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Fish assemblage structures on artificial sandy beaches in
inner Tokyo Bay, central Japan

Taro SHISHIDO ¥, Shigeru AoKI, Seiya KANEKO and Mitsuhiko SANO

Abstract: Daytime seine net sampling was conducted on three artificial sandy beaches (Inage,
Kemigawa and Makuhari) formed on reclaimed land at Mihama, Chiba Prefecture, central Ja-
pan, in September and November 2017, and May and July 2018. A total of 1091 individual fishes,
representing 19 families and 23 species, were collected throughout the study period. Five species
(Lateolabrax japonicus, Platichthys bicoloratus, Konosirus punctatus, Hypoatherina valenciennei
and Plecoglossus altivelis altivelis) were dominant, accounting for 87.4% of all individuals. Al-
most all of the species collected were represented only by juveniles, suggesting that the artificial
sandy beaches were used as an important juvenile habitat by a variety of fishes. Although no
differences in total numbers of fish species and individuals, and species composition were found
among the three beaches, the mean standard length of fish pooled for each species tended to be
smaller on Kemigawa Beach than the other two beaches. This difference may be due to the pro-
tected aspect of the former beach, resulting in relatively low wave activity, due to the construc-
tion of inwardly-curved groins on either side of the beach.
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Fig. 1 Map of the study area at Mihama, Chiba Pre-
fecture, central Japan, showing three artificial
sandy beaches (Inage, Kemigawa and Makuhari).
@, sampling point.
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Fig. 2 Physical environmental factors (water temperature, salinity, turbidity, dissolved

oxygen, wave height, wave period, median grain size and organic content, indicated by
ignition loss) on Inage Beach (@), Kemigawa Beach (4A) and Makuhari Beach ([]) in
September and November 2017, and May and July 2018. Data include means * stand-

ard deviations (7 = 4).
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Table 1. Results of likelihood-ratio (LR) tests examining the effects of
month and beach on physical environmental factors using a gen-
eralized linear model (GLM).

df LRx> p HBT
Water temperature
Month 3 24077.7 <0.001
Beach 2 12.6 <0.01
MonthxBeach 6 101.8 <0.001
Month in IN 3 19500.0 <0.001 Jul>Sep>May>Nov
Month in KM 3 8636.8 <0.001 Jul>Sep>Nov>May
Month in MK 3 4725.9 <0.001 Jul>Sep>Nov=May
Beach in Sep. 2 239 <0.001 KM=MK>IN
Beach in Nov. 2 506.4 <0.001 KM>MK>IN
Beach in May 2 15.9 <0.001 IN>KM=MK
Beach in July 2 4.6 0.102
Salinity
Month 3 8462.3 <0.001
Beach 2 139.1 <0.001
MonthxBeach 6 225.2 <0.001
Month in IN 3 2022.3 <0.001 May>Sep>Nov>Jul
Month in KM 3 22520.0 <0.001 May>Sep>Nov>Jul
Month in MK 3 2080.1 <0.001 May>Sep=Nov>Jul
Beach in Sep. 2 23.9 <0.001 IN>MK
Beach in Nov. 2 221.7 <0.001 KM=MK>IN
Beach in May 2 102.4 <0.001 IN>MK>KM
Beach in July 2 190.7 <0.001 IN>KM>MK
Turbidity
Month 3 135.2 <0.001
Beach 2 42 0.122
MonthxBeach 6 22.7 <0.001
Month in IN 3 48.7 <0.001 Jul>Sep=Nov=May
Month in KM 3 138.7 <0.001 Jul>Sep=Nov=May
Month in MK 3 25.0 <0.001 Jul>Sep=Nov=May
Beach in Sep. 2 14.3 <0.001 KM=MK>IN
Beach in Nov. 2 3.1 0.216
Beach in May 2 13.6 <0.01 MK>KM
Beach in July 2 6.6 <0.05 —
Dissolved oxygen
Month 3 619.7 <0.001
Beach 2 16.7 <0.001
MonthxBeach 6 46.0 <0.001
Month in IN 3 350.5 <0.001 Jul>Sep>Nov>May
Month in KM 3 163.6 <0.001 Sep=Jul>Nov=May
Month in MK 3 263.6 <0.001 Jul>Sep=Nov>May
Beach in Sep. 2 19.6 <0.001 KM>IN=MK
Beach in Nov. 2 40.9 <0.001 IN=MK>KM
Beach in May 2 11.8 <0.01 KM>IN
Beach in July 2 5.7 0.058
Wave height
Month 3 266.9 <0.001 Jul>Sep=Nov=May
Beach 2 21.5 <0.001 —

