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The hydrographic structure along the 137°E line
in the western North Pacific from 1990 to 2007
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Abstract : We examined detailed hydrographic structures data along 137°E from 3°N to 34°N
from 1990 to 2007 by using CTD. The general oceanic features found along this line agreed well
with the results of previous studies using Nansen bottle data. We investigated the activity of
double diffusive convection through the histogram plots of the density ratio (R,) and the
Turner angle (Tu) to detect the modification processes of water masses in more detail. The re-
gion where the stratification is favourable for the onset of salt finger convection (R,> 3.7 and
45°<Tu<60°) is found just below the bottom half of North Pacific Equatorial Water (NPEW)
and North Pacific Tropical Water (NPTW) extending to the upper half of North Pacific Inter-
mediate Water (NPIW). This region existed isopycnally on the surface between 24.0 0, and
26.8 0y persistently along 137°E line. The mode value of R, is 3.48, meaning that the activity of

salt finger convection was not so high.

Keywords : JMA 137°E section, CTD, NPIW core, double diffusive convection, salt finger.

1. Introduction

The western Pacific Ocean is a region which
dominates the dynamics of the climate system
in the world. For example, the equatorial proc-
esses releasing heat by rain drives the so-called
Walker Circulation, and then the equatorial
currents redistribute heat. The inter-annual
variability of currents and temperatures in the
equatorial Pacific modulates the oceanic forc-
ing to the atmosphere; El Nifio, for example
causes the biggest changes in the equatorial
dynamics. In the mid- and high latitude re-
gions, the subtropical and the subarctic gyres
redistribute heat from the low latitude to mod-
erate the weather system there (STEWART,
2005).

The current system in the western equato-
rial Pacific consists of at least four major cur-
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rents: (1) the North Equatorial Current (NEC)
flowing westward between about 20° and 8°N
which corresponds to the southern rim of the
subtropical gyre, (2) the South Equatorial
Current (SEC) flowing westward from about
3°N to 10°S, (3) the narrower North Equatorial
Counter Current (NECC) flowing eastward be-
tween them, and (4) the Equatorial Under Cur-
rent (EUC) flowing eastward below the surface
straddling the equator over 2°N~2°S. In the re-
gion between 20 and 26°N, there is an eastward
flowing current known as the Subtropical
Counter Current (STCC). The NEC bifurcates
into the northward flowing Kuroshio and the
southward flowing Mindanao Current. The
Kuroshio flows along the Japanese coast, and
changes its direction to east off the Joban and
Sanriku coast of Japan to form the Kuroshio
Extension (KE). The westward counter cur-
rent known as the Kuroshio Counter Current
(KCO) flows between 25 and 30°N. The KE con-
tinues to flow eastward as the North Pacific
Current (NPC, the northern rim of the sub-
tropical gyre). To the north of subtropical
gyre, the subarctic gyre is formed having the
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Oyashio as another western boundary current
flowing from the eastern coast of Hokkaido to
south.

Some major water masses exist in the west-
ern Pacific. The North Pacific Intermediate
Water (NPIW) is a low salinity water
(33.80~34.10) characterized as a vertical salin-
ity minimum around the mid depth (300
m~800 m) originated from the subpolar region
(e.g., SVERDRUP et al.,1942) extending from
130°E~130°W and 10°N~45°N. Talley (1993)
suggested that the Oyashio Winter Water is
the source of NPIW, and in the mixed water re-
gion between the Kuroshio Extension and the
Oyashio front it is modified through some mix-
ing processes to acquire the characteristics of
NPIW. This water intrudes into the subtropical
gyre as a cross gyre flow and spreads into the
mid-depth of the western North Pacific. REID
(1965) pointed out that the salinity minimum
could be traced on a 26.8 g, surface. The Sub-
tropical Mode Water (STMW) is a minimum of
potential density gradient in the 100 —400 db
layer extending from 130~180°E and 20°N —40°
N (MaSuUzAWA, 1969). The North Pacific Tropi-
cal Water (NPTW) is a subsurface salinity
maximum (>35.0) water on a 24.0 ¢, surface
caused by excess evaporation over precipitation
and by long residence of the surface water in
the central Pacific in the 100—200 db layer ex-
tending from 130~180°E and 10~25°N
(TsucHIYA et al., 1989). The North Pacific Cen-
tral Water (NPCW) is a thermocline layer be-
tween the NPTW and the NPIW extending
from 35°N to 15°N (e.g., SVERDRUP et al., 1942).
The North Pacific Equatorial Water (NPEW)
is a subsurface salinity maximum (>35.4) at a
depth of 150 db from the equator to the south
of NPTW covering the whole equatorial Pacific
Ocean (e.g., SVERDRUP et al., 1942). The vari-
ability and modification of these water masses
have been attractive subjects in this area.

Since 1967, the Japan Meteorological Agency
(JMA) has been carrying out winter oceano-
graphic surveys along the 137°E from the
southern coast of Japan to the area off the New
Guinea coast using the R/V Ryofu Maru and
Keifu Maru. From 1972, summer observations
have begun. Some studies have been conducted
using this section to detect the variability of

current systems and major water masses cited
above (e.g., MASUZAWA, 1969; SuGA et al., 1989;
Qru and Jovcg, 1992; Suga and Hanawa, 1995;
SHUTO, 1996; BINGHAM et al,. 2002).

QIu and JoyceE (1992) extensively analysed
the hydrographic features along 137°E ob-
served from 1967 to 1988. Their main purpose
was to identify the inter-annual fluctuations in
the Kuroshio and KCC, and to understand their
relation to the change of the path of the
Kuroshio. They also discussed the inter-annual
fluctuation in the low latitudes: fluctuation in
the transport of NEC and NECC, the surface
dynamic height anomalies and the upper mixed
layer thickness associated with the ENSO
events. Using an analytical model, they found
that the inter-annual fluctuations of NEC and
NECC were highly correlated with the
Sverdrup transport fluctuations. They also dis-
cussed the variability of water masses cited
above.

SruTo (1996) used this section to analyse the
inter-annual variability of temperature and sa-
linity to discuss the relationship between these
variations and the wind forcing. He showed
that the temperature changes occurred in the
equatorial region of the western North Pacific
accompanied by El Nino and La-Nina events,
which reached about 20°N where the inclination
of isotherms across the NEC fluctuates there.
The Empirical Orthogonal Function (EOF)
analysis of the winter water temperature re-
sulted in the interruption El Nino and La-Nina
events as the first mode, and the decadal
changes in SST in the North Pacific as the sec-
ond mode.

The classical hydrographic observation had
been conducted using reversing thermometers
and Nansen casts, therefore, QU and JOYCE
(1992) and StuTo (1996) were obliged to apply
the cubic spline fit to vertical discrete data to
obtain smooth profiles. Consequently, there
were inherent difficulties in detailed analysis
such as a variability of the modification proc-
ess of water masses. This point has been im-
proved by the introduction of CTD observation
from 1988. CTD observation becomes as a rou-
tine base from 1990. Therefore, taking the ad-
vantage of successive CTD data, we try to make
detailed water mass analysis using a density
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ratio R, (Turner angle: Tu) to grasp the modi-
fication processes of major water masses in the
present study.

The density ratio or the Turner angle is an
indicator of the activity of double diffusive con-
vection (RuUDDICK, 1983). The double diffusive
convection has two forms; one is the salt finger
convection that occurs when a layer of warm
and salty water overlies on a layer of relatively
cool and fresh water. Another is the diffusive
oscillatory convection that occurs when a layer
of cool and fresh water overlies on a layer of
relatively warm and salty water. For both
convections, a fluid layer is statically stable;
however, due to the faster diffusion of heat
than that of salt give rise to the onset of con-
vection. In both cases, the lower layer becomes
dense (up-gradient of density stratification) ir-
respective of the basic stable stratification.
Then, the double diffusive convection should
have a certain role in the modification of water
masses.

From this point of view, FIGUEROA (1996)
and You (2002) have investigated the distribu-
tions of the density ratio in the world ocean.
They showed that double diffusive convection is
not so active in the North Pacific (R, =3~4)
except at some places where the water masses
having distinct contrasts in properties directly
contact. The region off Joban-Kashima and
Sanriku coast is such a place where the warm/
salty Kuroshio and relatively cold/fresh
Oyashio waters directly contact each other
forming many temperature inversion layers
and interleaving structures. Then, these re-
gions are favourable for the onset of double dif-
fusive convection. TALLEY and YUN (2001) and
INOUE et al. (2003) focused their attention to
this point and investigated the role of double
diffusive convection on the modification proc-
ess of NPIW. They both showed that cabbeling
and double diffusive convection could explain
the total increment of density of NPIW while it
extends from the subarctic region to the
Sanriku coast. As was mentioned above, vari-
ous water masses exist along 137°E, and the
double diffusive convection should occur in the
area sandwiched with the NPTW and NPIW
and that below the NPEW. Therefore, in the
present paper, focusing on the activity of dou-

ble diffusive convection along 137°E, we will ex-
amine the role of these phenomena on the vari-
ability and modification of water masses along
137°E. We describe data analysis process in sec-
tion 2, followed by hydrographic structures
along 137°E from 1990 to 2007 in section 3. We
show the characteristics of annual mean and
seasonal structures and those associated with
ENSO occasionally referring to the previous
studies cited above. In section 4, histogram
analysis of the density ratio (the Turner an-
gle) is presented to investigate the activity of
double diffusive convection. In section 5, we will
summarize the results.

2. Data Analysis

We use 35 CTD data from summer and win-
ter cruises (1990 —2007) in this study. Basic
data by CTD on temperature and salinity at 1
db interval are distributed in ASCII format
through CD. Temperature data are converted
into potential temperature (9 ) and then, po-
tential density is calculated. Stations are lo-
cated from 34 to 3°N with 1° interval in
latitude, except for 40’ in the Kuroshio region
between 34 —32°N. We will use this basic data
set for detecting the variability of hydrogra-
phic structures. We also use two types of data
set: seasonal average data sets at each station
and at each depth. The ENSO event average
data set in which averaging was made for El
Nino, La Nina and Normal periods according to
the JMA’s criterion of categorizing ENSO
event. Since 2006, the JMA has changed the
standard for the definition of ENSO event in a
certain year from that based on the deviation
from 30 years average of 1961~1990 to that of
30 years starting from the year before. Based
on this, detailed ENSO events are as follows: El
Ninio: April 1991 — July 1992, April 1997 - May
1998, June 2002 — February 2003: La Nifa: Jul
1995 — February 1996, August 1998 — April 2000,
October 2005 — March 2006, February 2007 —
March 2008. The other periods are categorized
as “Normal”. Following QiU and Joyce (1992),
we divide the observational stations into seven
bins (Area A — Area G) at an 5° interval
(Fig.D).

Following Ruddick (1983), the density ratio
and the Turner angle are defined :
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Fig. 1. CTD observation stations along 137°E. Seven
areas from A — G are shown.
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0
where 0, and S, are mean vertical gradients of
potential temperature and salinity, respec-

tively. a and S are the thermal expansion and

haline contraction coefficients, respectively.
The least square fit over 11 db data is adapted
to obtain the mean temperature and salinity
gradients. Note that the density ratio is de-
fined as a ratio of temperature gradient on den-
sity divided by that of a salinity gradient.
When R, is larger than 1 (Tu ranges between
45 and 90°), the salt finger convection occurs,
and when R, ranged between 1 and 0 (Tu
ranges between —45 and —90°), the diffusive
convection occurs. The activity of both convec-
tion is intensified as R, becomes unity. Espe-
cially, when R, ranged between 1 and 2 (Tu
ranges between 72° and 90°), the salt finger
convection is so active that salt and heat are ef-
ficiently transported downwards and when R,
ranges between 0.5 and 1 (Tu ranges between
—72 and —90°), diffusive convection is active
to transport heat and salt effectively upward.
In the present study, Tu is calculated down to
1000 db, because in the Pacific Ocean, the layer
below 1000 db is usually statically stably strati-
fied. Histogram plots of Turner angle is pre-
sented to know the activity of double diffusive
convection. Tu is divided at one degree interval
from —90° to 90°, and the number of Tu which
falls into each one degree bin is counted, and is
divided by the total data number to obtain the
occurrence frequency. In this process no aver-
aging was made at each station and at each
depth.

3. Hydrographic structures along the 137°E

section
3.1 Mean structures of currents and water

masses

The basic hydrographic structures seen from
the mean of summer/winter cruises are similar
to those obtained by QiU and Joyck (1992). The
upheaval of thermocline at 8°N indicates the
upwelling region that forms a boundary be-
tween the NEC and the NECC (Fig. 2 (a)). The
28°C isotherm at the surface layer marks one of
the characteristics features of the western
equatorial Pacific Ocean so-called warm pool.
The variability of this warm pool is related to
the ENSO event. Upward inclinations of iso-
therms toward north from the surface layer
down to a depth of 300 db from 17°N to 25°N in-
dicate the STCC. The thermocline rises sharply
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Fig. 2. Vertical cross sections in summer/winter average: (a) potential temperature (interval : 1°C), (b) salin-
ity (interval : 0.1), (c) potential density (interval : 0.10,), (d) Turner angle (interval: 10 degree) overlaid
on salinity distribution, (e) Turner angle (interval: 10 degree) overlaid on salinity distribution taking o
for the vertical axis and (f) potential density-salinity relation in each area. Solid curves in this figure show
potential temperature Dashed line in Fig.2 (e) indicates the extension of salinity minimum. K : Kuroshio,
KCC : Kuroshio Counter Current, STCC : Sub-Tropical Counter Current, NEC : North Equatorial Current,
NECC: North Equatorial Counter Current, NPIW : North Pacific Intermediate Water, NPTW : North
Pacific Tropical Water, NPEW : North Pacific Equatorail Water, STMW : Sub-Tropical Mode Water.
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from about 31°N to the Japanese coast, indicat-
ing the location of Kuroshio (here, abbreviated
as K). The KCC flows westward between 27° N
and 31°N.

Two shallow salinity maximums having dis-
tinct cores exist near the equator at 150 db and
at around 15°N at 160 db (Fig. 2 (b)), respec-
tively. The former corresponds to the NPEW
with a salinity exceeding 35.09, and the latter
to the NPTW with a salinity exceeding 35.02.
The NPEW extends from 3°N to 5°N and its
vertical extension is from 80 db to 250 db. QiU
and JoycE (1992) showed that the maximum
salinity of the core of NPEW exceeds 35.4 and
its location extends from the equator to 5°N.
This means that only the northern fraction of
NPEW is observed in Fig. 2 (b). In contrast to
this limiting extension of NPEW, the NPTW
extends broadly from 9°N to 25°N, and its core
exist between 13°10°N and 16°40'N. The vertical
extension of NPTW is from the surface (at
about 25°N) to 300 db (at about 31°N). These
two cores of salinity maximums are found
roughly at the same isopycnal surface (24.0 gy,
Fig. 2 (e)); however, the NPEW exists on
rather broad isopycnal layers between 22.6 and
20.90,, and the NPTW between 22.6 and 25.3
Og.

In the region from 20 to 30°N and between
the depths of 160 and 400 db, the gradient of po-
tential density is weak (Fig. 2 (c¢)). This water
mass is the STMW. Suca et al. (1989) pointed
out that a major part of the STMW appearing
in this section is formed in the previous winter,
and is advected through the KCC.

We can see a broad extension of salinity
minimum region from 30°N at a depth of 850 db
steeply ascending towards 9°N to a depth of 200
db (Fig. 2 (b)). This salinity minimum water is
the NPIW. The core of NPIW (salinity<34.14)
lies almost on the 26.8 0, isopycnal surface in-
dicating the extension of the NPIW is essen-
tially an isopycnal process (Fig. 2 (e)):
however, it should be noted that the density of
salinity minimum become decreased to the
south of 15°N.

The region where the stratification is
favourable for the onset of salt finger convec-
tion (R,> 3.7 and 45°<Tu<60°) is found in the
bottom half of NPEW and NPTW (Fig. 2 (d)).

This region extends to the upper half of the
NPIW connecting to the bottom half of the
NPEW. Below the NPEW, this region is seen at
depths between 400 and 700 db from 3°N to
10°N. The region where relatively active salt
finger convection can exist (3.7>R,> 2.7 and
60°<Tu<70°) is found just above the core of
NPIW between 15 and 30°N. This area is
essentially found on isopycnal layers between
25.50, and 26.20, (Fig. 2 (e)).

