and mangrove
enclosures planted with Rhizophora mucro-
nata, were carried out at the Samut
Songkhram Coastal Aquatic Research Station,
Faculty of Fisheries, Kasetsart University,
Thailand. Six ponds of 40X20 m for the upper
level, 35X 15 m for the lower level and 1.5 m
depth were used for this experiment (Fig. 1).
Shrimp were cultured in four ponds, and man-
grove trees were planted in two. In Ponds 1, 2,
3 and 6, 12,500 shrimp larvae Penaeus monodon
at the PL (post larvae) 20 days stage, were
stocked (about 24 shrimp per m*) and shrimps
were intensively cultured for about 5 months
from Friday, September 19, 2003. Totals of 476
one—year—-old mangrove saplings Rhizophora
mucronata had been planted in each of Ponds 4
and 5 in June, 2002.

Ponds 5 and 6 were connected, and the area
ratio of shrimp culture pond and mangrove en-
closure was 1:1. Ponds 2 and 3 where shrimp
were cultured and Pond 4 where mangroves
were planted, and they were connected so that
the area ratio was 2:1 (Fig. 1). First, brackish
water was added to a depth of 110 cm in the
shrimp aquaculture ponds on the first Friday
and water was removed from the mangrove
ponds. Pond 1 was the control pond and shrimp
were cultured in a closed system. In Ponds 4
and 9, every Monday, Wednesday and Friday,
about 30% of the water in shrimp pond was
transferred by siphon from the mangrove pond
to the shrimp pond and the water was pumped
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Fig. 1. Schematic outline of shrimp aquaculture ponds and mangrove enclosures used in the experiment.

back into the shrimp pond using a gasoline—
powered water pump. In Ponds 2, 3 and 4,
about 30% of the water in Pond 2 was trans-
ferred to Pond 4, every Monday. Water in Pond
4 was pumped back to Pond 2 every Wednes-
day. After that, about 30% of water in Pond 3
was transferred to Pond 4 on the same day.
Water in Pond 4 was pumped back to Pond 3
every Friday. There was no standing water in
Pond 4 from Fridays to Mondays.

Monitoring of the water quality and collec-
tion of water and soil samples were conducted
weekly before circulation of the water by pad-
dle wheels. The surface water temperature, sa-
linity, dissolved oxygen, turbidity, and pH
were measured with a TOA model WQC-20A
water quality checker. Water samples were col-
lected in two plastic bottles from the center of
each pond. The samples were immediately fil-
tered through Whatman GF/F filters for the
collection of chlorophyll @ + phaeopigment
(Chl. @ + Phaeo.), particulate nitrogen and
phosphorus. For Chl. a + Phaeo. analysis, the
filters were soaked in N, N-dimethylformamide
(Suzukr and ISHIMARU, 1990), and then Chl. a
+ Phaeo. was extracted in solvent and ana-
lyzed with a fluorometer (Turner Designs TD—
700). Particulate nitrogen was analyzed with
an elemental analyzer (Fisons EA-1108). Par-
ticulate phosphorus was analyzed using the
method of SOLORZANO and SHARP (1980b). The

ammonia concentration was measured immedi-
ately after filtration using a method developed
by SasAKI and SAwaDA (1980). Nitrate, nitrite
and phosphate (DIP) were analyzed by the
standard method (PARSONS et al., 1984) using a
spectrophotometer (Shimadzu UV-1201). Af-
ter potassium peroxydisulfate (K;S:O:) was
added to the samples, and digestion was carried
out by autoclaving, the nitrate and phosphate
concentrations were measured according to the
method of SOLORZANO and SHARP (1980a) for
total dissolved nitrogen and that of MENZEL
and CorRWIN (1965) for total dissolved phospho-
rus. Dissolved inorganic nitrogen (DIN) con-
centration was calculated from ammonia,
nitrate and nitrite. Dissolved organic nitrogen
(DON) and phosphorus (DOP) concentrations
were calculated from TDN-DIN and TDP-DIP,
respectively. Core-mud samples of 3-cm depth
were collected from the surface using a syringe
with 23-mm in diameter. The collected mud was
dried, weighed, and crushed with a mortar. The
nitrogen content in the sediment was analyzed
with an elemental analyzer (Fisons EA-1108).
The phosphorus content in mud was analyzed
with the method developed by ANDERSEN
(1976). N, N-dimethylformamide was added di-
rectly to the surface 1-cm depth mud sample
for Chl. a@ and Phaeo. extraction. After cen-
trifugal separation, the supernatant was ana-
lyzed.
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Table 1. Mean = standard deviation of height, number of leaves and stalk diameter of mangrove trees
Rhizophora mucronata at the beginning and end of the experiment in Ponds 4 and 5

Height (cm)

Number of leaves (no.)