MonthxBeach 6 2.8 0.828
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Wave period

Month 3 158.6 <0.001

Beach 2 89.7 <0.001

MonthxBeach 6 88.2 <0.001
Month in IN 3 90.5 <0.001 Jul>Sep>Nov=May
Month in KM 3 12.0 <0.01 —
Month in MK 3 154.1 <0.001 Jul>Nov>Sep=May
Beach in Sep. 2 100.5 <0.001 KM>IN>MK
Beach in Nov. 2 62.3 <0.001 KM>MK>IN
Beach in May 2 62.8 <0.001 KM>IN=MK
Beach in July 2 3.0 0.220

Median grain size

Month 3 8.9 <0.05

Beach 2 7.8 <0.05

MonthxBeach 6 20.3 <0.01
Month in IN 3 56.4 <0.001 May=Sep>Jul=Nov
Month in KM 3 10.5 <0.05 Sep>May
Month in MK 3 4.1 0.253
Beach in Sep. 2 7.3 <0.05 —
Beach in Nov. 2 4.8 0.089
Beach in May 2 59 0.052
Beach in July 2 36.0 <0.001 KM=MK>IN

Ignition loss

Month 3 52.4 <0.001

Beach 2 336.4 <0.001

MonthxBeach 6 46.2 <0.001
Month in IN 3 3.6 0.312
Month in KM 3 39.1 <0.001 May>Sep=Nov, Jul>Nov
Month in MK 3 22.5 <0.001 Jul>Sep=Nov, May>Sep
Beach in Sep. 2 67.7 <0.001 KM>IN=MK
Beach in Nov. 2 19.8 <0.001 KM>IN=MK
Beach in May 2 150.1 <0.001 KM>IN=MK
Beach in July 2 180.3 <0.001 KM>MK>IN

Holm-Bonferroni test (HBT) was conducted when the GLM and LR test results

indicated significant effects.

—, The HBT results indicated no significant differences among months or beaches.
IN, Inage Beach; KM, Kemigawa Beach; MK, Makuhari Beach.

3R L7z BEIMEDOMER, Aoz
SEHAER 542 L7z (Table 2),

WAL, TXRTOBEIZBWTHETOR
HAPALNTZ. WRIFRHEROUIETIX 9 H 21l
DALY %L, ABEOENIRLIOETD A
b7z, F72, THEERLSLE, EHOWEMTY
HEANALN, 9HTIEVRITOEIBRLIIR
HEOEI NV S o720 11 HES AHIZBWT
132 EILWOE TRV SN 2o 7285 11 A
TIFRAN O TE {, FHROETH L WEIIC
»o7z (Fig.3)o —7, 5 HTIRWARIFDE TS
<, BMAMNOETH R WER L %5 72,

322 REMESHEHY

FRAEEFHETIY CEL L CW0ld 7 IHT
BHotlo HFADHWIIZHE TS 1M (25 md)
Bz ) ORI Y ORMEAEI L 7 IO
MR % Fig. 312, - LERBRE O %
Table 2 1Z/RL72e WINOHHIZBWTHHE
WERORHEAEH R0 b7z,

WA, TRTOBEICBWTHAMTOA
HAEDNALNTZe WRIFTOETIZS H29H LY
b% <, MANRHEEOETH 5 Hidfhio &b
bEholze HFRITBTDWERTOEWIZOW
TiX, SAZBLEAIIBVWTHEERED LN
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Table 2. Results of LR tests examining the effects of month and beach on
the abundances of zooplankton (total), epifaunal invertebrates
(total and mysids) and infaunal invertebrates (total and poly-
chaetes) using a GLM.

df LRx> P HBT
Total zooplankton

Month 3 165.6 <0.001

Beach 2 17.8 <0.001

MonthxBeach 6 22.6 <0.001
Month in IN 3 69.5 <0.001 Sep>Nov=May=Jul
Month in KM 3 38.5 <0.001 Sep>Nov=May, Jul>May
Month in MK 3 73.7 <0.001 Sep>Nov=May=Jul
Beach in Sep. 2 36.7 <0.001 IN>KM=MK
Beach in Nov. 2 7.7 <0.05 —
Beach in May 2 7.7 <0.05 —
Beach in July 2 1.8 0.416