A mean potential density-salinity curve was
determined for each area (Fig. 2 (f)). A sub-
surface salinity maximum exists at all areas. It
is lowest at Area A (34~30°N) with highest
value of density (S~34.73, 0,~24.78) and be-
comes more saltier, but less dense towards
south (S~35.00, 0,~24.14) at Area D (20~
15°N, NPTW). It becomes less salty at Area E
(8~34.92, 0,~24.00, NPTW) to Area F (S
~34.77, 0,~24.35). At Area G, the subsurface
salinity maximum (NPEW) is highest
(~35.05) and 0, is lowest (~23.660, ). A sa-
linity minimum (S~34.15) corresponding to
the core of NPIW is found on 26.8 g4 surface at
Area B and C (30~20°N). This salinity mini-
mum becomes saltier and less dense towards
Area D (S~34.25 and ~26.670,) and Area E
(S~34.40 and ~26.58 04). This feature is also
seen in Fig. 2 (e) as a slight upward inclination
of a trace of salinity minimum (a dashed line)
towards south. This means that the core of
NPIW gradually increases its salinity and tem-
perature transported downward in the course
of spreading to the south, suggesting the salt
finger convection might have a role in this
modification process. These values are summa-
rized in Table 1 together with those for sum-
mer and winter averages. At Areas F and G,
weak salinity maximums (S~34.59) are found
at 26.88 0s and salinity minimums (S~34.52) at
27.2 0, surface. In a layer sandwiched by these
minimums and maximums, favorable condition
for the onset of salt finger convection is satis-
fied (Fig. 2 (d)).

3.2 Seasonal structures of currents and water
masses
The appearances of currents seen in summer
average and winter average (Fig. 3) are essen-
tially same as those in summer/winter
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Table 1. Changes in the salinity maximum (S,..), salinity minimums (S..) and potential density (o,) from

Area A through Area G.

Summer and winter

NPTW NPTW NPTW NPEW
Area A Area B Area C Area D Area E Area F Area G
Stnax 34.73 34.86 34.92 35.00 34.92 34.77 35.05
o 24.78 24.47 24.35 24.14 24.00 24.35 23.66
NPIW NPIW NPIW NPIW NPIW
Shin 34.27 34.15 34.15 34.25 34.40 3453 | -
o 26.94 26.80 26.75 26.67 26.58 2634 | -
Summer
NPTW NPTW NPTW NPEW
Area A Area B Area C Area D Area E Area F Area G
S 34.74 34.87 34.93 34.99 34.94 34.81 35.08
o 24.97 24.51 24.34 24.10 24.06 24.12 24.43
NPIW NPIW NPIW NPIW NPIW
Shin 34.28 34.16 34.15 34.25 34.40 3453 | -
o 26.93 26.80 26.76 26.72 26.57 2639 | -
Winte
NPTW NPTW NPTW NPEW
Area A Area B Area C Area D Area E Area I Area G
S 34.91 35.00 34.94 34.75 35.08
gy | e e 24.33 24.16 24.08 24.36 23.91
NPIW NPIW NPIW NPIW NPIW
Shin 34.27 34.15 34.15 34.25 34.39 3453 | -
o 26.93 26.81 26.78 26.68 26.59 2638 | -

averages (Fig. 2); however, the STCC seems to
be weakened in winter because the development
of mixed layer seems to suppress the upheaval
of the isotherms (isopycnals, Fig.3 (¢) and
(d)). Recently, NoH et al. (2007) used eddy-
resolving OGCM to reproduce the inter-annual
variability of STCC. They showed that the
eddy kinetic energy (EKE) in general is high-
est in summer and lowest in fall, but the value
of EKE showed a variation with latitude. Near
19°N, the EKE is highest in summer and lowest

in winter that is coincided with our results
qualitatively.

Mean structures of water masses in summer
is also essentially same as those in summer/-
winter averages, except that a high tempera-
ture water exceeding 25°C extends farther
north to the Kuroshio region (Fig. 3 (a)). In
winter, as was mentioned above, the surface
mixed layer develops to a depth of 180 db at
31°N and gradually shallows toward south
(Fig. 3 (b)). As a consequences of the deepening
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Fig. 3. Vertical cross sections of (a) potential temperature and (b) potential density in summer, and (c) po-
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Fig. 2.

of the mixed layer, the gradient of potential
density in the STMW area becomes large (for
example, the upheaval of 25.0 04 is suppressed
around 25°N at a depth of 200 db), suggesting
the weakening of the STMW in winter (Fig. 3
(d)). The salinities at the cores of NPTW,
NPEW and NPIW do not change seasonally;
however, g, at these cores slightly changed es-
pecially for the salinity maximums of NPTW
and NPEW (Table 1). The slight upward incli-
nation of salinity minimum of NPIW is also
seen in summer and winter, respectively (not
shown here).

3.3 ENSO composite structures of currents
and water masses

In the summer of El-Nifno periods (1991,

1992, 1998, 2002), upheaval of isotherms inten-

sified in the surface layer between 30 and 25°N

forming a distinct boundary between the KCC
and the STCC (Fig. 4 (a)), suggesting these
currents become strong during the El-Nifio
summer. QIU and Joyce (1992) calculated the
geostrophic transport of KCC, and showed that
the KCC has a tendency of increasing its trans-
port in summer, but strongly affected by the
Kuroshio path, namely, in a meandering year,
the KCC reduces its transport. However, they
did not show any tendency of variability of
geostrophic transport of KCC among El-Nifio,
La-Nina and Normal periods. Thermal struc-
ture in La-Nina and Normal summer is almost
identical (Fig. 4 (c) and 4 (e)). In the winter of
El-Nifio periods, the area of high temperature
layer (>25°C) does not reach beyond 20°N as is
so for La-Nifia and Normal periods (Figs. 4
(b), 4 (d) and 4 (F).

Salinity distributions show changes in the



I37E  pytential Temperature ElNifio Summer

The oceanic structure along 137°E

0
100 (a)
200
300
-
% 400
S
P s00 30.0
a 600 25.0
w
L 700 120.0
S
R 800 NG 15.0
/\'\/\“‘ n 10.0
900
5.0
1000
£ 0 5N 10N 15N 20N 25N 30N 35N Lo
Latitude(deg.)
I37E  potential Temperature LaNifiaSummer
0
100 (c)
200
300
_
% 400
>
o s 30.0
a 600 25.0
w2
L 700 20.0
jo]
Q-q 15.0
800 ,;f_\/\
900 /\W \/\/ e 10.0
5.0
1000
ES 0 SN 10N 15N 20N 25N 30N 35N
Latitude(deg.)
137E .
Potential Temperature NormalSummer
0
100 (e)
200
300
_
g 400
<
o s 30.0
a 600 25.0
v
e 20.0
A 800 /\ 150
900 /\%’/-/J 10
5.0
1000
ES 0 SN 10N 15N 20N 25N 3sn Lo
Latitude(deg.)

137E Potential Temperature EI Nifio Winter

63

0
100 § (b)
200
300
_
% 400 4
=
AR 30.0
a 600 4 5.0
@
2 700 20.0
=
A 800 4 /\/_ﬁ«,_\/\/\u 15.0
“ 10.0
900 "
/\ \\_f[ 5.0
58 0 5N 10N 15N 20N 25N 30N 35N 0
Latitude(deg.)
137E Potential Temperature LaNiiia Winter
o
100
200
300
_
% 400 4
-
AR 30.0
a 600 4 25.0
@
2 700 20.0
=
n‘ 800 4 15.0
900 10.0
5.0
0
Latitude(deg.)
137E . .
Potential Temperature Normal Winter
0
100
200
300
—_
é 400
=
2 00 130.0
3 600 25.0
0
2 20.0
n‘ 800 15.0
900 10.0
5.0
58 0

Latitude(deg.)

Fig. 4. Vertical cross sections of potential temperature in (a) El Nifio summer and (b) El Nifio winter, (¢) La
Nifa summer, and (d) La Nina winter, (e) Normal summer and (f) Normal winter. Abbreviations in the

figure are as same as in Fig. 2.

surface layer above 300 db during ENSO peri-
ods. A low salinity water (<34.00) appears at
the surface between 3 and 11°N in La-Nina
summer and between 7 and 11°N in La-Nifia
winter suggesting the excess precipitation in
the equatorial area during La-Nina periods

(Fig. 5 (¢) and (d)). In El-Nifio periods, low sa-
linity water patches appeared at a depth of 200
db (Figs. 5 (a) and (b)) near 5°N. This water is
found at almost same density surface to that of
NPIW centered on 26.5 04 isopycnal surface
(Figs. 6 (a) and (b)). The formation or
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Fig. 5. Same as in Fig. 4, but for salinity.

transportation mechanism of this low salinity
water in El-Nino periods is unclear at present.
Salinity distributions in Normal summer and
winter (Figs. 5 (e) and (f)) are almost identi-
cal to those of summer/winter average (Fig. 2
(b)).

Mean potential temperature-salinity curves

were determined for each area, and at Area G,
distinct ziggy structures are found during El-
Nifio periods (Fig. 7 (a) and (b)). These struc-
tures are also found in La-Nina and Normal
periods to the lesser extent (Fig. 7 (¢), (d), (e)
and (f)), indicating the high variability of
equatorial region especially during El-Nifio
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Fig. 6. Same as in Fig. 4, but for Turner angle (interval: 10 degree) overlapped on salinity distribution taking

0y for the vertical axis.

periods. These ziggy structures are possibly
caused by the intrusion of saline or less saline
water from the surrounding area. It is interest-
ing to note that these intrusions essentially ex-
ist along isopycnal surfaces without
temperature inversions as is often seen in the

frontal area where eddies or water masses hav-
ing distinct contrast in temperature and salin-
ity collide (e.g., HEBERT et al., 1990; YOSHIDA,
2003). RicHARDS and BaNKs (2002) showed the
existence of such intrusion layers (sometimes
called as “interleaving” because of the existence
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of warm/salty and cool/fresh layers piling up
alternatively) crossing the equator from 3°S to
3°N along 165°E during La-Nifia period and
from 5°S to 5°N along 156°E during El-Nifio pe-
riod. They concluded that the observed

interleaving is the persistent feature in the
equatorial Pacific, and are possibly caused by
both double-diffusive instability and inertial
instability. The region of salt finger favorable
layer does not show remarkable change
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between the ENSO and Normal periods (Fig.
6). This point will be discussed in the following
section.

4. Histogram analysis of Turner Angle (Tu)

Histogram plots of Tu in (a) summer and
winter, (b) summer only and (c) winter only
show no remarkable seasonal variability (Fig.
8). The salt finger favourable layer occupies
489% in the total layer down to 1000 db. The
mode (a peak of occurrence frequency) of Tu
appears in the salt finger regime, and is 61 de-
gree (R,=~3.48), meaning that almost half of
the stratification is favorable for onset of salt
finger convection; however, its activity is not
so high along 137°E. This value is within the
range those obtained by FIGUEROA (1996) and
You (2002) in the central Pacific Ocean.

In each area, such histogram plots of Tu
were conducted to obtain area to area variabil-
ity of the activity of salt finger convection and
summarized in Figs. 9 and 10. The percentage
of salt fingering layer in each area does not

change seasonally, which was above 50% from
Area A thorough Area C (34°N to 20°N), being
the highest in Area B (29°N to 25°N), where
the core of NPIW just exists. It gradually de-
creases to Area E (14 to 10°N corresponding to
the southern edge of NPIW), and increases to
about 50% at Areas F and G (Fig. 9 (a)) be-
cause of high salinity in the upper layer in
these areas. The mode value of R, in each area
also does not change seasonally. It gradually
increases towards south (Fig. 10). The high
mode values in Area F and Area G mean that
the activity of salt finger convection is low in
these areas. The active salt finger regime (72°
<Tu<90°, 1<R,<2) behaves differently. Namely,
the percentage of active salt finger layer is gen-
erally small over the entire area, but is rela-
tively high in Areas A, F and G, especially in
winter (see Fig. 9). This tendency is distinct
during El-Nifio winter (Fig. 11). The percent-
age of active salt finger regime is high and is
up to 7%. This higher value should be due to
the development of ziggy structures in El-Nifio
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winter (Fig. 7 (b)). The percentage of salt fin-
ger layer and modes of do not change from sea-
sonal average among El-Nino, La-Nifa and
Normal periods.

5. Summery

In the present study, we investigated in de-
tail the variability of hydrographic structure
along 137°E line using CTD data obtained from

1990 through 2007. We compared our results to

those obtained by classical Nansen cast data

from 1966 through 1989. In addition, we first
apply density ratio analysis along 137°E line to
discuss the effect of double diffusive convection.

Some results are summarized as follows;

(1) The region where the stratification is fa-
vourable for the onset of salt finger convec-
tion (R,> 3.7 and 45° <Tu<60°) is found in
the bottom half of North Pacific Equatorial
Water (NPEW) and North Pacific Tropical
Water (NPTW), which extends to the upper
half of North Pacific Intermediate Water
(NPIW). This region exists isopycnally on
the surface between 24.0 04 and 26.8 05 per-
sistently along 137°E line.

(2) A slight upward inclination of a trace of sa-
linity minimum along the NPIW core is de-
tected, suggesting that salt finger
convection might play a role in modification
of the NPIW.

(3) The percentage of salt finger layer occupy-
ing in the total layer down to 1000 db along
137°E line is about 48%. The mode value of
Tu is 61 degree (R,~=3.48). These values do
not change seasonally and in ENSO periods;
however, it changes regionally, as is rela-
tively high in mid-latitude and equatorial
region, and is low in the lower latitude.

(4) The active salt finger convection is antici-
pated in equatorial region (3°N to 5°N) es-
pecially in El-Nifio winter. The high activity
of salt finger convection might be associated
with the development of interleaving struc-
ture in this region.

Acknowledgements

This work is a part of Ph.D. thesis of
Lamona I. Bernawis at the Tokyo University of
Marine Science and Technology. This work was
supported by Grant-in-Aid for Scientific

Research from the Ministry of Education, Cul-
ture, Sports, Science and Technology of Japa-
nese Government are greatly appreciated..

References

BiNnGgHAM, F.M., T. Suca and K. Hanawa (2002): Ori-
gin of waters observed along 137°E. J. Geophys.
Res., 107(C12), 3073, doi : 10.1029,/2000JC000722.

FIGUEROA, H. A. (1996): World ocean density ratios.
J. Phys. Oceanogr., 26, 267—275.

HEBERT, D., B.R. RuppicK and N.S. OaKey (1990):
Evolution of a Mediterranean salt lens: Scalar
properties, J. Phys. Oceanogr., 20 (9), 1468 —
1483.

INoUE, R, J. YosHipa, Y. HiroE, K. KomaTsu, K.
Kawasakr and 1. Yasupa (2003): Modification of
North Pacific Intermediate Water around Mixed
Water Region. J. Oceanogr., 59, 211 —224.

Masuzawa, J. (1969): Subtropical Mode Water.
Deep-Sea Res., 16, 463 —472.

Non, Y.,B. Y. Y, S. H. You, J. H. YooN and B. Qiu
(2007): Seasonal variation of eddy kinetic energy
of the North Pacific Subtropical Countercurrent
simulated by an eddy-resolving OGCM.
Geophys. Res. Lett., 34, L07601, doi : 10.1029/
2006G 1029130

Q1u, B. and T. M. JoycE (1992): Interannual variabil-
ity in the mid- and low-latitude Western North
Pacific. J. Phys. Oceanogr., 22, 1092—1079.

REID, J. L. (1965): Intermediate Waters of the Pacific
Ocean. The Johns Hopkins Oceanographic Stud-
ies, No. 2, The Johns Hopkins Press, Baltimore,
85 pp.

RicHARDS, K. J. and H. BANks (2002): Characteristics
of interleaving in the western equatorial Pacific,
J. Geophys. Res., 107 (C12), 3231, doi : 10.1029/
2001JC000971.

Ruppick, B.R. (1983). A practical indicator of the
stability of the water column to double-diffusive
activity. Deep-Sea Res., 30, 1105—1107.

Suuto, K. (1996): Interannual variations of water
temperature and salinity along the 137°E Merid-
ian. J. Oceanogr., 52, 575—595.

STEWART, R.H. (2005): Introduction to Oceanogra-
phy. Department of Oceanography. Texas A&M
University. 344pp.