Diameter of stalk (mm)

Beginning End Beginning End Beginning End
Pond 4 89.4+9.8 110.5%£13.9 41.2£14.0 82.5+£34.7 27.8+2.7 31.4+3.3
Pond 5 94.1£12.0 111.5£16.4 40.8£14.7 79.41+28.4 24.8+3.4 27.3+3.7

Table 2. Number of stocked larvae, shrimp total weight and individuals at harvest, survival rate, average shrimp
size, the amount of feed during the experimental period and the food conversion ratio (FCR)

Stocked larvae Harvest Survival rate | Average Feed

Pond The area ratio size FCR’
(Individuals) | (/m*) | (kg) |(Individuals) (%) () (ke)

1 Control 12500 24 | 2404 8273 66.2 29.1 352.8 | 1.47

2 | Circulated with a ratio of 2:1 12500 24 194.6 7733 61.9 25.2 345.4 | 1.77

3 | Circulated with a ratio of 2:1 12500 24 193.7 7652 61.2 25.3 320.6 | 1.66

6 |Circulated with a ratio of 1:1| 12500 24 | 264.8 8971 71.8 29.5 400.1 | 1.51

The net nitrogen and phosphorus transport
(NT and PT) from the shrimp ponds to the
mangrove enclosures were calculated as fol-
lows:

NT or PT = (total quantity of nitrogen or
phosphorus in water transported from a
shrimp pond to a mangrove enclosure) — (total
quantity of nitrogen or phosphorus returned
from the mangrove enclosure to the shrimp
pond).

The mean height, number of leaves, and di-
ameter of the stalks of 10 mangrove trees were
measured at the beginning and end of the ex-
periment. At harvest, shrimp and other organ-
isms in the ponds were sampled. The biomass,
and their nitrogen and phosphorus contents
were analyzed using the same method as that
used for particulate nitrogen and phosphorus
analysis.

3. Results

Table 1 shows mean= standard deviation of
height, number of leaves and stalk diameter of
mangrove trees Rhizophora mucronata at the
beginning and end of the experiment in Ponds
4 and 5 for about 5 months from 19 September,

*FCR= (We ight of fe ed) / (Weight of harvest-larvae)

2003. All the values increased, showing that the
mangroves grew. Table 2 shows the number of
stocked larvae, shrimp total weight and indi-
viduals at harvest, survival rate, average
shrimp size, the amount of feed and the food
conversion ratio (FCR) during the experiment
in Ponds 1, 2, 3 and 6. The shrimp total weight
at harvest, survival rate and FCR were 193.7—
194.6 kg/ pond, 61.2-61.9 % and 1.66-1.76 in
Ponds 2 and 3 where the area ratio between
shrimp aquaculture ponds and mangrove enclo-
sure was 2:1, and they were 264.8 kg/ pond,
71.8% and 1.51 in Pond 6 where the area ratio
was 1:1. In the control pond, they were 240.4
kg/ pond, 66.2% and 1.47. Therefore, aqua-
culture efficiency was better in Pond 6.

The water temperature decreased gradually
from 30 to 24°C (Fig. 2), and salinity increased
from 13 to 31 in the aquaculture ponds. Though
anoxic water did not occur in the shrimp
aquaculture ponds, low level of dissolved oxy-
gen were observed at the end of the experiment
in Pond 4 that was a mangrove enclosure. The
pH showed a tendency to decrease slightly and
turbidity tended to increase.