Total epifaunal invertebrates

Month 3 279.7 <0.001
Beach 2 11.0 <0.01
MonthxBeach 6 31.2 <0.001
Month in IN 3 68.2 <0.001 May>Sep
Month in KM 3 50.5 <0.001 May>Sep=Nov=Jul
Month in MK 3 454.4 <0.001 May>Sep=Nov=Jul
Beach in Sep. 2 46.7 <0.001 KM>IN=MK
Beach in Nov. 2 8.1 <0.05 —
Beach in May 2 52 0.074
Beach in July 2 25.9 <0.001 KM>MK
Mysids (epifaunal)
Month 3 1089.7 <0.001
Beach 2 6.2 <0.05
MonthxBeach 6 36.6 <0.001
Month in IN 3 741.2 <0.001 May>Sep=Nov=Jul
Month in KM 3 102.3 <0.001 May>Sep=Nov=Jul
Month in MK 3 275.5 <0.001 May>Sep=Nov=Jul
Beach in Sep. 2 0.7 0.701
Beach in Nov. 2 19.4 <0.001 MK>KM
Beach in May 2 5.0 0.083
Beach in July 2 41.5 <0.001 KM>IN=MK
Total infaunal invertebrates
Month 3 25.0 <0.001 Jul>May
Beach 2 14.0 <0.001 KM>IN=MK
MonthxBeach 6 12.4 0.053
Polychaetes (infaunal)
Month 3 31.2 <0.001
Beach 2 13.6 <0.01
MonthxBeach 6 14.4 <0.05
Month in IN 3 13.4 <0.01 —
Month in KM 3 18.9 <0.001 —
Month in MK 3 14.5 <0.01 —
Beach in Sep. 2 1.1 0.572
Beach in Nov. 2 9.2 <0.01 —
Beach in May 2 16.2 <0.001 KM>IN=MK
Beach in July 2 7.2 <0.05 —

For abbreviations, see Table 1.
HBT was conducted when the GLM and LR test results indicated significant effects.
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Fig.3 Mean individual numbers (* standard deviations, #z = 4) of zooplankton (total) per

m®, epifaunal invertebrates (total and mysids) per 2.5 m? and infaunal invertebrates (total

and polychaetes) per 1178 cm?®, collected by plankton net, sledge net and core sampler,

respectively, on Inage Beach (@), Kemigawa Beach (4A) and Makuhari Beach ([(J) in
September and November 2017, and May and July, 2018.

720 9 HTIIBAENOET W ZRIFRFROPL LD
%L, THTIEIBRANOENRFROBELY S
Motz 11 HIdZ HILEHE THEAP BRI S
N o723, BN OUETHZRITRHROE X
Db bIICE B A LNz (Fig. 3)o 5 H
X, BEMYICHEE TR o722 (p = 0.074),
Fig. 3 2 A% L HROETEZ WHINIZH - 720
7 IHOMEEBIZOVWTD, $RTOWEICE

WCTHBTORBEDSREDOON, LOWETH 5
HIZoH L h b Eh o720 FHOWERTOE
Wi, 11 HE7THICEEES AN, 11 AT
R OEDSHENNOE L Y %L, 7HTIEIM
RNOEDP AR ITRFHEDOIEL ) LD o720 F
72, METICIEEE T ho72h (p = 0.083), 5
AIZBWTIEHEDOERTE WHIAA S N7
(Fig. 3)o
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323 IBEMESHEY

HAEVE BEARHEBD ) T L T2 DI S BHIT
BHolze HADHKWMIEIZHE TS 1 27 (1178 m?)
B 72 ) OMAEVEBAHEEN Y ORI L £ B
%% Fig. 312k L7z £ BHEOMEKIZS
WL, HEWEOB TREER A LN
(Table 2),