SucGa, T. and K. Hanawa (1994): Interannual varia-
tions of North Pacific Subtropical Mode Water
in the 137°E Section. J. Phys. Oceanogr., 25, 1012
—1017.

SuGa, T., K. HANAwA and Y. ToBa (1989): Subtropi-
cal Mode Water in the 137°E section. J. Phys.
Oceanogr., 19, 145—175.

SVERDRUP, H. U., M. W. JoHNSON and R. H. FLEMING
(1942): The Oceans: Their Physics, Chemistry
and General Biology. Prentice-Hall, Englewood



72 La mer 51, 2013

Cliffs, New York, 1087 pp.

TALLEY, L. D., (1993): Distribution and formation of
North Pacific Intermediate Water. J. Phys.
Oceanogr., 23, 517—537.

TALLEY, L. D. and J. Y. YuN (2001): The role of
cabbeling and double diffusion in setting the den-
sity of the North Pacific Intermediate Water sa-
linity minimum. J. Phys. Oceanogr., 31, 1538 —
1549.

TsucHiva, M., R. Lukas, R. A. FINE, E. FIRING and E.
LINDSTROM (1989): Source waters of the Pacific
Equatorial Undercurrent. Progr. Oceangr., 23
(2), 101—147.

YosHIDA, J. (2003): The activity of double diffusive
convection investigated through the density ra-
tio distribution in the Mixed Water Region
(MWR) off Joban-Kashima and Sanriku Coasts
to the north-east of Honshu, Japan. La mer, 41,
52—59.

You, Y. (2002): A global ocean climatological atlas of
the Turner angle: implications for double-
diffusion and water-mass structure. Deep-Sea

Res., 49, 2075—2093.

Received: November 2, 2007
Accepted: December 17, 2007
Final form: March 11, 2013



La mer 51 : 73-84, 2013
Société franco-japonaise d’océanographie, Tokyo

I 4 1 0 BT R & 7 A TR O ORI
— Rtz U 72 BRI 75 98 VI & 0D b —

e o I —oR" " - Bz

Fish assemblage structure in an artificial canal on reclaimed land in
Lake Hamana, central Japan: comparison with an adjacent shore zone

Kazuya TAKIGASAKI® and Mitsuhiko SANO

Abstract : To determine whether or not fish assemblage structures differed between a concrete-
walled canal, with a sandy bottom and markedly slower current velocity, on reclaimed land and
the adjacent sandy shore with scattered boulders, sampling using a seine net was conducted in
Lake Hamana, Shizuoka Prefecture, Japan, in March, June and September 2012. The mean to-
tal number of fish species per tow was significantly lower in the canal than along the adjacent
shore throughout the study period, because of the lower number of resident benthic fish species
in the canal. The mean total number of individuals, on the other hand, was greater in the canal
in June due to higher juvenile abundances of the goby Favonigobius gymnauchen and nibbler
Girella punctata, although not in other months. A similarity index indicated a distinct differ-
ence in species composition of the fish assemblages in the canal and along the shore. In addi-
tion, the mean standard length of all fishes collected throughout the study period was
significantly less in the canal. These results suggested that the fish assemblage structures dif-
fered significantly between the canal and shore, with some juvenile fishes preferring the former

environment, despite its lessened suitability for many species.

Keywords : Artificial canal, Fish assemblage, Reclaimed land, Lake Hamana
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Fig. 3. Water temperature (mean *+ standard deviation, n = 4), salinity, dissolved oxygen, water turbidity
and current velocity in the artificial canal (@) and adjacent shore zone ([]) in March, June and Septem-

ber, 2012.
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Table 1. Results of likelihood ratio (LR) tests examining differences in mean physical environ-
mental factors (n = 4) among sites (artificial canal and adjacent shore zone) and
months (March, June and September). Holm-Bonferroni test was conducted when like-
lihood ratio test results indicated significant month effects (p < 0.05).

(a) Water temperature

Explanatory variables df LR x* p Holm-Bonferroni test
Site 1 0.9 0.351
Month 2 8647.1 <0.001
SitexMonth 2 8.6 0.013

Results of likelihood ratio tests examining differences between sites in each month due to a
significant sitexmonth interaction in the above test.

Month Explanatory variable df LR x* p

March Site 1 7.8 0.005 Canal>Shore zone
June Site 1 <0.05 0.867

September Site 1 169.9 <0.001 Canal<Shore zone

(b) Salinity

Explanatory variables df LR x>

P Holm-Bonferroni test
Site 1 0.7 0.405
Month 2 0.6 0.749
SitexMonth 2 4.3 0.118
(c) Dissolved oxygens
Explanatory variables df LR x* p Holm-Bonferroni test
Site 1 0.3 0.615
Month 2 6.5 0.038 Mar.=June>Sep.
SitexMonth 2 0.2 0.888
(d) Water turbidity
Explanatory variables df LR x> p Holm-Bonferroni test
Site 1 1.7 0.196
Month 2 7.0 0.030
SitexMonth 2 6.1 0.048

Results of likelihood ratio tests examining differences between sites in each month due to a
significant sitexmonth interaction in the above test.

Month Explanatory variable df LR x* P

March Site 1 <0.05 0.827
June Site 1 3.1 0.077
September Site 1 1.0 0.320

(e) Current velocity

Explanatory variables  df LR x> p Holm-Bonferroni test
Site 1 59.4 <0.001 Canal<Shore zone
Month 2 12.9 0.002 Mar. >June=Sep.
SitexMonth 2 2.7 0.255
b (Table 3)o —77, #MEKEIZ >V TEIZEIEN

HEHOXMEXICH T 5 1 8 Om*) &
720 OVEERL &R E k5 E Fig. 4.1,
BHEO 1R H 72 OFEE k% % Table 2 12
A UTc, AR, J B TREER & e E iR 2
WBEMEIDERNICE A, WREETIRKES
THEILZL, FLHMHCENED on

BHEE L, SOy, AT EICHAEXBITDZ
ERNBE, 6 HLBOTKBNTHERIIZ -
7z (Tabled)o ZHiE, ZOHITE ANEOH:S
(A 22~40 mm, 45 @K /40m*) & AV F D
fefa (KL 14~34 mm, 22 Mk /40 m®) /K%
PHZZ BB Lzt dTH - 1,
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Table 3. Results of likelihood ratio (LR) tests examining differences in mean numbers of fish spe-
cies (a) and individuals (b) per haul (40 m*, n = 4) among sites (artificial canal and adja-
cent shore zone) and months (March, June and September). Holm-Bonferroni test was
conducted when likelihood ratio test results indicated significant month effects (p < 0.05).

(a) Number of species

Explanatory variables df LR x® p Holm-Bonferroni test
Site 1 6.2 0.013 Canal<Shore zone

Month 2 11.5 0.003 Mar.=June<Sep.
SitexMonth 2 0.9 0.623

(b) Number of individuals

Explanatory variables df LR x* p Holm-Bonferroni test
Site 1 0.5 0.500

Month 2 1.0 0.607

SitexMonth 2 6.5 0.039

Results of likelihood ratio tests examining differences between sites in each month due to a
significant sitexmonth interaction in the above test.

Month Explanatory variable df LR x? P
March Site 1 0.9 0.331
June Site 1 5.6 0.018 Canal>Shore zone
September Site 1 2.4 0.120
"M@ BH, HHEROSEBEICELTY 525 —
w127 STEAT - TAE R, BFMIE 46% T4 >D 7V —
g 10 T B EMNTER (Fig. 5, 4B,
o SHEG6HDKEA (FV—F1) EKkEs (7
5 81 =71, L9 ADOKKN (Fb—F1)
T 6 EREI (FV—=TN) THB, Lihi-T, &
= . %‘ + D HIZB WO T S IIKEEN & KR TR
$ BI85 Tz,
2 2 A é %‘ é PREE U 7o S 4 AR £ & Rk f s 40 U,
0 , , 1 Wil 72 0 O IR & R T X
BIUOHBTRZ 20 ES e~/ (Fig. 6,
900 - Table 4), Z OFEHR, JEAE O FEEIIKEKS
R ® THEIZZ ) - 1ons, PEEK O TRRAE
El KB THERENED ShED -1, BRI
150 1 VT, A & R B O T 1T B 0 T
E KA S bNFztowp, H I EICHERMO:
® 100 - %~ 7z (Table 4), 3 HoHEdEmkfa s 6 Ho
_é’ ® JEAE FE O BAEIT KN THEILZL, 9H
E DEAEREMAIIKENTEZ -7, ThiZ, P8
g 507 B D R 5 O M & REE MO B AN OHE
S % ; famiznzh 3 HE 6 HoKBNT, & irEkE
0 . ‘ HEfONA TN HOKENTRIZZ N HT
Mar. June Sep. » -7z (Table 2),

Fig. 4. Mean numbers of fish species (a) and indi-
viduals (b) per seine net haul (40m* n = 4)
from the artificial canal (@) and adjacent shore
zone ([ in March, June and September, 2012.
Bars indicate standard deviation.
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Fig. 5. Dendrogram of cluster analysis showing similarities of fish assemblages based on the number of indi-
viduals of each fish species in the artificial canal and adjacent shore zone in March, June and September,
2012. Assemblages were divided into four groups (I—IV) at 45% level of similarity.
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Fig. 6. Mean numbers of species and individuals per haul (40 m’, n = 4) of resident benthic (a, ¢) and swim-
ming mid-water (b, d) fishes caught by seine net from the artificial canal (@) and adjacent shore zone
(D in March, June and September, 2012. Bars indicate standard deviation.
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Table 4. Results of likelihood ratio (LR) tests examining differences in mean numbers of species
and individuals per haul (40m®, n = 4) for resident benthic (a, ¢) and swimming
midwater fishes (b, d) among sites (artificial canal and adjacent shore zone) and
months (March, June and September). Holm-Bonferroni test was conducted when like-
lihood ratio test results indicated significant month effects (p < 0.05).

(a) Number of resident benthic fish species

Explanatory variables df LR x* p Holm-Bonferroni test
Site 1 7.6 0.006 Canal<Shore zone

Month 2 0.2 0.914

SitexMonth 2 0.7 0.691

(b) Number of swimming mid-water fish species

Explanatory variables df LR x> P Holm-Bonferroni test
Site 1 0.4 0.537

Month 2 23.0 <0.001 Mar.=June<Sep.
SitexMonth 2 2.0 0.362

(c) Number of resident benthic fish individuals

Explanatory variables df LRx> P Holm-Bonferroni test
Site 1 5.9 0.015
Month 2 20.0 <0.001
SitexMonth 2 19.7 <0.001

Results of likelihood ratio tests examining differences between sites in each month due to a
significant sitexmonth interaction in the above test.

Month Explanatory variable  df LR x* p

March Site 1 2.0 0.158

June Site 1 3.9 0.047 Canal>Shore zone
September Site 1 57.7 <0.001 Canal<Shore zone

(d) Number of swimming mid-water fish individuals

Explanatory variables df LR x* P Holm-Bonferroni test
Site 1 7.1 0.008
Month 2 5.3 0.069
SitexMonth 2 7.7 0.021

Results of likelihood ratio tests examining differences between sites in each month due to a
significant sitexmonth interaction in the above test.

Month Explanatory variable df LR x* p

March Site 1 6.1 0.013 Canal>Shore zone
June Site 1 <0.05 0.977

September Site 1 0.4 0.535

p = 0.001 ; "PFtEpk M, p <0.001), RIZKE
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Fig. 7. Frequency distributions of standard lengths of all resident benthic (a) and swimming mid-water (b)
fishes in the artificial canal () and adjacent shore zone ([(]) during the study period.
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Distribution of the invasive hard clam,
Mercenaria mercenaria, in the intertidal zone of Sanbanze
in the inner part of Tokyo Bay

Junpei SHINJT”*, Shinnosuke TERUYA”, Kensuke ICHIDA?,
Teruki Tomizawa”, Asuka ToMINAGAY and Risa ITo”

Abstract : We investigated the distribution of the invasive hard clam, Mercenaria mercenaria,
and other shellfish in the intertidal area of the tidal flats of Sanbanze in Tokyo Bay. We found
that the distribution of M. mercenaria was negatively correlated with silt-clay content. Almost
all the shellfish collected belonged to 1 of the following 3 species: Ruditapes philippinarum
(41.6%), M. mercenaria (27.7%), or Phacosoma japonicum (24.1%). Within the study site, few
sampling plots were completely occupied. Therefore, M. mercenaria did not strongly out-

compete other species in this study site.

Keywords : distribution, invasive species, Mercenaria mercenaria, Tokyo Bay

1. Introduction

Invasive marine species often have a serious
influence on native ecosystems and local fisher-
1es. The invasive marine hard clam, Mercenaria
mercenaria, was introduced into Tokyo Bay in
Japan in the 1990s (KurozuMmI and OKAMOTO,
2002; NISHIMURA, 2005; HIWATARI and KOHATA,
2005; HIWATARI et al., 2006; SUGIHARA et al.,
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2012). This species is native to the east coast
of North America, where it forms a very im-
portant fishery resource. In Tokyo Bay,
M. mercenaria is distributed in highly eutro-
phic coastal areas and has not yet been ob-
served in other areas in Japan (HIWATARI et
al., 2006). SUGIHARA et al. (2012) reported that
the M. mercenaria populations in Tokyo Bay
might be native to the Florida Peninsula. Fur-
ther, it has been shown that M. mercenaria has
excellent filter-feeding ability (TENORE et al.,
1973) and tolerance for environmental changes,
such as hypoxic and low salinity conditions
(HtwaTARI and KoHaTa, 2005). Such advan-
tages have probably enabled this species to sur-
vive after its introduction into Tokyo Bay. It
has been assumed that this clam may compete
with native species, including commercially im-
portant species such as Ruditapes philippi-
narum (HiwaTart and Kowsata, 2005).
Therefore, it is necessary to clarify the impact
of this invasive clam on native ecosystems.
Only limited information is available about
the environmental factors that affect the dis-
tribution of M. mercenaria in Japan. Obtaining
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Fig. 1. The study site in Tokyo Bay and the location of the sampling plots. Sampling lines (A-D) were 80 m
apart, and the sampling plots were created at 20-m intervals along the lines. The straight solid lines repre-

sent a dike.

more information about the distribution of
both native and invasive clams should be the
first step in evaluating the impact of the inva-
sive clam on native ecosystems. This study was
conducted to provide fundamental information
for further ecological studies. We examined the
tidal flats of Sanbanze in the inner part of To-
kyo Bay in late summer, during which a large
number of M. mercenaria can be found
(NISHIMURA, 2005).

2. Materials and methods

Sanbanze is located in the inner part of To-
kyo Bay and is one of the largest tidal flats in
the bay. Most of the area has a muddy-sand
bottom (AcHIARI and SAKAIL 2007). The survey
was conducted at low tide, during which the
2.69-km”* tidal flats were maximally exposed.
(CHIBA PREFECTURE, 2012). Tt is difficult to ac-
cess the tidal flats except via Funabashi
Sanbanze Kaihin Park (35°40'N, 139°58'E).
Therefore, the study site was prepared within
the park boundary.

A spatial survey was conducted at low tide,
between 10:00 a.m. and 1:00 p.m. on September

5, 2009, when the tidal flats were the most ex-
posed (the lowest tide was at 11:18 a.m.). Four
parallel sampling lines were set at 80-m inter-
vals. The first line was set slightly below the
high tide line, and the last line was set below
the low tide line (Fig. 1). Sampling plots were
created at 20-m intervals along each 80-m line
by installing a 150-cm bar for determining the
water depth at high tide. To analyze mollusk
assemblages, sediment was collected using 30
X 30-cm quadrats at each sampling plot. Sedi-
ment collected 0 —5 em from the surface was
sieved using a 2-mm mesh, and the animals ob-
tained were fixed in 10% formalin immediately
after sampling. To analyze environmental con-
ditions, sediment samples were collected near
each mollusk-sampling site by using 10 X
30-cm quadrats. Sediment temperature was
measured at 3-cm depth by using a stick ther-
mometer. A 0.8-cm-diameter corer was used to
collect a 2-ml sediment core from 0—3 cm below
the surface. This sediment was used to analyze
water content. A 2.7-cm-diameter corer was
used to collect a 100-ml sediment core from 0—
3 cm below the surface. This sediment was used
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Table 1. Density of animal species collected along sampling lines in Sanbanze (mean=standard deviation [SD]).
Each sampling line contained 3—4 sampling plots.