DIN concentration spiked occasionally but
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Fig. 2. Variations of (a) water temperature, (b) salinity, (c¢) dissolved oxygen, (d) pH and (e) turbidity
during the experiment period.

the contribution to TN was small (Fig. 3). Af- concentration increased from 2 mgN/L to 5
ter an initial decrease in DON, it showed a ten- mgN/L on average in all aquaculture ponds.
dency to increase. PN also increased in the Though DIP concentration varied largely, both
culture ponds. As a result, the contribution of of DOP and PP concentrations gradually in-

DON and PN was large to TN, and TN creased (Fig. 4). Contribution to TP was
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nitrogen, and (d) total nitrogen.

largely in PP, and the TP concentration in the
culture ponds increased from 0.16 mgP/L to
0.42 mgP/L on average. Chl. @ + Phaeo. con-
centration in the water also increased (Fig. 5).
Though nitrogen and phosphorus contents in
mud (Fig. 6) fluctuated largely, they increased
at the end of this experiment. The linear re-
gression slopes between nitrogen content and
Days were 1.194 X 10 * ugN/cm®/days, 5.300 X
10 u gN/ecm’® /days, 3.862 X 10 x gN/cm’/
days, and 1.800<10* #£gN/cm®/days in Ponds
1, 2, 3 and 6, respectively. And the slopes be-
tween phosphorus content and Days were 1.387
X 107* w gP/cm’® /days, 8.996 X 10" x gP/cm’®/
days, —1.307 <10 * ugP/cm’/days and 2.510 X
10 * ugP/em?/days, respectively. Though they

were not significant statistically because of the
large fluctuations, the slope for nitrogen was
small and that for phosphorus was large in
Ponds 1 and 6 where the aquaculture efficiency
was better, and they showed the opposite trend
in Ponds 2 and 3 where the aquaculture effi-
ciency was worse.

The amount of transported nitrogen or phos-
phorus (Fig. 7) from Pond 6 that was a shrimp
aquaculture pond to Pond 5 that was a man-
grove enclosure, gradually increased during
the experimental period. In Ponds 2, 3 and 4,
the amount of transported phosphorus de-
creased temporally. The net nitrogen or phos-
phorus transports were large in Pond 6 where
the area ratio between the aquaculture pond
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and the mangrove enclosure was 1:1.

4. Discussion

Relative growth rate (RGRx) (HunT, 1982)
of Rhizophora mucronata was not so high in
comparison with some mangrove species and
rates of 0.720£0.036 and 0.743=0.035 (mm/
cm/mo) are reported in Thailand (Thampanya
et al., 2002). In this study, RGRx was calcu-
lated with 0.621+0.208 in Pond 4 and 0.512=*
0.184 (mm/cm/mo) in Pond 5. Though man-
grove saplings grew during this experiment,
the growth rate was at a comparative level but
slightly lower in the mangrove enclosures com-
pared to saplings under natural conditions.
Circulation of water between the shrimp

aquaculture ponds and the mangrove enclosure
simulated the level of water experienced during
a tidal change. However, the weekly circulation
of water might be insufficient to fully enhance
mangrove growth.

The dry season of Thailand is from Novem-
ber to February and it doesn't rain around No-
vember and the temperature falls. Therefore,
the water temperature fell and salinity rose
during the experimental period, though salin-
ity fell slightly immediately after the begin-
ning of the experiment (Fig. 2). Penaeus
monodon is euryhaline (0-52) (MotoH, 1981)
and the most suitable salinity is about 15 to 20
and ideal water temperature is thought to be
25-30 degrees (YosHIDA, 1987). Therefore, the
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water temperature and salinity were in a suit-
able range for Penaeus monodon during this
experiment.

Though both DIN and DIP concentrations
did not increase in all the ponds (Figs. 3 and 4),
organic and particulate nitrogen or phospho-
rus increased in water. And Chl. a + Phaeo.
concentration in water also increased in the
shrimp aquaculture ponds (Fig. 5). Although
their concentrations increased largely in the
water, it was considered that water quality was
kept within tolerable limits for shrimp growth
during the experiment. Though Chl. a +
Phaeo. concentration in the mud fluctuated
largely, there was not an increasing trend.
Penaeus monodon is omnivorous and can feed
on benthic algae (YosHipa, 1987). It was con-
sidered they ate the benthic algae.

In Pond 6 where the area ratio between the

shrimp aquaculture pond and mangrove enclo-
sure was 1:1, the shrimp total weight, the num-
ber of individuals harvested and the survival
rate were high, and FCR was low. However, in
Ponds 2 and 3 where the area ratio was 2:1, the
shrimp total weight, number of individuals
harvested and the survival rate were low, and
FCR was high. Though the aquaculture effi-
ciency was higher in Pond 1 than Ponds 2 and
3, the previous use history as a shrimp
aquaculture pond might have influenced the
nutrient budgets. From the nitrogen and phos-
phorus budgets (Table 3), the difference (In—
Out) of nitrogen was —0.36 kgN/ pond/ experi-
mental period in Pond 6. This means that nitro-
gen was not accumulated into the mud in Pond
6, and it was thought that nitrogen was re-
leased by denitrification and ammonia evapora-
tion (BrIGGS and FUNGE-SMITH, 1994). On the
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Table 3. Nitrogen and phosphorus budgets in the shrimp aquaculture ponds during

the experimental period.