WA HBE CoOREENALNR, 7THIES
BEWb%hol. T, WHEMTOHREENS
L, MANOEZWARITRHEEOREL Y H L
Nolz,

ZEHOMBKE T, FWECBIFLAMTO
HEADHD SN0, WTROBIEIZBWTD
% B ILIBRE TP SN e o7z, LAL,
Fig. 3% & 5%, WARTFOETIZI HIIPLXS
{, BRNRPHEDOUETIE 7 HIZZ WHEHIIA 0
LNz HHOWEMTIE, OHZKRIKHICE
WTHBERALNZDS, 11 HE 7 HIZBWTIE
L EILIRBE THEPBRIB SN2 572, LaL,
11 ATIRWARIFOET, F/27 ATRBEAIIO%k
T W AH SN/ (Fig 3)s 5 HIZBWTIiE
AN DIEATN T RFROEL D S 2o 72,

3.3 REMHKEOEE
331 B&EIhERE

£ A OF/W I THRE SN - KA oMEE, A&
R, BEERE, M4 Table 31TR L7z S
MAZ# LT3 o0 THRES NI, MM
e L72AE 19 B 23 1 1091 K TH - 72,
HZllZAaDE, 9 Hid 7 97 K, 11 Hix 5 &
9 ik, 5 Hid 10 ff 791 Mk, 7 H i 10 Fi 194
KTH o720 BHEEDEL 2o ML, AAF
(508 1K), 4 > H LA (183 fEfk), =/ 1
Konosirus punctatus (149 f8K), b Iduav A7
¥ Hypoatherina valenciennei (63 8 1K), 7 =~
Plecoglossus altivelis altivelis (51 fi{K) @ 5 FiT
HY, INHTEKRD74% % 5D7ze ThHD
BEEIZTXTCHEMATH D, FEOARHBIETS
BRSNS, AZXF 135 ADHIRDWE, V7
LA LT 5 Ao owE, a7 vaid7
OMEINOE, +ryITar 47239 ADV%RT

DIETE D> 72,

3.3.2 TEENCHMEGARER

BEHOBEBEICBITS 1 RM 300m?) H7-0
O & BIRAE % Fig. 412, - RERBRED
$5H% Table 4 1Z/R L7z #BMEEEIZOWTIEA
EWEORHAEM A BNz,

Mz A cogEErabh, 5H=7H>
IH=11 ATH 70 —F, BEMTIIAEEEN
H5D LTV Lh ol WKL TXRTOW
RTHMOEEEN AL, BENOEIIBWT
G5 H=7TH>9H=11H, ¥EDETIE5H
SOH=7TH>11 HTH o720 WRIFTOETIE
% EILBHOE TEIRIB SN h 7205 9 AD
fioH L) bR W Hh -7z (Fig. 4). &
HoOWERMTOREEZZ 5HE7HICAONT,
5 A CTIREREDOENVWARTOEL Y H%L, 7TH
TP DD RITRHREOEL ) %o
726

3.3.3 TEEM

% H O B/BE TRE L 72 & R oA B 3D
XFWEERD, 2 T A~ hkirol-& 25,
FEE 02 T6 2D 7V — T4 717z (Fig. 5)o
INLDEITN—T oAb E, MHEOMMBEIZ 11
AZzK& AZLICHEMLTW, $7/2 £HIC
BUAWEMOEL Y — VT IR RS T
B, #AXMMEZEL TALN—EDOMENIL %
Nolzs

334 #%E

% H DX THRE S N7z 2RO R EMK %
Fig. 6 \Z/R L7ze LERMEOKE, HLiito
MR HEAER DA L7z (Table 5)
EREOERERL, TRTOBEICBVTHRET
BEADVPARLNT, WERITOETIZ 11 H Mo
Ao b kX<, FBEOMEMIKEIIOETD A
bN7ze —J, FHROETIZIOHE 7TAN»SH &
DHKREDS720 HEHOWEMTOENICIONT
X, 11 HZBRWIEHATHEEERAONR, 9 H
27 HTRFEROETOHRITRRENOEL ) &
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Fig. 4 Mean numbers (= standard deviations, z =
4) of fish species and individuals per 300 m? col-
lected by seine net on Inage Beach (@), Kemiga-
wa Beach (&) and Makuhari Beach ([J) in
September and November 2017, and May and
July, 2018.