Density (individuals/m?) Number of

Class Family Species plots where
Line A Line B Line C Line D present

Bivalvia Mactridae Mactra veneriformis 3.7£6.4 8.3£10.6 3
Tellinidae Macoma incongrua 2.84+5.6 1

Solenidae Solen strictus 8.3110.6 2

Veneridae Mercenaria mercenaria 2.8%45.6 44.47£50.9 41.7+16.7 27.8*£11.1 1

Phacosoma japonicum 3.7t6.4 11.1+15.7 T77.8+76.4 7

Ruditapes philippinarum 85.2£78.8 55.6£27.2 38.9+14.3 10

Cyclina sinensis 2.8£5.6 1

Polychaeta Polychaeta sp. 47.24+38.9 44.4+50.9 2.8£5.6 13.9*16.7 8

to determine sediment characteristics.

Animals were sorted into species or taxa.
They were then counted and their density was
calculated. To analyze sediment water content,
samples were weighed before and after drying
at 105°C for 5 h, and the water content was cal-
culated from the difference in mass. To analyze
the sediment characteristics, samples were
treated with 30% hydrogen peroxide to remove
organic compounds and then dried at 60°C for
96 h. The composition of sediment grain sizes
was determined using a series of sieves with 2-,
1-, 0.5-, 0.25-, 0.125-, and 0.063-mm meshes, and
the median grain size and silt-clay content were
measured.

For homogeneity of variance and normality,
all numerical data were log-transformed and
percent data were arcsine transformed, as
per the study by Zar (1984). Differences be-
tween the means of environmental factors
along each sampling line were compared using
one-way analysis of variance (ANOVA) and
Bonferroni’s method. Pearson’s product-
moment correlation coefficient was calculated
between major bivalve species. The correlation
coefficient was tested using a t test. Stepwise
multiple regression analysis was performed to
examine correlations between the density of M.
mercenaria and environmental conditions. Dif-
ferences were considered significant if the asso-
ciated p-value was less than 0.05.

3. Results and discussion

Seven bivalve species were found in the study
site (Table 1). A vast majority of these bivalves
were 1 of 3 species of filter feeders: Of the
total number of bivalves found, 41.6% were
R. philippinarum, 27.7% were M. mercenaria,
and 24.1% were Phacosoma japonicum.
M. mercenaria was found in a greater number
of sampling plots (11 sampling plots) than any
of the other species. Thus, the invasive clam,
M. mercenaria, was one of the dominant spe-
cies in the study site. The distribution of
M. mercenaria was similar to that of
R. philippinarum, and few sampling plots were
entirely occupied by M. mercenaria. NISHIMURA
(2005) reported that, although the number of
individuals varied between seasons and places,
80% of all samples acquired in 2002 from Chiba
Port in Tokyo Bay were M. mercenaria. We
observed no such extreme dominance, and
there was no negative correlation between the
density of M. mercenaria and that of the other
2 major species, namely, R. philippinarum (R=
0.59; P < 0.05) and P. japonicum (R=0.17; P >
0.05). These results imply that the presence of
M. mercenaria did not exclude other species
from the study site. Therefore, there was no
evidence that M. mercenaria strongly out-
competes other species in the study site.

Sampling lines A —C in this study were
placed in the intertidal zone, and line D was in
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Table 2. Environmental conditions, species richness, and total density of collected animals along
sampling lines in Sanbanze (mean &+ standard deviation [SD]).

Line A Line B Line C Line D
Water depth at high tide (cm) 62.5+5.0° 95.0+10.0° 118.84+4.8° NA*

Emersion (h) 7.1+0.3° 5.3%0.6" 4.27%0.3° 0.0%0.0"

Temperature (°C) 32.1+0.3° 30.3+1.2° 29.4+0.5" 26.1+0.8°

Water content (%) 23.02.0° 20.51+6.2° 21.1+2.6° 27.4%0.9"

Median grain size (#m) 78.316.5 103.7+12.0" 88.4£6.0" 82.4+4.2°

Silt-clay contents (%) 7.8+4.5° 0.3+0.2° 0.4+0.2° 0.7+0.3"

Species richness 1.0£0.0" 2.7+1.5" 3.3+1.0° 4.5+0.6"
Density (individuals/m?) 50.0+34.5" 136.1+107.5" 116.7+32.1° 175.0%80.8"

Different letters within rows indicate significant differences (n = 3—4; P < 0.05).
* The water depth at high tide on line D was deeper than 150 c¢m, which is the length of the bar used

to measure water depth in this study.
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Fig. 2. Correlation between silt-clay content and the
density of M. mercenaria in sampling plots (30
%X 30 cm®) located in Sanbanze mudflat in Tokyo
Bay.

the subtidal zone. Although the water depth at
high tide and emersion differed between lines B
and C, the environmental conditions were simi-
lar along these 2 lines (Table 2). The following
formula was obtained using stepwise multiple
regression analysis:

y = —0.038x + 0.707 (r = 0.71),

where y is the density of M. mercenaria and

x 1is silt-clay content. The distribution of
M. mercenaria in this study was negatively
correlated with silt-clay content (Fig. 2). No
other correlations were observed between envi-
ronmental conditions and the abundance of
M. mercenaria. The negative correlation be-
tween sediment silt-clay content and density of
M. mercenaria was conspicuous along sampling
line A (Tablel, 2). It has been reported that
the presence of 44 mg/L of silt in the water de-
creases the growth rate of M. mercenaria
(BRICELJ et al., 1984). Such changes in growth
rate may depend on the efficiency of selection
between nutritious substances and suspended
sediments in the water (BRICELJ and MALOUF,
1984). It may be that the high silt-clay content
observed in all the sediments was caused by
a large quantity of suspended sediments in
the water at high tide. The absence of
M. mercenaria at line A may therefore be due
to high silt-clay content of the water in that
area. However, the silt-clay content of the sedi-
ments was approximately 8% or less along all
sampling lines, including line A, which had the
fewest individuals of this species. Contrary to
the results of our study, Nistr et al. (2008) re-
ported that M. mercenaria was found in several
areas of Yokohama Port, which opens into in
Tokyo Bay, where the silt-clay content was
more than 15.7% and the substratum had low
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oxidation-reduction potential. Although our
study results do not indicate the reason for
this difference in silt-clay content between
Sanbanze and Yokohama Port, it is assumed to
be one of the reasons that the study site used
by NisHI et al. (2008) and that used in our
study were geomorphologically different. The
study site used by NisHI et al. (2008) was lo-
cated in a canal, whereas in our study, the site
was an intertidal zone in a tidal flat. Sediments
are well-raised from surf zone to swash zone
(SuuTo, 1988), and the intertidal zone in this
study was within these zones. Therefore, the
study site used by NisHI et al. (2008) is as-
sumed to be less affected by waves from the sea
than the site used for our study. The negative
correlation we observed between silt-clay con-
tent and the density of M. mercenaria may re-
sult from geomorphological features that cause
a relatively large amount of suspended sedi-
ment in areas with high silt-clay content. In
this study, we did not directly test this hy-
pothesis. Therefore, a more detailed survey and
additional experiments are necessary, even
though it appeared that silt and clay were
among the major factors that affected the dis-
tribution of M. mercenaria in the study site.

In this study, we investigated the distribu-
tion of M. mercenaria in a part of Sanbanze.
M. mercenaria is abundant in Sanbanze, as it is
in other places in Tokyo Bay (NISHIMURA, 2005;
NIsHI et al., 2008). Our study data should help
to clarify the distribution of M. mercenaria in
Tokyo Bay. Furthermore, Sanbanze faces land
subsidence; the area of the tidal flats has de-
creased by over 50% over the past 3 years, pri-
marily because of the Great East Japan
Earthquake (CHIBA PREFECTURE, 2012). There-
fore, this study, which describes the biological
distribution of bivalves before the Great East
Japan Earthquake, can also be used as a base-
line survey for tracing ecological and geo-
graphical changes after the earthquake.
Further research is required to obtain more de-
tails about the distribution of the invasive spe-
cles, M. mercenaria.
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Numerical simulation on sedimentation in Yangon River
and its navigation channel

Tok Tor AuNG”, Takenori SHIMOZONO and Akio OKAYASU®

Abstract : A shallow area called, Inner Bar, near Yangon Port is a major obstacle for Yangon
River traffic. In order to obtain basic information for the sedimentation problem, characteris-
tics of flow, sediment transport and bed level changes were investigated for Yangon River and
its navigation channel by means of numerical simulation. 3-D Princeton Ocean Model (POM)
with a wetting and drying scheme was used to cope with large tidal ranges for predicting the
river and tidal flows. Topographic data, upstream river discharges and tidal elevations at the
river mouth were given as the input data for the models. Computed depth-averaged velocity
was verified against field data of NELSON (2000). Bed shear stress was evaluated from bottom
velocity calculated by the 3-D flow model. Bed level change was simulated with a 2-D sediment
transport model for different seasonal and tidal conditions. Sediment diameter used in the cal-
culation was obtained by sand sampling from material of Inner Bar. The simulation clearly
showed large amount of sand deposition at Inner Bar and some other areas in the river. Esti-
mated amount of sedimentation around Inner Bar was roughly equivalent to that of bottom
material dredged by Myanmar Port Authority to maintain the depth.

Keywords . Yangon River, sedimentation, numerical calculation, tide, wetting and drying

1. Introduction

Sedimentation in rivers and estuaries is a
common problem for maintenance of water-
ways. The river fresh water and daily or twice-
daily reversing flows due to tidal action make
flows in estuaries and tidal section of rivers
complex. Fig. 1 shows the area of interest for
the present study, the Yangon River which is
on an eastern branch of Ayeyarwaddy River.
The Ayeyarwaddy River is the fifth largest in
the world in terms of sediment discharge, de-
positing more than 360 million tons of sedi-
ment annually into the continental shelf in the
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Fig. 1. Locations of Yangon River and Estuary and
the two sand bars, Inner Bar and Outer Bar
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northern Andaman Sea. Yangon River is the
most important river to Myanmar for 90% of
its international marine trades are transported
through this channel. The distance between the
Yangon Port and the river mouth is about
45 kilometers and the width of river in the re-
gion is from 2 kilometers to 7 kilometers. Ac-
tive sediment transport due to river flows and
tidal currents causes two major shallow water
areas; one 1s called “Inner Bar” located inside
the river near Yangon Port and the other is
“Outer Bar” which extends out from the river
mouth as shown in Fig. 1. Dredging works are
required to maintain depth of the channel at
these areas. Despite knowledge gathered on the
Yangon River and Estuary system, little infor-
mation is currently available on the behavior of
sediment transport caused by the river flow
and the tidal currents. Therefore it is difficult
to take effective measures for sedimentation
other than dredging.

There were some researches focused on the
problem due to sedimentation at shallow water
areas in Yangon River. SIR ALEXANDER GIBB
and PARTNERS (1974) investigated physical con-
ditions of Yangon River through an extensive
field study. NELSON (2000) conducted a field
study on the behavior of fine-grained sediment
in Yangon River by measuring the current
speed, depth, salinity and sediment concentra-
tion. CHINA TRANSPORTATION ENGINEERING
(2006) made a proposal on an improvement of
the conflux of the Yangon River, Pazundaung
Creek and the Bago River. They proposed three
types of dikes for controlling the main flow.
Tote ToE AUNG et al. (2011) computed flows
and sediment transport in Yangon River by a
2-D numerical model. In their paper, sediment
transport was simulated from depth-averaged
velocity given by the 2D flow model and sedi-
ment particle size (8 to 50 um and the mean di-
ameter is 11 um) used in the calculation was
based on the results of field study by SIR
ALEXANDER GIBB and PARTNERS (1974), where
actual sediment diameter at Inner Bar was
much larger than that used in the calculation.

Although near-bottom velocity generally
gives a dominant effect to sediment transport,
most of the previous studies didn’'t consider
three dimensionality of the flow field. Since the

tidal range in the area is very large, dry-up of
the river bottom should also be considered in
the calculation. In this study, 3-D Princeton
Ocean Model with the wetting and drying
scheme was used for flow evaluation to obtain
the near bed velocity fields which are impor-
tant both for bed load and suspended sediment
transport. Sediment diameter of interest is an-
other important factor for evaluation of sedi-
ment transport. Thus, a field observation was
carried out to obtain the sediment diameter of
which forms the shallow area at Inner Bar.
Then, 2-D sediment transport has been com-
puted by using the calculated bottom velocity
and water surface elevation resulted from the
flow model and the sediment diameter obtained
from the field observation described above. It
was assumed in the present study that near-
bottom sediment transport is dominant also
for suspended sediment transport. Thus veloc-
ity calculated by the 3-D flow model for the
bottom layer was used to evaluate suspended
load in the 2-D sediment transport model. The
deposition rate of sediment at Inner Bar was
evaluated and compared with the amount of
dredging conducted by Myanmar Port Author-

ty.

2. MODEL DESCRIPTIONS
2.1 Flow model

The 3-D Princeton Ocean Model (POM) with
a wetting and drying scheme was used for the
investigation of flow characteristics in Yangon
River. The Princeton Ocean Model (POM) is a
three-dimensional, primitive equation, numeri-
cal ocean model, mainly used for solving the
hydrodynamics in the coastal region and bays
and estuaries (BLUMBERG and MELLOR, 1987).
The POM employs a finite difference scheme to
numerically solve the primitive equations. The
model is calculated with external and internal
modes; the external mode portion of the model
has short time steps for the 2-DH flow field
and the internal mode has long time steps to
evaluate its vertical distribution. The horizon-
tal finite difference grids can be rectangular
(as used in this study) or curvilinear orthogo-
nal, while the vertical grids are in sigma coor-
dinates which are the normalized vertical
coordinates with the water column depth. The
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use of sigma levels gives better resolution of
the boundary layers. Detailed information on
the formulation and derivation of these equa-
tions including the definitions for each variable
and formulas for the specific terms in these
equations were included in the POM User’s
Guide (MELLOR, 2004).

POMO08 with wetting and drying (WAD)
scheme (OEY, 2005) was used in this study
among versions of POM. Wetting and drying
process was considered to account for the dry
up areas due to high tidal ranges. For the use
of WAD scheme, it is necessary to define the
absolute land boundary (ALB) which must be
high enough in elevation, so that water can
never split into that area. In the land side of
ALB, the area was always dry and the land
mask FSM (time-independent land mask) and
WADMASK (time-dependent mask for wet and
dry condition) are set to be 0. Toward the sea-
ward of the ALB, FSM is 1 and WADMASK
was 1 or 0 depending on whether the cell is wet
or dry (OEY, 2006). In Oey’s WAD scheme, a
minimum depth (dry depth=5 cm) is defined
to determine the “dry” or “wet” state of each
cell. When the total depth (D), which is the
summation of water depth (H) and elevation
(n), falls below the minimum depth, cells are
considered as dry.

In this study, ALB were located along the
river bank so that the water did not flood over
the bank because the bank slope was relatively
steep and the actual flood distance due to high
tides were smaller than a grid size. The wet and
dry process was calculated only for shoals
within the river channels. Based on the Oey’s
scheme, the calculation was done with dry
depth of 5 ecm as the minimum depth to calcu-
late velocity. 5 ecm was set as the lowest limit
for calculation and if the water depth was less
than 5 em, the corresponding flux was set as
zero. From the results of the flow model in the
study area shown in Fig. 6, it can be seen that
WAD scheme is capable of calculating well for
high tidal condition in the study area as illus-
trated in Fig.7. Without WAD scheme, compu-
tations break down at the ebb tide due to the
large tidal range.

Simulations were made for two different sea-
sons, the monsoon and the dry season, since the

seasonal variation of river discharge was sig-
nificant. Moreover, the simulation was carried
out on two tide conditions; spring tide with a
tidal range of 5.2 m and neap tide, 1.8 m. There-
fore the model was run for four cases
(Table 2); spring tide at monsoon and dry sea-
son and neap tide at monsoon and dry season.
Before computing the sediment transport, the
Shields parameter was calculated by using the
bottom velocity results from the flow model
and the sediment particle sizes obtained from
field study described in Chapter 3. From distri-
butions of Shields parameter calculated for
each case, possible sediment deposition areas
can be estimated with a sediment transport
model.