Pond 1 Pond 2 | Pond 3 | Pond 6
In
N supplied from feed 21.25 20.60 19.00 24.10
Initial N content in shrimp at stocking 0.01 0.01 0.01 0.01
Out
N accumulated in shrimp at harvest 6.70 5.01 5.43 7.29
N accumulated in snail 1.91 3.41 2.89 0.19
N accumulated in barnacle 0.21 0.20 0.22 0.17
N accumulated in water 1.53 1.59 1.82 1.87
N accumulated in mud 6.40 9.48 6.77 —0.36
N transport to mangrove encclosure 2.78 1.24 4.83
N differences (In-Out) 4.51 -1.86 0.64 10.12

(kgN/pond/experimental period)

Pond 1 Pond 2 | Pond 3 | Pond 6
In
P supplied from feed 441 4.28 3.94 5.00
Initial P content in shrimp at stocking <0.01 <0.01 <0.01 <0.01
Out
P accumulated in shrimp at harvest 0.64 0.48 0.47 0.69
P accumulated in snail 0.12 0.21 0.16 0.19
P accumulated in barnacle 0.02 0.02 0.03 0.12
P accumulated in water 0.18 0.20 0.17 0.11
P accumulated in mud 5.35 -1.61 -0.90 2.25
P transport to mangrove encclosure 0.38 0.24 0.83
P difference (In-Out) -1.89 4.60 3.78 0.81

other hand, the difference of nitrogen was —1.86
—0.64 kgN/ pond/ experimental period in Ponds
2 and 3. This shows that nitrogen accumulated
in the bottom and it means that the sediment
environment deteriorated. The difference of
phosphorus was negative in Pond 1 that was
the control, and the difference of phosphorus
was low in Pond 6 where the area ratio was 1:1
compared to 2:1. Phosphorus content in mud
decreased in Ponds 2 and 3 while it increased in
Ponds 1 and 6. This means phosphorus
desorbed from the bottom in Ponds 2 and 3

(kgP/pond/experimental period)

where phosphorus had accumulated in the past.
The results showed that the deterioration of
mud of the ponds could not be prevented in the
case that the area ratio between the shrimp
aquaculture ponds and the mangrove enclosure
was 2:1. The necessity for increasing the area
ratio of the mangrove region to the shrimp cul-
ture pond was indicated based on these results
for sustainable ponds usage.



34 La mer 50, 2012

References

ALpON, E. T., R. R. PLATON and V. T. SuLir (2008) :
Mangrove or aquaculture? Why not both? Fish
for the People, 6, 15-19.

ANDERSEN, J. M. (1976) : An ignition method for de-
termination of total phosphorus in lake sedi-
ment. Water Res. 10, 329-331.

BARBIER, E. B. and S. SATHIRATHAI (2004) : Shrimp
farming and mangrove loss in Thailand. Edward
Elgar Publ., Cheltenham, 288pp.

Buopraipuks, P. (1988) : Problem solving on man-
groves forest land for developed tiger prawn
(Penaeus monodon) culture. In: The Sixth Na-
tional Seminar on Mangrove Ecology, NRCT,
Nakhon Si Thammarat, 49-55.

Bovyp, C. E., P. MuNsIRI and B. F. HaJek (1994) :
Composition of sediment from intensive shrimp
ponds in Thailand. World Aquaculture, 25, 53—
5.

BricGs, M. R. P. and S. J. FUNGE-SmITH (1994) :
A nutrient budget of some intensive marine
shrimp ponds in Thailand. Aquacul. Fish.
Manag., 25, 789-811.

Crouah, B. F. (1993) : Status and value of mangrove
forests in Indonesia, Malaysia and Thailand:
Summary. In The economic and environmental
values of mangrove forests and their present
state of conservation in the south—east Asia/Pa-
cific region. Mangrove ecosystems technical re-
ports, 1, ISME, 1-10.

DIERBERG, F. E. and W. KIATTISIMKUL (1996) : Issues,
impacts, and implications of shrimp aquaculture
in Thailand. Environ. Manage., 20, 649-666.