K&, 5 TR, Fik, BN OHEDNHIZ
KEh o7

5HICREINI-BEEHOAZIF L A LA
DIREHK % Fig. 7 TR L7z, WEOKREIXZ
NZIWHEMTHRICR LD, AXFITHEOLR
THRANDOEL D DB REL, AT VATV RIT,
Hk, BANOEDNRIZKE 22> 72 (Table 5)

4. ER
4.1 EMIRIE

A L7 BNEREEHE 09 B, H o (3
HbBEFEHEIL) 3008 (WO, K
RNOE, FHEOE) IZBWCHEERD/NY — T
AONT-DIE, K, Mo, W, BARER,
WETH o7,

BT, K e SKmOFHELATIT—3
LTBY, HiZEL, LI ka2 epmsn
Twb (JREH, 1997b; BUE RN 7R E
2, 2011) 0 ARFZEIZBWT D FERDMEINA A S
, KIE9 A, 7 HICE L, 11 H, 5 AIZ&h» -
720

HEEOBERTIX, EomiElicEosoiKTh
ZL W ESHESNTWS (RS, 1997b; 3
B WEREMERHE, 2011). AFZETLH
ﬁm,m X5 HIZHEL, THTEYP -7 Th

I, BRICHAT HIRAKBEHBENBICELL DD
t#%%bfwét%x%ﬂfwé(ﬁﬁ%ﬁﬁ
WREMERHS, 2011). S 512, TOHMMETIX
KB R ZE RO J 10 & RCBItRICH B L v
NTwb, JAEH (1997b) 12k 5 &, HIZBANT
WA S, ESIZEOL» S BRI ) F
M (F)E) 2SEBT % &, HOOMRWEEAKH
BRICRXFEONL 20, HORTAPESh
HEWVI,

T/, WAL FHBRC, RFETALNIEE L
WROFMEA S HOFHMOME L 2T TEL
SEALTH D MRS NS, MEHIZ7 HlgBw
THOH L) QBFEFITHE P -T2 TNUE, BEOF
HiEIZ X > TEON LR EFESNEIBEBRT
Bl AL BT, WKSZEOWITE > THELS

N, BENELL ho2bnEEZLNS,

FIENBEORBIR T, BARERIEICH
{7, KEL BB EAWEERTWS (A
I - KIH, 2010), ZOBLRIE, MW TT 7 v
DERIZ L DEEHRFERT ML DL b
NTW5B, RIFZEIZ BT b RO M| %2 7R
L, BHEBERI7THTRLS o7,

—7J5, WUERETO®E ST % 8 L TR
WCALNHE L, WS LR TH -7 K

EERR T O TBOMUE X ) AR, Tk
ﬁiiﬁEM®@fmw@m%mLto&mﬁﬁ
RO TV & v ) R IZ, ORIt o iR
DM N TH L EVH) T L EREIRL T
Who T, MENOWEIZBWT, WHNZE
L CRkiE S N2E800s, MEPLOWRREY H LR
JE, BivwTwaibtEz o5 (Figl)o 20
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Table 4. Results of LR tests examining the effects of month and beach on the

total numbers of fish species and individuals using a GLM.

df  LRx’ p HBT
Number of species
Month 3 37.6 <0.001 May=Jul>Sep=Nov
Beach 2 3.5 0.171
MonthxBeach 6 8.5 0.206
Number of individuals
Month 3 93.5 <0.001
Beach 2 4.4 0.110
MonthxBeach 6 47.1 <0.001
Month in IN 3 8.5 <0.05 —
Month in KM 3 81.1 <0.001 May=Jul>Sep=Nov
Month in MK 3 84.9 <0.001 May>Sep=Jul>Nov
Beach in Sep. 2 3.8 0.148
Beach in Nov. 2 3.6 0.167
Beach in May 2 20.1 <0.001 MK>IN
Beach in July 2 92.6 <0.001 KM>IN=MK

For abbreviations, see Table 1.

HBT was conducted when the GLM and LR test results indicated significant

effects.

£9 RPREE TR, WEROMEIIP R, T
) E AR LR T WIREE 25 2 LTS
%o MRENOEIZBWT, HREIRED R A5 72D
X, 0D THHEEILNL,

4.2 SEYHIRIE

AL 72 AEWHERBEEEO ) b, AMo@EuHs
3OWIETRBICA SNz DL, FilElk EEEHED)
Wy & BB HEEN ) ORMEAE, BX U7 I
(FRAEMEEMEEY) ORERKTH -7z FilElk
MR ORMAEIE 9 AT, TR IEMmi
B iR E L 7 I FOMEEIZ 5 BTk b
%irolzo FHEMEBEHEEWICBWTES LA
A7V (HIXAFRLF 7 a7 AH) &, MH
ROWFERBER TIIEICSZ W ERH SN TS
(A H, 1998; INOUE et al., 2008) . F7z, 7 IHiX
WEEZTLIEZWZ EPHEIN TS (A,
1998; INOUE et al, 2008) o L 7=%%-> T, AWFIEITH
W ABRDORE R S N7z