2.2 Sediment Transport Model

The velocity and water depth were interpo-
lated from the results of the flow model for the
required time step according to the courant
number and used as input data for sediment
transport model. The governing equation for
the suspended sediment transport is the
advection-diffusion equation with the entrain-
ment and deposition terms,

o(CD) , 9(uCD) , 0(vCD) _

ot ox oy

ey

Symbol ¢t is time, D is total water depth, € is
eddy viscosity, u and v are the velocity compo-
nents in x and y direction, w;, is settling velocity
of sediment in water, C is depth-averaged sedi-
ment concentration, C, is near bed concentra-
tion and E; is dimensionless rate of sediment
into suspension across unit area per unit time.
As described in the previous section, velocity at
the bottom layer is used for evaluation of sus-
pended load in the present study.

The eddy viscosity is calculated by LANE and
KALINSKE (1941) as

e=1/D [e(Z)dz = u.KD/6 @

where u. is the shear velocity at the bed and K
is the Karman constant. The entrainment of
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sediment is calculated by the formula of
GARCIA and PARKER (1993),

E = 7144 @

A =137x10",Z, = (' /w)’ R,

R,, =+ RgD./v,R = (p,/0) —1.

where R,, is particle Reynolds number, o, 0 are
density of sediment particle and water, v is the
kinematic viscosity of water, D, is diameter of
sediment particle. The settling velocity w, is
calculated by the formula of CHENG (1997).

@D, _ (f5viza -5 )

where,
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v

By assuming a vertical distribution of sedi-
ment concentration to be Rousean profile
(ROUSE, 1937), the near bed concentration is
evaluated by C,=7, C. PARKER et al. (1987)
gave a simple fit to the profile and derived the
following expression for 7,,

n::1+3L5<gf>ﬂ% ®)

s

By the combination of suspended sediment and
bed load, the bed level change, Z, is calculated
by the bottom evolution equation

_ Gsz o ang/ ~
or oy +w (C,—E) (T

. N\0Z,
A=2)75, =
A, 1s the bed porosity. The bed load transport
Gvey 4, 1s evaluated by the Meyer-Peter and
Muller equation (MEYER-PETER and MULLER,
1948)
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Fig. 2. Bathymetry of Yangon River and boundary
elements for calculation. Section A-A’ shows the
location of field survey conducted by NELSON
(2000). P shows one of the point in the Inner Bar
and P1 indicates the location for velocity com-
parisons given in Fig. 5. (The datum of bathy-
metry is the lowest low water level.)

7. and 7., are the base shear stress and critical
shear stress. The MacCormack Scheme is used
for discretization (FENNEMA. and CHAUDHRY,
1990).

2.3 Input Data and Boundary Conditions
Bathymetry, discharge of the three rivers
and the tidal elevation at the river mouth were
given to the flow model as the input data. The
calculating area of the Yangon River lies be-
tween 16°30'N to 16°47'N latitude and 96°10'E
to 96°20'E longitude. The bathymetry data was
created by digitizing the sounding chart pro-
vided by MYANMAR PORT AuTHORITY (2007)
shown in Fig. 2. The grid spacing was 6 seconds
for both latitude and longitude (approximately
170 meters at the site) and 6 vertical sigma lev-
els were determined. The external time step in
the flow model was 1 s and the internal time
step was 4 s according to Courant-Fredrics-
Levy (CFL) condition. The discharge data of
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Table 1. Discharge data of three rivers in dry and monsoon (rainy) seasons

Dry Season Monsoon Season
(m*/s) (m*/s)
Yangon River 627 6853
Pazundaung Creek 143 866
Bago River 315 1566

Fig. 3. Dredging ship and bottom material (mixture
of sand and water) taken from Inner Bar (16°
45.817N and 96°11.945'E) on 16" September 2010.

three rivers for dry and monsoon seasons were
shown in Table 1. These discharge data were
from the field data of SIR ALEXANDER GIBB and
PARTNERS (1974). The tidal range varied be-
tween 5.2 m and 1.8 m near the city of Yangon
(Myanmar Port Authority).

The present computational domain had three
up-stream inflows and an outflow boundary at
the river mouth as shown in Fig. 2. Estimated
discharges of the upper three rivers were con-
stantly given at the inflow boundaries while
the sum of them was discharged from the out-
flow boundary. For the tidal current, water
surface elevation and the corresponding tidal
velocity were given at the outflow boundary as-
suming in a form of sinusoidal waves. To sim-
plify the model, the temperature and salinity
which supposed to be less important for bed
level change in rivers were kept constant dur-
ing the simulation.

For sediment concentration, the inlet of the

three rivers and outlet of the river were
assumed to be in equilibrium state for given
flow velocities. Sediment diameter was set at
0.338 mm based on the field result obtained for
the Inner Bar as described below.

3. Sampling of Sedimentation Material

Particle size is one of the most important pa-
rameters for sediment transport. Since amount
of sediment transport is greatly affected by
sediment diameter, an appropriate sediment di-
ameter should be chosen to evaluate sedimenta-
tion at Inner Bar. In the previous studies,
sediment diameter in the Yangon River system
was only given for suspended sediment (e.g.
SIR ALEXANDER GIBB and PARTNERS, 1974)
whose representative diameter is usually much
different from that for bed materials.

In order to give an appropriate grain size of
bed materials to the numerical model, field ob-
servation was conducted at the Inner Bar area
in Yangon River on 16 September 2010. Sedi-
ment sample was taken from bed materials on
a dredging ship (Fig. 3) being operated to
dredge sediment deposited at Inner Bar.

The distribution of particle diameters was
obtained by the sieve analysis for the bed mate-
rial. Although it was observed that the sus-
pended sediment sampled near river surface
was composed of very fine sand, clay and silt
with diameters ranging from several um to a
hundred gm, the bed material from Inner Bar
had ds diameter of 0.338 mm which was much
larger than the suspended material. The grain
size distribution curve for the bed material is
shown in Fig. 4. Therefore in the present study,
diameter of 0.338 mm is used as the representa-
tive sediment diameter for the bed materials in
order to evaluate sand movement causing Inner
Bar sedimentation.
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Table 2. Four conditions of calculation in terms of tidal rage and river discharges.

Monsoon Dry
Spring tide (5.2 m tidal height) Case 1 Case 2
Neap tide (1.8 m tidal height) Case 3 Case 4

Grain Size Distribution Curve

R

5
o
e

10.0
0.0 /

0.010 0.100 1.000 10.000

Grain size(mm)

Fig. 4. Grain size distribution curve for bed material
from the Inner Bar Area.

4. Results and Discussions
4.1 Calculated depth-averaged flow field and
comparison with field data

Flow velocity for spring tide at monsoon sea-
son (Case 1 in Table2) is shown in Fig. 5.
Fig. 5. (a) and (b) give the depth-averaged ve-
locity fields at the ebb and the flood tide condi-
tions for spring tide at monsoon season,
respectively. During ebb tide, the flow direction
is seaward. During flood tide, the flow was di-
rected towards the upstream of the river, since
the river discharge only had a limited influence
to the overall flow pattern. Comparisons of the
surface and bottom flow velocity at ebb and
flood tide conditions show that the bottom ve-
locity is generally smaller than the surface ve-
locity but the flow directions and patterns are
similar.

To verify the numerical simulation, the cal-

Fig. 5. The depth-averaged velocity fields for (a) ebb tide and (b) flood tide at spring tide during the monsoon

season
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Fig. 6. The depth-average velocity for (a) spring tide in the monsoon season, (b) spring tide in the dry season
and (c) neap tide in the dry season at point P1. The dotted lines show the field results of NELSON (2000).
(The lines with positive values are at flood tide condition and those with negative values are at ebb tide

condition.)

culated depth-averaged velocities were com-
pared with field results obtained by NELSON
(2000) at the 10 km downstream of the Yangon
Port (A-A’ cross section in Fig. 5). The simula-
tion was done for three conditions; the spring
tide in monsoon season, the spring tide in dry
season and the neap tide in dry season accord-
ing to the conditions for Nelson. The field ob-
servation of Nelson gave the maximum depth-
averaged velocity for the spring tide in
monsoon season and the neap tide in dry sea-
son. But for the spring tide in dry season, it
gave only one value for velocity and did not
mention whether it was depth-averaged veloc-
ity or maximum velocity.

Time variations of depth-averaged velocity
calculated at P1 indicated in Fig.5 are shown in

Fig. 6, although information of the exact meas-
urement location is not provided in NELSON
(2000). The dotted straight lines correspond to
the values of depth-averaged velocities obtained
by Nelson. The model results of the spring tide
in monsoon season and the neap tide in dry sea-
son are in good agreement with the field data.
In the case of spring tide at dry season, the
model result for flood tide velocity is nearly
equivalent with the field result but the model
result for ebb tide velocity is smaller than the
field measurement. The discrepancy might oc-
cur due to the lack of information of the exact
locations of the field study area. Since the dif-
ference is found in the ebb tide condition, an-
other possible reason can be the river discharge
which might be larger at the time of
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Fig. 8. The magnitude of depth-averaged velocity (m/s) for (a) ebb tide and (b) flood tide.

measurement. The river discharge used in pre-
sent model was from SIR ALEXANDER GIBB and
PARTNERS (1974) which were older than
NELsoN (2000).

4.2 Results and Discussions for flow model
The velocity fields, depth-averaged velocity

and velocity for each layer of depth, water sur-

face elevation with respect to the mean sea level

at the ebb and flood tide conditions were ob-
tained respectively for the four cases listed in
Table 2.

The results on the spring tide at monsoon
season (Case 1 in Table 2) are shown in Fig. 7
and 8. Fig. 7 (a) and (b) show the water sur-
face elevation for ebb and flood tide conditions,
respectively. Some dry areas where the water
surface elevation is expressed as 0 for practical
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Table 3. Calculated bottom velocity and resulting Shields parameters at Inner Bar which is indicated

by symbol “P” in Fig. 1.

Period Tidal Forcing | Tidal condition | Bottom Velocity (m/s) | Shields Parameter

Flood 0.55 0.0091
Spring

Ebb 0.45 0.0084

Monsoon

Flood 0.24 0.0022
Neap

Ebb 0.23 0.0017

Flood 0.44 0.0073
Spring

Ebb 0.41 0.005

Dry

Flood 0.082 0.0002
Neap

Ebb 0.078 0.0002

purpose can be observed clearly in the ebb tide
condition while flood water filled up the dry
area. Fig.8 (a) and (b) show the magnitude of
depth-averaged velocity values for ebb and
flood tide conditions, respectively. The largest
velocity occurred in the downstream of the
Yangon River and the magnitude of the depth-
averaged velocity during ebb tide and flood tide
were up to 1.7 m/s. The magnitude of depth-
averaged velocity takes its minimum near the
junction of the three rivers as well as the places
associated with the shallow water areas. This
might be because flows from rivers with differ-
ent directions met each other at the junction
and some parts of their velocities cancelled each
other out.

The model results in the monsoon and dry
seasons for one of the point (indicated by P in
Fig. 2) near Inner Bar area under both of the
spring and neap tide conditions are shown in
Table 3 together with Shields parameter calcu-
lated for sand diameter of 0.338 mm. It can be
seen that the bottom velocities of flood tide
were slightly larger than those of the ebb tide
for all cases. The resulting values of the Shields
parameter near Inner Bar area were very small
and indicate that sediment deposition should
occur around the area.

The results of the other three cases, Case 2, 3
and 4, are not shown in the figures but gave
similar characteristic with Case 1. For water
surface elevation, dry-up areas were calculated
during ebb tide condition in very shallow areas.

The depth-averaged velocities for Case 2 (neap
tide at monsoon season) were varying from 0.2
to 0.6 m/s. For Case 3 (spring tide at dry sea-
son), the velocities were about 0.4 to 1.5 m/s. It
was found that the magnitudes of depth-
averaged velocity were about 0.1 to 0.5 m/s in
Case 4 (neap tide condition at dry season).

4.3 Sediment Transport and Bathymetry
Change

Calculations for sediment transport were
performed for the four cases given in Table 2.
The ratio of the suspended load and bed load
transports in the calculation around the Inner
Bar area was roughly evaluated as 9 : 1. The
combined results of suspended load and bed
load transports are used in the calculation of
bed level change and the evaluated bed level
changes are shown in Figs. 9 to 12. In each fig-
ure, sub-figure (a) and (b) represent the accu-
mulated bed level changes for one ebb tide (a
half of one tidal cycle) and one flood tide and
sub-figures (c) represent those for one whole
tidal cycle. The zero value represents the initial
river bed and negative values represent erosion
and positive values are for deposition. From the
results, it is found that the deposition and ero-
sion are larger in spring tide conditions than
those in neap tide conditions for both monsoon
and dry seasons. Please note that the scales for
sedimentation are different between the figures
for spring tide conditions (Figs. 9 and 10) and
those for neap tide conditions (Figs. 11 and 12).
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Fig. 9. Accumulated bed level change (m) for (a) ebb tide and (b) flood tide condition and (c) one tidal cycle at

spring tide at monsoon season.

The results indicated that the deposition oc-
curred around Inner Bar (indicated by the
symbol P in Fig. 2) for all the cases. Remark-
able deposition is seen just at Inner Bar for the
case of spring tide at monsoon season (Fig. 9
(¢)) in particular. In other areas, sediment
deposition and erosion patterns are consistent
with our preexisting knowledge such as other
sand bar areas out of the navigation channel

and the downstream around the Chokey Point
(see Fig. 1) area where erosion occurs in both
monsoon and dry seasons.

To maintain the required depth of the navi-
gation channel, Myanmar Port Authority
(MPA) does dredging operation by a dredging
ship every day. The capacity of the dredging
ship is approximately 1000 m® and it gets sand
of four to six times of its capacity per day near
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Fig. 10. Accumulated bed level change (m) for (a) ebb tide and (b) flood tide condition and (c) one tidal cycle

at spring tide at dry season.

the Inner Bar area. Although it is difficult to
estimate the exact volume of dredged material,
the amount of it is roughly estimated as 6 X
10* m’ per day.

From the calculation, rate of deposition
at Inner Bar is evaluated to be around 0.04 m
per day. If the area of Inner Bar is assumed
to be about 1.4 X 10° m* (roughly estimated as
1400 m by 100 m from the dredging area and

the bathymetry), the amount of sand deposi-
tion in a day in the spring tide at monsoon sea-
son is estimated by multiplying deposition
depth to the estimated Inner Bar area and
it was about 6 X 10° m® which is equivalent to
that obtained by the dredging amount. As the
calculated rate of deposition at neap tide condi-
tions is much smaller, about 2 X 10° m’ per day,
the overall evaluation of sedimentation should
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Fig. 11. Accumulated bed level change (m) for (a) ebb tide and (b) flood tide condition and (¢) one tidal cycle

at neap tide at monsoon season.

be much less. It can however be concluded that
the model evaluation of sedimentation is fairly
good.

5. Conclusion

In the present study, characteristics of flow
fields and resultant sediment transport were
investigated by numerical simulation for the
navigation channel in Yangon River. The flow

fields were evaluated by using the 3-D Prince-
ton Ocean Model (POM) with a wetting and
drying scheme to evaluate near-bottom velocity
in very shallow areas. It was found that the ve-
locity at flood tide was generally larger than
that at ebb tide. Along the navigation channel,
velocity was larger at downstream of the river,
however, smaller near the junction of the three
rivers, Yangon River, Pazundaung Creek and
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Fig. 12. Accumulated bed level change (m) for (a) ebb tide and (b) flood tide condition and (c¢) one tidal cycle

at neap tide at dry season.

the Bago River where the Inner Bar exists. The
calculated velocity showed the reasonable
agreement with the field data of NELSON
(2000).

Calculated near-bottom velocity was put into
the sediment transport model to evaluate sedi-
ment deposition and erosion in the channel.
From field observation, d sand diameter for
the Inner Bar material was 0.338 mm, which

was used in the sediment transport calculation.
In all tide and seasonal conditions, sand deposi-
tion is observed around the Inner Bar area. It
was found that the sedimentation occurs more
heavily at the spring tide condition than the
neap tide condition. Thus it can be concluded
that the present simulation reflects the basic
mechanisms of flow and sediment transport
around the navigation channel in Yangon
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River and can reproduce the actual sand deposi-
tion at the Inner Bar fairly well.