GAUTIER, D., J. AMADOR and F. NEWMARK (2001) :
The use of mangrove wetland as a biofilter to
treat shrimp pond effluents: preliminary results
of an experiment on the Caribbean coast of Co-
lombia, Aquacul. Res., 32, 787-799.

Hamano, K., I. Tsutsul and Y. MagNo (2010) : Cur-
rent state and problem of shrimp culture pro-
duced brackish waters in Southeast Asian
countries. Nippon Suisan Gakkaishi, 76, 1123-
1128. (in Japanese)

Hunt, R. (1982) : Plant Growth Curves: the Func-
tional Approach to Plant Growth Analysis. Ed-
ward Arnold, London, 248pp.

LN, Y. F., S. R. JING and D. Y. LEg (2003) : The po-
tential use of constructed wetlands in a
recirculating aquaculture system for shrimp cul-
ture. Environ. Pollut., 123, 107-113.

MENZEL, D. W. and N. CORWIN (1965) : The measure-
ment of total phosphorus in seawater based on
the liberation of organically bound fractions by
persulphate oxidation. Limnol. Oceanogr., 10,
280-282.

MortoH, H. (1981) : Studies on the fisheries biology of
the giant tiger prawn Penaeus monodon in the
Philippines. SEAFDEC Tech. Rep. No. 7, 127pp.

OkuUBO, Y., Y. Kazama, S. Rokugawa and H. Tsu
(2004) : What is happening in abandoned shrimp
farms in Thailand. Chisitus News, 595, 19-22. (in
Japanese)

PARSONS, T. R., Y. MaITA and C. M. LarLLr (1984) : A
Manual of Chemical and Biological Methods for
Seawater Analysis. Pergamon, Oxford, 184pp.

PRIMAVERA, J. H. (2000) : Integrated mangrove—
aquaculture systems in Asia. In Integrated
Coastal Zone Management, Autumn Edition.
ICG, London, 121-130.

PrRIMAVERA, J. H., J. P. Avuramirano, M. J. H. L.
LEBATA and A. A. DELOS REYER Jr. and C. L.
Prroco (2007) : Mangroves and shrimp pond cul-
ture effluents in Alkan, Panay Is., Central Phil-
ippines, Bull. Mar. Sci., 80, 795-804, 795-804.

Rivera-MoNRroY, V. H, L. A. TORRES, N. BAHAMON,
F. NEWMARK and R. TWILLEY (1999) : The poten-
tial use of mangrove forests as nitrogen sinks of
shrimp aquaculture pond effluents: the role of
denitrification. J. World Aquaculture Soc., 30,
12-25.

ROBERTSON, A. I. and M. J. PuiLLips (1995) : Man-
groves as filters of shrimp pond effluent: predic-
tion and biogeochemical research needs.
Hydrobiologia, 295, 311-321.

SANDIFER P. A. and J. S. HopPkINs (1996) : Conceptual
design of a sustainable pond-based shrimp cul-
ture system. Aquacult. Eng., 15, 41-52.

Sasakl, K. and Y. Sawapa (1980) : Determination of
ammonia in estuary. Bull. Jpn Soc. Sci. Fish.,
46, 319-321.

SHIMODA, T., C. SRITHONG and C. ARYUTHAKA
(2005a) : Attempt at purification of effluent and
sediment in shrimp aquaculture ponds using
mangrove trees. JARQ, 39: 139-145.

Suimopa, T., Y. Fugioka, C. SRITHONG and C.
ARYUTHAKA (2005b) :Phosphorus budget in
shrimp aquaculture pond with mangrove enclo-
sure and aquaculture performance. Fish. Sci., 71,
1249-1255.

SHIMODA, T., Y. FuJgioka, C. SRITHONG and C.
ARYUTHAKA (2007) : Effect of water exchange
with mangrove enclosures based on nitrogen
budget in Penaeus monodon aquaculture ponds.
Fish. Sci., 73, 221-226.

SOLORZANO, L. and J. H. SHarp (1980a) : Determina-
tion of total dissolved nitrogen in natural wa-
ters. Limnol. Oceanogr., 25, 751-754.

SOLORZANO, L. and J. H. SHARP (1980b) : Determina-
tion of total dissolved phosphorus and particu-
late phosphorus in natural waters. Limnol.
Oceanogr., 25, 754-758.

STEVENSON, N. J. (1997) : Disused shrimp ponds:



Use of mangroves for treatment of wastewater

options for redevelopment of mangrove. Coastal
Manag., 25, 423-425.