—), A &l L 7o R T oL, M
MR HEEN Y ORMALIC A SN, BN O
TEWHANIH - 720 T, 41 HiTlR7z &

A, MRNOETIIMMOBE X Y b iR ER
WT, TR IANRBE LR T o720t E R
bhb, 7 M) 7 RAILEH T ELE O
MHEHBWOEE B ENMOENTVS (i
B - 35, 1976),

4.3 BIEHEOREE
431 THEEINERE

A 28 LT 3 D 0iETHRE S 2
X, EIHEMTH o720 HIAOWIE TR L I
N, MEADPLLERT A8, AARZ GO
REHPSMESINTEY (e.g., LASIAK, 1986; ZH
[H, 2002; Benazza et al, 2015 3 1, 2017;
McLACHLAN and DErEo, 2018; OLDS et al, 2018),
AR B VTS RBROM R L o720 FFIC
BEHOAZXF AL A, asva, by a
oA 7Y, TID5HIZONTIE, TXTOM
O TH o720 TNH OB ERIZIFEDOH %
WERICBWTE L RESN, AXFI1I5 HOHER
DIEIZ, AT LA T35 HOMRIOEIZ,
a/yaid 7 HOMENOEIZ, by Tav A7
VIZIADVLRITOIRIIE Do 720 WHIEOEAT
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Fig. 5 Dendrogram of a cluster analysis showing
similarities of fish assemblages, based on number
of individuals of each fish species on each artifi-
cial sandy beach (Inage, Kemigawa and Maku-
hari) in September and November 2017, and May
and July 2018. Assemblages divided into six
groups (I-VI) at a Bray-Curtis similarity index
level of 0.2.

T, AOFZEREE RIS, Shs 5 oM
FRLAEEDOHRFHICHBT 52 Embh
TWwWb (il - Ak, 2011). LT T, #neEih
DDA e ERHER TR R 5 720D, ZD
FHIZOWTEET 5,

AX X OMEMIE S HORFRDETE o720 5
HIZHIRE DU L DO WED ] THENDSH SN2
- AWRERBEIHE 2 AL L, TS IR
THEB Y ORMARE L 7 IFOMWKETH - 720
WE B EHEFICAEETRWL OO, FROE
TEHEWEINC D o 70 AMOREMTTEICT IH%E
HERTHEET A7 (Table 3), 73IHZIILD
LT B RMAMMEMEE Y D%\ 5 HORIEDNE
&, RS OE R R & 7o TO WD D B o
D7D, AXFOMMIES HOFROIETS

MoT=Dh b LNk,

ATV A OREMIE 5 AICBWTHRANOET
L RES NIz, 5 AOWIL - EYEREED ) b,
RN O & ORI & DR TEWATA S N2IH
HiE, 5, ¥om, DR, SRk, (R
WATMEB) Y & A HEE) D O R A L, £ E
HOWKRETH o720 72770, HWHHIIEm o
BTN THo 727290 (Fig. 2), FRIHDOHATIIK
ELRWBRIGREVWbDEEZ NS, $72, A4
VA OHEBIILEHAETH H720 (Table 3)
T 30 12 A ) D R AR KL b AT 0D 4343 12

RIS VWb oL b, —, &m
RO TR, BRI Z oMo %
AL, MANOETE» 72, THIEBENO
EOWRBEESHNW IR TH L I L 2R
LT3, AFED X 9 A ML L WIRRICH
HZREZMZOALI ENMOENT VSR
(TATEMATSU et al,, 2014), fFHERIIOWTAD
L, HROBRPRERE TIRERDICZ L W
RN %L  MBLT 5 (NAKANE et al., 2013;
TATEMATSU et al., 2014; 21l « 4P, 2015; OLDS et
al, 2018) AW TIRESINIZA AL A HEfl
X, FREREO/NS LR TH 72729 (Fig. 7),
WIRORRR DL BB 2 I A THBT 2 WA S
bo T2, MANDIETIE, ARMOMADE L 25
T\ 5% % B0 ML 3 0 HE B W) o AR B 5%
MPoize Yo s, 5 AN O
O L D S WRAEER 0T, LEHE &L
HEFHEB DS VBREECTH - 12720, 4 VL
A MEAIIR AN OPIZE MBI L - e A H
5o