The numerical model is expected to be a pow-
erful predictive tool for considering a new
measure to maintain the navigation channel
and the depth around the port areas in Yangon
River. In the further, more reliable field data
would be however needed not only for provid-
ing accurate conditions for calculation, but also
for the verification of the model results.
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Development of seedling cultivation methods for transplantation of young

Eisenia bicyclis and Ecklonia cava plants by using settlement devices

Kuo T1aN”, Mineo OKAMOTO", Singo KaMOSHITA”, and Itaru IWATA

Abstract : We developed seedling cultivation methods for transplantation of young FEisenia
bicyclis and Ecklonia cava plants using settlement devices (SDs). Experiments were conducted
using four settlement devices consisting of (1) flat unglazed china, (2) unglazed china with
small hollows, (3) two (06 and 07) slag-ceramic interfaces with minute (3—10 um diameter)
pores. No seaweeds grew on the flat unglazed china in a seawater circulation tank on land after
release of E. bicyclis zoospores. Hollow china and 06 slag-ceramic SDs were deployed at depths
of 0 m, 0.2 m, and 2 m in a forest of E. bicyclis for 6 months. The sun-illuminated sides of SDs
were fully covered by small seaweeds (excluding Eisenia) depending on the depth (Ulva at a
depth of 0 m, Chondrus at 0.2 m, and Chondrus and Gelidium at 2 m). However, attachment of
Ulva on the two types of SDs was different. Ulva could be easily removed from the hollowed
surface, but it could not be separated from the surface of the slag-ceramic SDs even with a
knife. On the 07 slag-ceramic SDs placed in a seawater tank, E. bicyclis could be raised from the
settled zoospores released from their mother plants. Hundred days after settlement, 17— 18
sporophyte Eisenia (2—4 cm) grew on 1 slag-ceramic SD. It was possible for slag-ceramic SD
to brush not damaging E. bicyclis on the SD.

Keywords : Eisenis bicyclis, settlement device, china, slag-ceramic
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Table 1. Forms of ceramic settlement devices (SDs)

Type Size of SD (mm) Shape of settlement surface of disc
of Disc Spacer
SD Dia. Thick Thick Upper surface Under surface
China* 53 11 7 Flat with grooves Flat with grooves
Hollow china* 40 9 9 Small hollows Flat
06 Slag** 44 8 9 Flat Flat with grooves
07 Slag™* 59 9 10 Flat with grooves Flat with grooves

*Unglazed china
**Pores (3-10 um in diameter) unglazed ceramic
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Fig. 2. Three seaweed settlement surfaces of the disc
(printed area). (a) Upper surface, (b) side sur-
face, (c¢) lower surface.
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Fig. 3. Experiment 1 at Ibaraki Prefectural Fisheries
Research Center. (a) Seawater tank and two con-
tainers containing 16 units of the china settle-
ment device (SD). A unit composes of a stack of
10 SDs with a fishing line. (b) Upper side of the
SD unit deployed on December 3, 2003 and sam-
pled on October 19, 2004. Growth of diatoms indi-
cated in black. (c) Side view of the same SD unit
as in Fig. 3 (b).
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Fig. 4. Experiment 2 at Iwase, Awaji Island. (a) Unit
of hollow china SDs set in a polypropylene inner
case. A hollow china SD case consisted of four
slender transparent rods, a black lower top, and a
transparent upper top. (b) Three hollow SD cases
fixed on plastic plates and deployed in an Ecklonia
cava marine forest; each case held 10 units of hol-
low china SDs. A hollow china SD case was com-
posed of a transparent upper plate, a black lower
plate, and six transparent rods to bind the two
plates. (¢) E. cava growing on the disc of an SD.
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Fig. 5. Grating used for Experiment 3. Left: a 06 slag-
ceramic case held 10 units of 06 slag-ceramic SDs;
center: a plastic drain board to fix 16 06 slag-
ceramic SDs; and right: a hollow case holding 10
units of hollow SDs. A plastic drain board was
used for Experiment 4 to fix 16 07 slag-ceramic
SDs for the experiment on November 9, 2009.
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of discs
(e (d ®

Upper surface

Lower surface

Fig. 6. Tllustration of measuring seaweed cover around the four side surfaces of a disc [(a) — (c), %], and sea-
weed settlement depth [(d) — (f), mm] on the upper and lower surfaces of the disc. (a) Seaweed cover meas-
urement positions (printed area) of the four side surfaces of the discs; 11-12 SDs were combined and bound
as 1 unit. Ten units were fixed in a case, above and below. Cases were turned sideways and fixed on the grat-
ing as shown in Fig. 5; thus, the discs of SDs were placed vertically. (b) The four side surfaces of the discs
were measured for algal cover (%). (¢) Data of 10 SDs from 1 unit were averaged (%) for display. (d)
Measurement of seaweed settlement depth. (e) Upper surface of the disc. Measuring maximum seaweed set-
tlement depth (as shown in open arrow). Data of the upper five units (n = 50) are averaged (in mm) for
each case. (f) Lower surface of the disc. Maximum seaweed settlement depth (as shown in solid arrow) is
measured in the same manner as described in Fig. 6 (e).
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Fig. 7. 06 slag-ceramic case and plate used for Experi-
ment 4. (a) 06 slag-ceramic case divided into
halves. (b) Black lower plate of the case used to
fix 10 06 slag-ceramic SDs.
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Table 2. Wet weight of growing seaweed on horizontally fixed 06 slag-ceramic SDs deployed at three depths

in Experiment 3.

Depth No. of Wight of Algae (g) Total weight composition of algae (%)
(m) SD Range Mean+SD Ulva Chondrus  Gelidium  Others
0* 16 3.2-5.26 4.02£0.72 100 0 0 0
0.2* 12 1.83-5.67 4.51%£1.10 37.7 62.3 0 0
2 16 2.76-1.7 4.04%1.22 1.4 74.6 17.0 0.94

*Ena bay, Kanagawa Prefecture. Deployed: October 28, 2006. Sampled: May 25, 2007.
**Takeoka, Chiba Prefecture. Deployed: October 29, 2006. Sampled: June 05, 2007.
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Fig. 8. Seaweed growing on 06 slag-ceramic SDs fixed
on a drain board in Experiment 3. Deployed at a
depth of 2 m in Takeoka between October 29, 2006
and June 05, 2007. (a) 16 06 slag-ceramic SDs cov-
ered by Chondrus and Gelidium. (b) Separated 06
slag-ceramic SD.
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Table 3. Wet weights of growing seaweed on upper five units (n = 50) of hollow china SD case and 06 slag-
ceramic SD case deployed at three depths in Experiment 3.

Type of Depth Weight of Algae (g) Total weight composition of algae (%)
SD (m) Range  Mean* (SD) Ulva Chondrus  Gelidium  Others

Hollow 0* 0.25-1.67  0.68 (0.72) 100 0 0 0
china 0.2* 0.99-4.28  2.28 (1.01) 0 99.1 0.5 0.4

2% 216558  3.40 (0.97) 0.1 68.5 28.7 2.7
06 slag— 0* 0.52-1.94  1.02 (0.4D 90.9 9.1 0 0
ceramic 0.2* 0.39-351 158 (0.87) 3.8 96.2 0 0

2% 2.6-3.64 2.17 (0.63) 0.1 71.4 2.5 2

*Ena bay, Kanagawa Prefecture. Deployed: October 28, 2006. Sampled: May 25, 2007.
**Takeoka, Chiba Prefecture. Deployed: October 29, 2006. Sampled: June 05, 2007.

(b)

Fig. 9. Seaweed growing on a 06 slag-ceramic SD case
in Experiment 3. Deployed at a depth of 2 m in
Takeoka between October 29, 2006 and June 05,
2007. (a) Upper side of a 06 slag-ceramic SD case
covered by Chondrus and Gelidium. (b) Seaweed
was growing on the upper side of the side surfaces
of the disc exposed to the sun, given that the discs
of SDs were fixed vertically in the case.
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Fig. 10. Seaweed cover [average (%) of 10 SDs] on the
four sides of hollow SD units in Experiment 3. (a)
0m, (b) 0.2m, (c) 2 m.
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2009 4E 11 HiCBlR L7258 TIE, %/ ao
07T-Z25 727 5 AMELEL, ZOWkERRE
ARl T E i, REEEA (9110 Krookid 16.6°C)

Fig. 11. Seaweed cover [average (%) of 10 SDs] on the
four sides of 06 slag-ceramic SD units in Experi-
ment 3. (a) 0 m, (b) 0.2 m, (c) 2 m.

(a)
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Fig. 12. Average seaweed settlement depth (mm, n =
50) of the upper (open bar) and lower surfaces
(solid bar) of the disc in Experiment 3. Upper five
units of an SD from each case are analyzed. (a)
Average depth of a seaweed settlement on hollow
china SD cases. (b) Average depth of a seaweed
settlement on 06 slag-ceramic SD cases.
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Table 4. Number of 06-slag-ceramic SDs with growing Eisenia bicyclis on Experiment 4.

No. of SD and No. of algal growing SD (% of total SD)
Depth direction of disc 90—205 days after settlement
(m) No. Direction 90 112 139 187 205
0.2 40 Horizontal 40 (100) 40 (100) 35 (87.5) 15 (37.5) 0
220 Vertical 220 (100) 220 (100) 172 (78.2) 38 (17.3) 2 (0.9
0.8 40 Horizontal 0 0 0 0 0
220 Vertical - —* 13 (5.9 0 0

Settlement: November 24, 2007. *: Could not recognize by visual observation.

Fig. 13. Eisenia bicyclis growing on 06 slag-ceramic
SDs in Experiment 4 112 days after settlement on
November 24, 2007. (a) Side view of an SD case.
(b) Bird’s-eye view of SDs fixed on the plate.

Mo 12 MBI E T OB EEMHREL, 8 Hi
(15.3°C) T4 10~20 xm O BCAE K % g 32,

15 H# (14.5°C) 121349 30 pm D Ja-Fk % Tl
U7, BTk, 28 HE&: (15.6C) 1213 50~
100 #m, 43 H#% (15.6°C) 1Zid 100~500 £ m iZ
Bk U7, 56 Hi% (10.1°C) T3 K& B HFIK

Fig. 14. Eisenia bicyclis growing on a 07 slag-ceramic
SD in Experiment 4. Settlement: November 10,
2009. (a) 56 days after settlement. (b) 106 days
after settlement.

3 Imm % H 2 7ohs, WIR T8I A IR HE s
Imm U TFTolRIFEsSIARSNK
[Fig. 14 (a)], 60 H (10.0°C) #»» & 167 Hi%
96C) BHMBERTHEEKETSEZRD
Table51Z/R L7, 60HZAEF 1Imm Y FDOHD
BEnicy, AfTHE TSROz sIzE
ZBhseMi, TTH (9.6°C) i 5Smmbl T
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Table 5. Growth of Eisenia bicyclis on three 07 slag-ceramic SDs on Experiment 4.
Settlement: November 10, 2009.

Days after Ter\rllvpa.t:lg 10 Miiowmg Hene béizzllifnngz)ition in number
settlement —\npogy  Nooo Lemgth hqpyy 550 100 <150 <200 300

60 10.0 34 0.9-11.2 4.8 (2.1) 25 8

68 9.6 33 0.8-10.0 4.7(2.2) 24 8

7 9.6 65 1.2-14.8 5.1(2.5) 49 13

86 9.5 53 1.3-56.0  11.6 (11.6) 22 31

98 8.5 42 2.2-34.9 10.9 (7.3) 11 41

106 8.6 57 2.2-84.8  14.8 (12.5) 9 47 0 1

114 9.0 39 3.4-110 19.9 (17.5) 1 37 0 1

124 8.1 54 13.1-121  41.9 (23.5) 0 40 12 2

140 7.8 20 4.9-180 45.7 (53.4) 1 14 2 1 2

154 10.3 11 25-151 72.7 (45.2) 0 6 3 2 1

167 9.6 10 54-305 106 (78) 0 0 6 1 2 1

Settlement: November 10, 2009. Three 06-slag-ceramic SDs from horizontally fixed disks were sampled and ana-

lyzed. Deployment depth: 0.2 m.

DObLDMNEKRE3MIC A E > T, 98
(8.5°C) ~114 A (9.0°C) ITI/h&ERko T
SEIZHD, I~5em DL DA FEIZE D, 10cm
VURCZHRE LBV EAONE LS 1B -7
[Fig. 14 ()]s 124 H (8.1°C) T3 F#H# 4 cm
E73D, 10cm i FTH- ML TE 72,

ZTOBIIHEAER L 167 B (9.6°C) 1213,

10cm ZWBZ 2 RN EKRE 3 b0 10 HRA:
BLIREBEL 5 72,

4. B =

4O T I v 7 EREEAHOTAEDOI B %
T, UTFo#EERE N, (1) & FTRE, K
WTTSAEBESHBZIENTEED - T,
(2) 7 RITI, /INBREESTHY A2 TLD
BEETE, 3) TIAHEBIT/KI & 06-X
ST ERB LD, T35 A1 koA THO &
MEE LI, (4) 06-Z25 7 & 07-2 5 7 ITkAl
TT I XA ZEESHE, 16T HEE TH KL 72,

41 BREIRIADTS A, AP ADBE

FhEE OHFAMOERE (R hETKRI) 2
WHER 1~3 £ TORMNT, HIOMmEEHLE
TE70IE, EE2, 30EBOMKTHWE Y
RIDHTHo-Tco BR2TRAY A 3Kk GER
H 660 ) M3 LT KA 7 4 35,
MAEEDPIRICHELS Bbh Tl R 3 (14

ETR) BEEE DT S A BT, 2O B
WEBFBLTEY, BRERITAYHE, v/ <sH
< 7 HHICEICEDR T, TI A3 2m %
WCHERELLZ2Er—Z20 7R3 (100 @) 121k
WEH-> T, B3I TR, OmFEOTAHHD
HEERI DS, 78 323 b 5 RN EE
Ute BIZ7 A EEREE LA e T3
ANV AOHETHIE 1 » HiZ &R 2 &N
monTEh (GHEE 1948), FER 2, 3 &£b1T,
HKRB RO HEEMDBAEE Licthkok -
HOED Rz, POV AET S ANEE LK
%) D &*U[ﬁfﬁ bflo

4.2 RSTAD7SADEE

2007 FEDFEBRTIE, FEH 1 (2003, 2004 #HE)
EFBRIC, BRERMICE LT 2HREEEIEIEA
EBEE UM 7ens, AHE I HEZICIE 0.2 m IE
DETOHERBIZT I AMEFT LT, Uk
HEHOBRERIFIEAEET, 77 ADEFRR
R TX I,

2009 ZEDFEHRTIZ, 0.2m EDATHETFEHE
HEIRLFEBET >, IDTORAELT, F
SMVRITEE O THEIREEE - e LR E
Uico TIADBHBTHERTESLHICLB%T
(YS90 2 » AR (ZRIEE 85 K 2200 % 1
% &) WEROIREDERIEIEZ 2o T T A DK
¥, TablebiZ/RULcLHIiT, #HAETTH~124 H
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Spatial distribution of phytopigments and organic matter
in surface sediments in Lake Saroma (Hokkaido, Japan)

Emi TERASAKI" ", Kou MORITA?, Masaomi YASUDAY,
Kimihiko MAEKAWA? and Shigeru MONTANTI”

Abstract : In Lake Saroma, scallops have been adversely affected by hypoxic events, which are
caused by long-term scallop culture in summer. In this study, we were conducive to the spatial
distribution of Chl a, phaeopigment, total organic carbon (TOC) and total nitrogen on a grid
of 54 stations in surface sediments. The temporal changes in the TOC content of the surface
sediments since the initiation of scallop culture in Lake Saroma were also studied. The average
Chl a /total pigments was 0.7£0.2 in the organic poor area (PA), which was higher than 0.4
+£0.2 in the organic rich area (RA). Benthic environments were suited for growing
microphytobenthos in the PA. In contrast, the RA has become increasingly eutrophic because
of the average TOC was 235 mg g ', which was higher than 6£3 mg g ' in the PA. During
the past 40 years, after the TOC content had decreased in surface sediment owing to the exca-
vation work, it has increased in the RA owing to the concentrated scallop culture facilities. This
study concludes that benthic environments in Lake Saroma are directly and indirectly affected

by human activities, particularly in the RA.