Suzukl, R. and T. IsHIMARU (1990) : An improved
method for the determination of phytoplankton
chlorophyll using N, N-dimethylformamide. J.
Oceanogr. Soc. Jpn., 46, 190-194.

THAMPANYA, U., J. E. VERMAAT and C. M. DUARTE
(2002) : Colonization success of common Thai
mangrove species as a function of shelter from
water movement. Mar. Ecol. Prog. Ser., 237, 111-
120.

Tsursul, L., P. KANJANAWORAKUL, P. SRISAPOOME, D.
AUE-UMNEOY and K. Hamano (2010) : Growth
of glant tiger prawn Penaeus monodon
Fabricius, under co—culture with a discarded
filamentous seaweed, Chaetomorpha ligustica
(Kutzing) Kutzing, at an aquarium-scale.
Aquacult. Int., 18, 545-553.

Yosuia, M. (1987) : Black-tiger prawn Penaeus
monodon. In Aquaculture in Tropical Areas,
Shokita S. (ed), Midori Shobo, Tokyo, 175-184.

Recetved: August 24, 2011
Accepted: March 07, 2012

35






La mer 50 : 37-50, 2012
Société franco-japonaise d'océanographie, Tokyo

ERE RS D4 PEA b LU — Y — 10T B iENENT O R A
— B ] 22 Bl e 0~ D 28 ] —

RN —" o Pkt 20 o LY /il B « rNiE—" « k829

Tracer analysis by using micro—structure found in vertical
profiles of several quantities
— Application for detailed analysis of oceanic structure in the
vicinity of Cape Shionomisaki—

Yoichi MAEKAWAY, Toru NakaMurA”, Keiko NakazaTo", Takashi KOIKE?,
Junichi TAKEUCHT”, and Yutaka NAGATAY

Abstract : Detailed oceanic structure was investigated by setting dense observation network in
the sea near Cape Shionomisaki. A cold water eddy was observed just off the cape in April,
2009. The Kuroshio was located very near the tip of the cape, and was flowing eastwards in Oc-
tober, 2009. MAEKAWA et al. (2011) discussed the horizontal distribution of sea level height by
setting several reference levels. The sea level difference between Kushimoto and Uragami tide
gauge stations is shown to be created essentially in the narrow zone just off Cape
Shionomisaki. The sea level difference is related to the oceanic conditions in the surface layer
above 300 m depth. They showed that the usual water mass analysis is not applicable because
the correlation between temperature and salinity fields is not high enough. In this paper, we
used micro—structures found in the vertical profiles of dissolved oxygen, turbidity and chloro-
phyll a together with temperature and salinity profiles, as passive tracers. We concluded: (1)
maxima and/or minima found in profiles of dissolved oxygen in the layer shallow than 100m
depth have small horizontal extent, and these maxima and minima are found only near the
outer edge of the cold water belt. (2) water of high temperature, high salinity and high dis-
solved oxygen which was found in the depth range from 50 to 150m depth near station F7 in
April, 2009. This water was shown to be the Kuroshio Water, which had been brought into
Kumanonada area a few days before the observation, (3) observed area in October, 2009 is
classified into three sub—regions by vertical profiles of dissolved oxygen. The sub—region con-
sisted of relatively lowest oxygen values are found extends from coast to offshore. The offshore
margin of this sub—region is located is located more southward than the northern edge of the
current zone of the Kuroshio. This indicates that the coastal water is entrained into the flow
area of the Kuroshio in the area to the east of Cape Shionomisaki.

Keywords : Detailed oceanic structure in vicinity of Cape Shionomisaki, microstructure in ver-
tical profiles, dissolved oxygen
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Fig. 1. Standard distribution of observation points. Some observation points were omitted due to limitation
of available time. Real distributions of observation points in April 2009 and in October 2009 are shown
in horizontal distribution maps of temperature, salinity and so on. Line names are indicated with capi-
tals A, B, C, D, E and F from west to east. Station numbers are indicated with numbers 1 through 7
from coast to offshore. The small alphabets a through h indicate the position of tide gauge stations and
positions of town; a: the Kushimoto tide gauge station, b: Uragami tide gauge station, c: Cape
Shionomisaki, d: Ohshima Island, e: Katsuura, and f: Cape Esuzaki.
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Fig. 2. Horizontal distributions of temperature (upper figure) and salinity (lower figure) at 200m depth on
April 14-16, 2009. Isotherm is drawn at 0.5°C interval, and isohaline at 0.02interval. The black circles in
the upper figure indicate the observation points where micro—structure in vertical profile of dissolve
oxygen was found in the layer shallower than 100m depth. The black triangle indicates the observation
point where somewhat ambiguous micro-structure was found. The black circles in the lower figure in-
dicate the observation points where thick high oxygen layer is found in the range from 60m and 150m.
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°C) and salinity (lower right) observed at station A3 on April 16, 2009.
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and at F'2 (thin line) on April 14, 2009
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Fig. 7. Vertical profiles of dissolved oxygen (ml/1) at stations E2 though E7 observed on April 15, 2009.
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Fig. 9. All of vertical profiles of dissolved oxygen