Keywords . Sediments, Scallop culture, Phytopigment, Organic matter

1. Introduction

Coastal lagoons are rich in nitrogen and
phosphorus compounds and provide highly
productive habitats for aquatic life such as fish
and shellfish. Coastal lagoons are often used
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for aquaculture activities, which may have di-
rect or indirect environmental impacts, primar-
ily because of the excessive inputs of nutrients
and organic matter. Riverine inflows and the
transport of allochthonous particles and or-
ganic matter also affect the physicochemical
environments of lagoons, which widely fluctu-
ate at the interface between freshwater and
seawater (MEADE, 1972; ALLEN et al., 1980).
The large supply of organic matter derived
from aquaculture and riverine inputs into
coastal lagoons often cause hypoxic or anoxic
events that lead to fish and benthic mortalities
(GOWEN et al., 1991; PrAarRsON and BLACK,
2001), thereby affecting aquacultural activities.
Therefore, investigating the depositional envi-
ronment to assess the characteristics of benthic
environments could facilitate better manage-
ment practices.

The organic matter in surface sediments is
an important source of food for benthic fauna.
However, overabundance may lead to benthic
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Fig. 1. The study area and sampling stations in Lake Saroma, Hokkaido, Japan. @: In the scallop culture

facility.

impairment due to oxygen depletion and build-
up of toxic byproducts, associated with the
breakdown of these materials (HYLAND et al.,
2005; MAGNI et al., 2009). The negative effects
of excessive loads of organics are known to be
related to the hydrodynamic features of la-
goons (TAGLIAPIETRA et al., 2012). In the Lake
Saroma, the scallop culture has an area of
80 km® or 53% of the total area and has been
conducted since 1960ies, achieving a maximum
production of 9000 tons in 1979. However, wa-
ter quality problems such as red tide occurred,
affecting scallop production that decreased to
3700 tons in 1985. Thus, a fisherman’s associa-
tion tried to be rebounded scallop production
from the impact of water pollution by interim
downturn amount of scallop culture. Addition-
ally, it was prompted the digging of a secon-
dary channel to improve water flow. Then,
scallop production rebounded to 6,700 tons in
the 1990ies and was an advantage of 6,000 tons
per year at present. However, in the summer of
1987 dissolved oxygen concentration decreased
to 30% in the lake below a depth of 15 m
(SAMPEI et al., 1997). Recently, hypoxic events
are caused by the excessive input of organic
matters from rivers and long-term scallop cul-
ture facilities. Several benthic environmental
studies have been conducted in Lake Saroma
(SATAKE, 1967; KIKUCHI et al., 1984; NISHIHAMA
and HosHIKAWA, 1992; KASHIMA, 1996; SAMPEI
et al., 1997; SoNoDA et al., 2002; KATSUKI et al.,
2009). These studies suggested that benthic

environments are influenced by scallop culture
and that surface sediments are partly
eutrophic. However, no statistical studies have
been conducted to analyze sediment eutrophi-
cation and temporal changes in the TOC con-
tent of sediments since the initiation of scallop
culture in Lake Saroma. Additionally, no study
reported phytopigments contents as basic bio-
chemical parameter in surface sediment.
Phytopigments were important information
because these gave an indicative of primary
producer and a source of feed for filter feeder.
Spatial distributions of phytopigments were
necessary data to assess the impact of scallops
to surface sediment because biodeposition of
scallops included phytopigments. In this study,
the primary goals were (i) to understand spa-
tial distribution of phytopigments and organic
matter and to assess these levels and statisti-
cally the eutrophic sediments area of Lake
Saroma; and (ii) to see if there is any relation-
ship between temporal changes in the TOC con-
tent of sediment to human activities since the
initiation of scallop culture in Lake Saroma.

2. Materials and Methods
Study site

Lake Saroma is located in the subarctic zone
of Japan and it is connected with the Sea of
Okhotsk by a westward main channel and an
eastward secondary channel (Fig. 1). It is the
largest coastal lagoon in Japan with an area of
150 km®, an average depth of 9 m, and a
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maximum depth of about 20 m (KIkucHI et al.,
1984; NisHiIHAMA and HOSHIKAWA, 1992;
KATSUKI et al., 2009). Furthermore, ring cur-
rent at high tide currents mainly toward south
from the main channel and partly circulated at
west end and Kimuaneppu cape in Lake
Saroma (SATAKE, 1967). Other ring current at
high tide currents plume-form from the secon-
dary channel after that linearly current, in
contrast ring currents at low tide were reverse
(HAGINO, 1985). Flow volume at the mainly and
the secondary channels were able to calculate
from tidal range between the open seawater.
Order of flow volume at the mainly and the sec-
ondary channels were 10° m’ and 10" m® per one-
tide, respectively and the ratio was about 9 : 1
(TAKEUCHI et al., 1990).

Field surveys

Sampling was conducted using a grid at 56
stations on September 26, 2005 (Fig. 1). Sur-
face (01 cm) sediment samples were collected
at each station using Ekman-Birge type bot-
tom sampler (15 cm X 15 cm). The samples were
packed in zipper bags and stored in a refrigera-
tor. After returning to the laboratory, the
samples were stored at —20°C until analysis af-
ter removing the pore water by centrifugation
(3,000 rpm for 10 min).

The present study was conducted following a
hypoxic event in September 2005. During this
year, Lake Saroma was characterized by high
biological productivity and high biodeposition
(KURATA et al., 1991). In our survey, we also
found that the chlorophyll- @ (Chl @) concen-
tration and primary production in the water
column were as highas 3.2 pgl 'and1gCm*’
day !, respectively (unpublished data).

Sediment analysis

To determine the Chla and phaeopigment
contents of the sediments, about 0.1 g of the
sediment sample was added to a test tube and
Chl ¢ and phaeopigment were extracted using
90% acetone. The test tube was then placed in a
freezer in dark conditions at —20°C for one
day. After ultrasonication for five minutes, the
concentration of Chla in the supernatant of
the test tube was determined using a fluoro-
photometer (Turner 10-AU-5, Turner Designs),

according to LORENZEN’s (1967) method as de-
scribed by PARSONS et al. (1984).

To determine the organic carbon and nitro-
gen content in the sediments, samples were
freeze-dried and ground to a powder using a
mortar. Prior to the analysis, the samples were
treated with 1IN HCI to remove any traces of in-
organic carbon, rinsed with deionized and dis-
tilled water to remove the acid, and freeze-
dried. The total organic carbon (TOC) and
total nitrogen (TN) content were determined
using a CHN analyzer (NA-1500, Fusion De-
signs).

Data analysis

Cluster analysis and multidimensional scal-
ing (MDS) were conducted to understand the
sedimentary environment in Lake Saroma de-
pending on the sources of the organic matter.
Cluster analysis (Ward’s method) was con-
ducted using a Euclidean distance technique for
the TOC, TN, and Chl a/total (Chl a +phaeo-
pigment) pigments (Chl a/total) ratio content
to categorize the sediments. The MDS ordina-
tion analysis was performed using a Euclidean
distance technique with the same data to pro-
duce a two-dimensional (2D) plot of the catego-
rized sediments.

3. Results
Sediment characteristics

The average Chla and phaeopigment con-
tents for all analyzed stations were 73 &=
86 ng g ' and 94142 ug g ', respectively. The
Chl a content exhibited a distribution similar
to that of the phaeopigment content, except at
Stn. 68, where the Chl a content (155 ug g ")
differed from the phaeopigment content (25 pg
g™ [Figs. 2 (a) and (b)]. The Chl a content
was greater than 200 ug g ' at westernmost
side in Stns. 1, 2, and 72, while it was about
10 pg g ' at mainly seaside in Stns. 9, 11, 15, 22,
30, 63, and 70, with a minimum value of 1.4 ug
g ' at Stn.10 [Fig. 2 (a)]. The phaeopigment
content was greater than 200 ug g ' at western-
most side, where the Chl ¢ content was high
[Fig. 2 (a) and (b)]. In contrast, the phaeo-
pigment content was lesser than 10 ug g ' at
seaside, with a minimum value at and eastern-
most side in Stns. 48, 59, and 68 [Fig. 2 (b)].
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Chla (ug g)

Pheo pigments (ug g*)

Chl aftotal

(c)

Fig. 2. (a) Spatial distributions of chlorophyll- a
(Chl @) content, (b) special distribution of phaeo-
pigment content, and (c) special distribution
Chl a/total pigments (Chla/total) ratio in the
surface (0-1 cm) sediments of Lake Saroma.

The distribution of Chl a/total pigments exhib-
ited a better agreement with bathymetry than
those of Chla and phaeopigment contents
(Fig. 2). The average Chla/total ratio was
0.50 =0.18; a high Chl a/total ratio was re-
corded at seaside and easternmost side, with a
maximum value of 0.96. In contrast, a low Chl ¢/
total ratio was recorded at Stns. 39, 63, and 67,
with a minimum value of 0.17 [Fig. 2 (¢)].
The TOC and TN distributions exhibited a
better agreement with the phaeopigment con-
tent than with Chl a (Fig. 3). The average TOC
and TN contents were 18412 mg g ' and 2.0
1.3 mg g ', respectively. A high TOC content of
greater than 30 mg g 'was observed at Stns. 66
and 73, with a maximum value of 38 mg g ' at
Stn. 24 [Fig. 3 (a)]. In contrast, a low TOC
content was recorded at Stns. 31 and 48, with a

TOC (mg g7)

TN (mg g)

C/N (mol)

(c)

Fig. 3. (a) Spatial distribution of the total organic
carbon (TOC) content, (b) special distribution to-
tal nitrogen (TN) content, and (¢) carbon to ni-
trogen (molar; C/N) ratio in the surface (0-1 cm)
sediments of Lake Saroma.

minimum value of 1.8 mg g ' at Stn. 10 [Fig. 3
(a)]. A high TN content of greater than 3 mg
g 'was observed at depth>10 m in east basin
and>15m in west basin, with a maximum
value of 4.1 mg g ' at Stn. 24 [Fig. 3 (b)]. In
contrast, a low TN content of lesser than 0.5
mg g ' was observed at seaside and eastern-
most side [Fig. 3 (b)]. The C/N (mol) ratio
had an average value of 10£1, whereas it was
about 12 near river mouth and the secondary
channel [Fig. 3 (¢)]. In contrast, a low C/N ra-
tio of 6-8 was observed at seaside and eastern-
most side, which agreed with the high Chl a/
total content [Fig. 3 (¢)].

Spatial patterns
Using the TOC, TN, and the Chl a/total data,
the sediment samples were categorized into two
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Fig. 4. (a) Dendrogram produced using Ward’s clus-
tering method and (b) multidimensional scaling
(MDS) ordination plots for total organic carbon
(TOC) and total nitrogen (TN) contents and
chlorophyll- a to total pigments (Chl a/total) ra-
tio data of surface sediments from Lake Saroma.
Group A: the organic poor area; Group B: the or-
ganic rich area. (¢) Classification map derived
from (a) and (b). [ ]: the organic poor area; [
the organic rich area.

main groups (n=>51/58). Group A was the or-
ganic poor area (PA) that included Stns. 5-7,
10-16, 19-22, 30, 31, 48, 50, 56, 59, 65, and 68
(Fig. 4). Group B was the organic rich area
(RA) that included Stns. 1, 2, 9, 17, 21, 24-47,
49, 51-55, 58, 6064, 66, 67, and 69-76 (Fig. 4).
Spatial patterns of PA and RA agreed with the
bathymetry and ring currents. The grain size
composition for PA was sand and silty sand to
clay for RA (NisHIHAMA & HoOSHIKAWA, 1992;

SAMPEI et al., 1997). The average depths in RA
and PA were 135 m and 723 m, respectively.
The scallop culture facilities were located in
RA, which were at depth of greater than 10 m.
The average Chl ¢ and phaeopigment contents
were 37£36 ng g ' and 19220 pg g ', respec-
tively, in PA, and 91+102 ug g ' and 122+156
ug g, respectively, in RA. The average Chl a/
total ratio was 0.720.2 in PA and 0.4%0.2 in
RA. The average TOC and TN contents were
6.313.1 mg g' and 0.7+£0.3 mg g~' in PA and
234£54mg g 'and 2.5£0.6 mg g 'in RA, re-
spectively. The average C/N ratio was 9.6+1.4
in PA and 11.1£0.9 in RA.

4. Discussion
Characteristics of phytopigments and or-
ganic matter on surface sediment in Lake
Saroma

The average Chl a and phaeopigment biomass
in Lake Saroma were 299+ 220 mg m * and
3251259 mg m *, respectively. In contrast, in
the Gulf of Fos in France where mussels were
cultured, the average Chl @ and phaeopigment
biomass were 30£5 mg m * and 215£58 mg
m °, respectively (PLANTE-CUNY et al., 1993).
In the Tasman Bay in New Zealand where mus-
sels were cultured, the average Chla and
phaeopigment biomass were 2418 mg m *and
67115 mg m *, respectively (CHRISTENSEN et
al., 2003). However, the average Chla and
phaeopigment biomass were 330 mg m * and
220 mg m’, respectively, at Skagerrak in Swe-
den (which is located in the subarctic region)
where mussels were cultured (SUNDBACK et al.,
1996). In Hichirripu lagoon, which is located in
the same prefecture as Lake Saroma and where
oyster and clam were cultured, the Chla
biomass was 226 mg m * (KAJIHARA et al.,
2010). We suggested that the Chla and
phaeopigment contents tend to be higher in the
subarctic region. The Chl a/total ratio in this
study indicated that the Chl a activity was low,
ie., 0.4, in RA [Fig. 2 (¢)], which was greater
than the levels of 0.01-0.3 detected in Tasman
Bay (CHRISTENSEN et al., 2003). In contrast,
the Chl a/total ratio was high, i.e., 0.8 in PA
[Fig. 2 (¢)], which were similar to the levels of
0.7-0.8 at Skagerrak at a depth of 0.5 m
(SUNDBACK et al., 1996). Therefore, the average
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relative light intensity at depth of 7 m and
13 m, which were average depth at PA and RA,
were 20E17% and 9£6% as 100% in surface
layer, respectively in the summer of 2010 (in
preparation). The Chl a content were high de-
spite the low pheaopigment, TOC, and TN at
PA. Thus, at PA, organic matter was low due
to sandy and light, which was enough to grow
microphytobenthos reached to surface sedi-
ments. The contributions rate of Chl a to TOC
were calculated with C/Chl a as 50 (ANTIA et
al., 1963) and was 36£28% at PA as against
was 17£15% at RA in surface sediments. We
suggested that microphytobenthos play a role
on bioproduction environment at PA. TERASAKI
et al. (in preparation) reported that deeper sta-
tion had characterized by easy to be deposited
OM derived from detritus and contribution
rate of biodeposition was 50% on surface sedi-
ments under the scallop culture facility.

At the Marano and Grado lagoons, connected
to the Adriatic Sea, and the Firth of Thames,
New Zealand, where mussels were cultured, the
TOC content varied from 5 to 15 mg g'!
(VITTOR et al., 2012) and from 16 to 19 mg g
(GILES and PiLpiTcH, 2006), respectively. At
Prince Edward Island, Canada, and Thau la-
goon, France, where mussels were cultured, the
TOC content varied from 12 to 43 mg g
(WALKER and GRrRANT, 2009) and from 42 to
68 mg g~ ' (ANSCHUTZ et al., 2007), respectively.
MAGNI et al., (2009) detected very high TOC
levels in two Mediterranean lagoons (the
Orbetello and the Venice lagoons) where bi-
valves were cultured, with values up to 60 and
100 mg g ', respectively. TOC and TN contents
of the surface sediments from Lake Saroma
where scallops were cultured is similar to or
lower than those observed in coastal areas or
lagoons where bivalves were cultured. There-
fore, it can be deduced that Lake Saroma does
not have an extreme organic load, which was
also reported by SONODA et al. (2002). The sedi-
ments are becoming increasingly eutrophic in
RA as reported by KATSUKT et al. (2009). The
C/N ratio of phytoplankton and microphyto-
benthos were 4-10, whereas the C/N ratio of
seagrass and terrestrial plant was greater than
12 (BorpOVSKI, 1965; HEDGES et al., 1986;
MEYERS, 1997). This suggests that TOC and

TN are derived from phytoplankton and micro-
phytobenthos in PA, while they are derived
from seagrass and terrestrial plant in RA.
SAMPEY et al. (1997) reported that organic
matter mainly derived from phytoplankton
was found in center of this lake and organic
matter derived from terrestrial material in-
creased near the edge of lake, which was not
consistent with this current study. However,
the reported organic matter by stable carbon
and nitrogen isotopes showed that the contri-
butions of seagrass and terrestrial plant were
high in RA, which was consistent with the
study by TERASAKI et al. (in preparation).

Variation of TOC content of the surface sedi-
ments over the past 40 years in Lake Saroma

Aquaculture activities are generally viewed
as having major negative impacts on coastal
environments (DANOVARO, 2003). The impact
of intensive fish farming on the benthic envi-
ronment is expected to be higher than that of
bivalve farming (MAaZzzoLA et al., 1999; INGLIS
et al., 2000). However, mussel biodeposition in
mussel farms located in the Mediterranean has
adversely affected farm sediments (DANOVARO
et al., 2004). In Lake Saroma, previous investi-
gations suggested that high amounts of or-
ganic matter were loaded into the sediment by
scallop culture (SoNopa 2002; KATSUKI et al.,
2009). Thus, the TOC content since 1965 during
the period of scallop culture (Tablel) was
evaluated and related to human activities in the
surface sediment. The scallop production was
200 tons in 1965 and increased to 9,000 tons in
1980 (NisHtHAMA and HosHIkKAwA, 1992). In
1965, the spatial distribution of the TOC con-
tent was high at around 10-20 mg g™’ and
greater than 25 mg g™ ' at both depth>10 m in
east basin and depth>15 m in west basin
(deeper station), where every hypoxia occurred
(Table 1). This showed that the benthic envi-
ronment was highly eutrophic in 1965 and was
comparable to 2005, which has a similar level. It
was prompted the digging of secondary chan-
nel to improve water flow because repeated
hypoxia events occurred in 1978. However, fish-
ermen also halted scallop culture, because scal-
lop catches were damaged by a red tide event in
the 1980s. Thus, the spatial distribution of the
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Table 1. Change of the spatial distribution of total organic carbon (TOC) content in surface sedi-
ments over past 40 years. Unit: % (percentage of total area); ton/year (scallop catches).

total area scallop catches digging channel
unit % ton/year
year rankl rank2 rank3 rank4
1929 - - - - - the main channel
1965 14 52 16 18 200
1978 - — - - 7000 the secondary channel
1988 39 o6 3 2 5000
1995 36 27 20 16 6700
2005 33 19 15 33 6000

*The rank 1 indicated that TOC content was<10 mg g '; the rank 2 indicated that TOC content was
10-20 mg g '; the rank 3 indicated that TOC content was 20—25 mg g '; the rank 4 indicated that
TOC content was>25 mg g~ '. The percentages of total area of 1965 and 1988 were taken from
NisHIHAMA and HOSHIKAWA (1992); the percentages of total area of 1995 were taken from SAMPEI et
al. (1997). Cultured scallop catches were running mean values for five years, provided that the scal-

lop catch of 1965 used data of 1966.

TOC content decreased between 10 and 20 mg
g ' at deep stations in 1988 and it decreased as
compared to that in 1965 (Table 1). The benthic
environments were improved by the reduction
of scallop biodeposition in the sediment and
water flowing through the secondary channel
(NisHiHAMA and HosHIKAWA, 1992). After
the fishermen resumed scallop culture at
the end of the 1980s, the scallop catches re-
bounded to 7,000 tons in 1990 (NISHIHAMA and
Hosurkawa, 1992) and it remained between
6,000 and 7,000 tons in 2005 (AQUACULTURE
F1sHERY COOPERATIVE OF SAROMA LAKE, 2005).
The spatial distribution of the TOC content in-
creased at around 10-20 mg g ', and the aver-
age TOC content was 24£2 mg g~ at deep
stations in 1995 (Table 1). After that, the spa-
tial distribution of the TOC content increased
to greater than 25 mg g7', and the average TOC
content was 27+t2 mg g ' at deep stations in
2005 (Table1). According to the distributions
of the TOC content in 1988 (NISHIHAMA and
Hosurkawa, 1992), 1995 (SAMPE! et al., 1997),
and this current study, the TOC content de-
creased in PA and increased in RA. The TOC
accumulated in the deep stations, and its extent
expanded in RA. The TOC content has in-
creased to at least 7 mg g~ ' at deep stations

since 1988, when scallop culture was healthy
(Table 1). This suggests that the benthic envi-
ronments are directly or indirectly affected by
human activities such as scallop culture in Lake
Saroma, particularly in RA.

Biodeposition was also responsible for a sig-
nificant accumulation of biopolymeric carbon,
which induced significant changes in microbial
and meiofaunal assemblages (MIRTO et al.,
2000). In Lake Saroma, the polychaete commu-
nity changed between 1975 and 1995. The total
population density and species diversity has de-
creased, and the dominant species composition
has changed (SoNopa, 2002). The relative
abundance of Cyclotella caspia, an indicator
species of eutrophication, was higher in 2005 as
compared to 1995; it increased in the scallop
culture area since 2005 (KATSUKI et al., 2009).

The biogeochemical environment is seriously
affected by human activities in Lake Saroma
due to the interaction among the TOC content,
the scallop culture, and the digging. Further-
more, previous reports state that hypoxic
events and eutrophication in benthic environ-
ments have been degraded yearly by long-term
scallops grazing, which has led to benthic com-
munity changes (SoNODA, 2002; KATSUKI et al.,
2009). It is predicted that if benthic
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environments are left undisturbed, and if the
TOC content continues to increase in the fu-
ture, this would affect the scallop culture.
Nishihama et al. (1992) reported that benthic
environment was favorable in 1988 and TOC
content was<20 mg g ' at depth>15 m on sur-
face sediments. In contrast, TOC content was
at least 241 mg g™ of 1995 while hypoxic
events had occurred. Thus, we suggested that
TOC content should be<20 mg g ' to keep fa-
vorable benthic environment. In the future, it is
important to focus on the TOC content and
show voluntary restraint during scallop cul-
ture and be proactive in digging the secondary
channels to improve benthic environments.

5. Conclusion

Lake Saroma does not have extreme organic
contamination, although the sediments are be-
coming increasingly eutrophic in the organic
rich area owing to the concentration of scallop
culture facilities. TOC content has continued to
increase, and hypoxic events have occurred at
deep stations that are in the RA since the early
1990s. The TOC content respond to human ac-
tivities such as scallop culture and digging
in Lake Saroma. We suggested that effective
action needed to be taken to improve benthic
environments as soon as possible because
the average TOC content is 27 mg g ' at deep
stations in 2005.
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Session 1: Process Studies

1:

6:

Diffusion processes of radioactive materials in ecosystems of coastal areas off Fukushima.
H. Arakawa, T. Tokai, Y. Miyamoto, K. Uchida, S. Akiyama, A. Matsumoto, Y. Agatsuma,
S. Katayama, M. Aoki, I. Matsumoto and N. Hirakawa

Antibiotics and antibiotic-resistant fecal bacteria in water from the contamination source to
the estuary: impact and / or resilience? F. Petit, T. Berthe, K. Oberlé, E. Denamur, O. Clermont,
R. Leclercq, V. Cattoir and H. Budzinski

Fate and effects of long-term exposures to PCB and PBDE mixtures on fish physiology under
experimental conditions and in the wild. ML Bégout, C Munschy, X. Cousin, F. Akcha,
V. Buchet, M. Cannas, T. Daouk, M. Eichinger, F. Hénaff, N. Imbert, C. Lefrancois, S. Péan,
O. Lepape, D Mazurais, J. Morin, S. Rochette, C. Tixier, H. Thomas Guyon, N. Wessel,
J. Zambonino and V. Loizeau

Harmful shell borers, Polydora species (Polychaeta: Spionidae) from East Asia morphology,
molecular sequence analysis, and shell infestation condition. W. Sato-Okoshi, H. Abe,
K. Okoshi, W. Teramoto, B. -S. Koh, Y. -H. Kim, J. -S. Hong, J. -Y. Li

On the effects of hydrocarbon contamination on zooplankton behaviour: a French-Japanese ap-
proach. L. Seuront

Impact of repeating massive earthquakes on intertidal mollusks. K. Okoshi

Session 2: Ecosystem Modelling

T:

10:

11:

12:

Physical and biological perturbations linked to marine aggregate extraction in the eastern
Channel. D. Michel and L. Robert

Use of bio-fluorescent characteristics for ecosystem monitoring on hydrothermal deposits.
M. Sasano, Y. Nakajima, J. Yamamoto and Y. Furushima

Indicators for ecosystem based management: methods and applications. V. Trenkel, P. Lorance,
S. Mahevas and M. -J. Rochet

Impacts of the huge tsunami on 11 March 2011 to a nearshore ecosystem in Sanriku Coast.
T. Komatsu, T. Ohtaki, S. Sawayama, M. Hamana, S. Sakamoto, S. Sasa, G. Terauchi and
R. Tsujimoto

Development of end-to-end models to describe the dynamics of exploited marine ecosystems in
the Eastern Channel. P. Marchal, R. Girardin and M. Travers-Trolet

Rising to the challenge of reconstructing the coastal fisheries environment following the mas-
sive tsunami in Japan: the national 10-year “Tohoku Ecosystem-Associated Marine Sciences
(TEAMS)” project. T. Nakano

Session 3: Integrated Management

13:

14:

The continuum Estuary-Bay of Seine: the need to an ecosystem-based management.
dJ. -C. Dauvin
Degradation of fishery work population in Japan and the possibility of its recovery in the er-

gonomic perspective. H. Takahashi
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15: The Channel Arena: An integrated study for a better understanding and management of the
English Channel Ecosystem. A. Carpentier and P. Marchal

16: Reviving the Seto Inland Sea, Japan: Applying the principles of Satoumi for marine ranching
projects in Okayama. T. Tanaka

17: From Global to Local: a comparative ocean and coastal Management approach in Western
Europe, France, and East Asia, Japan. Y. Henocque

18: Today’s aquaculture and capture fisheries in Japan. T. Yamane

19: A participatory integrated assessment of sea grass meadows ecosystem services in the Gulf of
Morbihan. D. Bailly

Session 4: Status and Evolution of MPAs

20: Regulation and management of marine protected areas in Japan. N. Amako

21: Limits of the concept of Marine Protected Area: Adaptation of the populations and their pro-
fessions in the different types of MPAs. H. Ceccaldi

22: A Consideration of MPA management from the perspective of Japan’s experiences and lessons
learned. S. Seino

Session 5: Natural Perturbations and Impacts

23: Oithona davisae, the most dominant copepod in Tokyo Bay, a highly eutrophicated
embayment: Why are they so dominant? Y. Tanaka and T. Akiba

24: Ecosystem services of mangrove forests with reference to the transportation of organic mate-
rials to coral reefs: A case study in Palau for the MPA management. M. Tsuchiya, I. Mimura,
Y. Yano, N. W. Oldiais, Y. Glbuu, Y. Fujita and K. Miyakuni

25: Health and degradation of coral reefs: Time scale - Natural and anthropogenic perturbations
at global, regional and local scales. B. Salvat

26: Impacts of the 2011 mega-earthquake and tsunami on Ezo abalone Haliotis discus hannai at
Iwaisaki, Miyagi, Japan. H. Takami and H. Nakaie

27: The influence of the March 11, 2011 tsunami on the environment and the phytoplankton com-
munity in Matsushima Bay. Y. Okumura, H. Ota, Y. Masuda and N. Suzuki

Session 6: Antropogenic Perturbations, Adaptations and Impacts

28: Changes, adaptations and resilience: the case of French oyster farming. C. Mariojouls and
J. Prou

29: Opyster farming in Tohoku: post-tsunami restoration and technical adaptation of culture sys-
tems. Y. Koike

30: Marine Litter along European coasts: sources, distribution, impacts and European policy.
F. Galgani

31: Mapping the state of the marine ecosystem after the Great East Japan Earthquake 2011.
T. Yamakita, H. Yamamoto, Y. Yokoyama, I. Sakamoto, Y. Fujiwara, S. Tsuchida,
M. Kawato, D. Lindsay, T. Kasaya and H. Kitazato

32: A Subject of the Chlorine Management at a Thermal Power Plant on the Northwest Pacific
Ocean in Japan. T. Iibuchi, S. Kobayashi, S. Nanjou, K. Satou, T. Hara and M. Kiyono
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Session 7: Integration Management and mitigations tools

33 :

34:
35:

36:

Application of advanced technology to integrated coastal management — Assessment of fish
habitat use by through bio-logging. H. Tanoue, T. Komatsu, S. Gonzalvo, A. Hamano and
N. Miyazaki

Recent topical studies about artificial fish reef utilizations in Japan. H. Takahashi and Y. Ito
How to size “fair” compensatory mitigation for fisheries resources: HEA scoring method ap-
plied in off shore wind mill project. S. Pioch, J. Hay, A. Bas, H. Levrel, A. -C. Vayssiere and
C. Kermagoret

Sato-umi , a new approach of marine protected area cooperated with local people. T. Komatsu

and T. Yanagi

Poster presentation list

1.

10.

11.

12.

A scientific cluster: SIEGMA (Monitoring of impacts of marine aggregate extraction): a tool
for regional governance in the Eastern Channel. JP. Delpech, B. Ernande and P. Marchal
Toward a dynamical approach for systematic conservation planning of Eastern English Chan-
nel fisheries. Y. Reecht, S. Vaz, S. Mahevas and P. Marchal

Modelling the relative impacts of traditional harvesting and habitat degradation on the popu-
lation dynamics of Dugongs (Dugong dugon) in the Moreton Bay (Australia). M. Savina and
P. Bayliss

A spatially-explicit MSE framework for the assessment of management measures from the
new Common Fisheries Policy: an application to the Eastern Channel mixed fisheries.
S. Lehuta, P. Marchal and Y. Vermard

The protection and management of offshore sea-hill fishing ground: the Hachirigase hill case
study. A. Hamano, H. Tanoue, S. Shinagawa, T. Komatsu, T. Nakamura, N. Murase and
T. Fujiwara

Measurements of bedload transport in the English Channel using DySPI system. M. Durafour,
A. Jarno, S. Le Bot, O. Blanpain, R. Lafite and F. Marin

Morphosedimentary mobility in sandy habitats on inner macrotidal continental shelf (Eastern
English Channel). Y. Ferret, P. -A Duclos, S. Le Bot, M. Desprez and R. Lafite
Offshore/coastline sedimentary tansfers in a macrotidal area (Eastern English Channel). Case
of the Baie de Somme. M. Charlotte, S. Le Bot, R. Lafite and S. Costa

Contamination of seabed sediments and organisms by radioactive cesium in the coastal area of
southern Fukushima. H. Myouse, A. Matsumoto, N. Hirakawa and H. Arakawa

Coral observation by the boat-based fluorescence imaging lidar. M. Sasano, M. Imasato,
H. Yamano and H. Oguma

Development of an analysis system for matter contributing to turbidity using a three wave-
length in situ beam transmissometer. M. Narita, T. Itagaki, Y. Yoshie-Stark and H. Arakawa
Three-dimensional monitoring of Pacific blue fin tuna cultured in an offshore net cage using

a digital stereo camera system. S. Torisawa, M. Morimoto, K. Komeyama, T. Takagi and
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13.

14.

15.

16.

17.

18.
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T. Yamane

Satellite tagging of blue sharks ( Prionace glauca ) in the Gulf of Lions: depth behaviour, tem-
perature experience and movements: Preliminary results. F. Poisson, T. Mitsunaga, T. Kojima,
B. Séret, Demarcp, S. Torisawa, A. Banégue and J. M. Groul

Effect of moderate or severe acute stressor on expressions of growth-related genes in cultured
fish. T. Nakano, T. Yamaguchi, M. Sato and R. H. Devlin

Embryological development of Pinna nobilis Linnaeus 1758 in controlled conditions. S. Trigos,
N. Vicente, J. R. Garcia-March, J. Torres and J. Tena

Environmental impacts of fish farming in floating cages in coastal seawaters and coral reef la-
goons. B. Thomassin

Ecosystem-versus species-based approach of the human impact on the Mediterranean seagrass
Posidonia oceanica. C. F. Boudouresque, S. Personnic, P. Astruch, E. Ballesteros,
D. Bellan-Santini, P. Bonhomme, D. Botha, E. Feunteun, M. Harmelin-Vivien, G. Pergent,
C. Pergent-Martini, J. Pastor, J. -C. Poggiale, F. Renaud, T. Thibaut and S. Ruitton

La Podle Mer Méditerranée. G. Herrouin
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