(ml/1) obtained during the observation in April,
2009. Solid curves indicate the profiles taken at
stations D3, E4 through E7 and F3 through F7,
and dotted lines indicate the profiles taken at
other stations.
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on April 7-8, 2009. A northward intrusion of the Kuroshio water was found off Kumano—nada.
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21, 2009. Isotherm is drawn at 0.5°C interval, and
isohaline at 0.02 interval.
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Fig. 13. All of vertical profiles of dissolved oxygen
(ml/D obtained during the observation in Octo-
ber, 2009. Dotted curves indicate the profile
taken at stations B2, C2 through C4, D2 through
D5, E2 through E7, and F2 through F7, solid
curves indicate taken at stations A2 through AS,
B3 and B4, C5, and D6 and D7, and broken curves
indicate taken A6 and A7, B5 through B7, and C6
and CT7.
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Fig. 14. Three sub—regions classified by characteris-
tics of vertical profiles of dissolved oxygen
shown in Fig. 13. The stations where broken
curves are found are shown with black circles,
those solid curves found are with double circles,
and those dotted curves found are shown with
single circles. The northern boundary of strong
current zone of the Kuroshio deduced from tem-
perature field at 200m depth surface is shown
with a thick curve in figure.
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Fig. 15. Same as in Fig. 13, except for temperature
in C.
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Fig. 16. Same as in Fig. 13, except for salinity.

i, BHP TR GIEELSHITH D, LI,
RIS R 2RO B T EMTE LD - 12,
BHBREOZThERREY, D EoKEICRS
N3 k512, WEL7on 74 )VadT 07>
A IVIZBAE RSN RSN 2 0, MmEkO£LE
WKIRonTnwa, i, HEEEOSHbhbA
OEMTY, Hd oW SO SR IF4 < BRild
CERTE Lo, TNODROMITNLS, A
BIHERARB1TIE, S SICERRE/NES < H-
BB E LI K S,

6. BHYIC

BARD BRI S O BRMIFT £ T O BRI
3% 15km TH 3, Fig. LITRT LI, 20
Wi S A A 72T BT, K 50m #
TH#1 30km O S, MRS EIRICIL A %
6 ADBPH AT B E 0D, FEERICR SN
B R S| P NN | =g (TR Sk == H =29 ORI
2009 4E 4 H o BT, o4 SRFHICE
O /NEATIZRE S W KimOFEAE L, 2009 4 10 H
DO EIPEE I IS s & A EBTETH
LT3 MBS EERER - T, Hoh
T2 HE IR BL D 53 A 5E D J1F I 1S E 1 D O T AT



EAE MRS S D E A b L —H — 10 B HEIIRT O A 49
(m™) (ug/ml) (ml/1)
8.0 0.1 02 03 00.0 1.0 20 (1).0 203040506070
100 } 100 100 r
o Do
200 200 Chl 200
(m) (m) (m)
(°c)
00 5 10 15 20 25 30 :‘(3)3.5 340 345 350
// o >
200 / 20 }
(m) (m)

Fig. 17. Vertical profiles of turbidity (upper left: shown by beam attenuation coefficient (660nm) in m "),
chlorophyll a (upper middle: z g/ml), dissolved oxygen (upper right: ml/1), temperature (lower left:
°C) and salinity (lower right) observed at station A3 on October 20, 2009.
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Fig. 18. Vertical profiles of chlorophyll a (upper left: # g/ml), turbidity (upper middle: shown by beam at-
tenuation coefficient (660nm) in m '), dissolved oxygen (upper right: ml/D), temperature (lower left:
°C) and salinity (lower right) observed at station C3 on April 16, 2009.
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