a7 vaid 7 BIZBWTHENOETS R4
SNz, WER - WO R TR DM &
MDOREE L D TR A - 2, W5, EBER
B, BT HEE OREARER 7T IHESLE
FHOMBEETH > 720 WEIEREINOE T,
FN &I ﬁﬁﬁiiﬁﬁmwﬁfm#oto
g, ERL72X912, MANOEIZMOMDE
£ D PR %&%’75‘1, F M) T ANREL WD T
B b RFEOMHMMIETT V) ZFZAETDHD
(Table 3), F7-MENDETREINL LD
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Fig. 6 Frequency distributions of standard lengths of all fishes collected on
Inage, Kemigawa and Makuhari beaches in each month (September and
November 2017 and May and July 2018).
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Table 5. Results of LR tests examining the effects of month and beach on

standard lengths of all fishes collected during the study period and

of Lateolabrax japonicus and Platichthys bicoloratus collected in

May using a GLM.

2

df LRx”~ )4 HBT
All fishes
Month 3 330.8 <0.001
Beach 2 96.9 <0.001
MonthxBeach 5 95.7 <0.001
Month in IN 3 31.6 <0.001 Nov>Sep=May=Jul
Month in KM 3 128.5 <0.001 Nov>Sep, Nov>Jul>May
Month in MK 2 354.9 <0.001 Sep=Jul>May
Beach in Sep. 2 22.7 <0.001 MK>IN=KM
Beach in Nov. 1 0.4 0.521
Beach in May 2 149.2 <0.001 IN>MK>KM
Beach in July 2 312 <0.001 MK>IN=KM
L. japonicus in May
Beach 1 9.0 <0.01 MK>KM
P. bicoloratus in May
Beach 2 56.8 <0.001 IN>MK>KM

For abbreviations, see Table 1.

HBT was conducted when the GLM and LR test results indicated significant

effects.
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Fig. 7 Frequency distributions of standard lengths of the two most domi-

nant fish species, Lateolabrax japonicus and Platichthys bicoloratus, col-

lected on each artificial sandy beach in May 2018.
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Occurrence patterns and ontogenetic development based on the
swimming- and feeding-related characters in larval and juvenile
Japanese whiting (Sillago japonica) in the innermost Tokyo Bay,

Introduction

central Japan

David E. ANGMALISANG ™, Seiichiro IkEcamI and Hiroshi KoHNO

Abstract: Occurrence patterns of the larval and juvenile Japanese whiting, Sillago japonica,
were investigated in Tokyo Bay by monthly samplings using the following two types of gear: a
small seine net towed at three tidal-flat stations around the river mouth of Tama-gawa River
from May 2006 to September 2009; and a ring net towed at a station in the offshore water of the
Tama-gawa River mouth from January 2006 to May 2008. Their functional development was also
observed mainly by osteological characters on the basis of 111 cleared and stained specimens of
2.0-21.1 mm in body length (BL). Specimens collected from the offshore water were 30 in num-
ber with 46 = 1.6 (mean = SD) mm BL, ranging from 2.0 to 85 mm BL, and those from the ti-
dal flats were 232 with 15.7 £ 5.6 mm BL from 6.1 to 49.3 mm BL. Based on the functional devel-
opment of swimming- and feeding-related characters, the larvae and juveniles were divided into
five and four developmental phases, respectively. Improvements of swimming and feeding func-
tions observed at about 3 mm BL were considered to assist the early larvae in migrating shore-
ward, and the specimens of 6.0-8.9 mm size classes occurred in both the offshore and tidal flat
stations. Thereafter on tidal flats, the number of individuals increased and reached a peak at
about 15 mm BL, when the juveniles acquired functional swimming and feeding abilities. The ju-
veniles > 15 mm BL decreased in number, and then those ca. 30 mm BL had scarcely appeared
on the tidal flats. The Japanese whiting juveniles > ca. 30 mm BL in the innermost Tokyo Bay
are most likely to move into deeper waters.

Keywords : Japanese whiting, early life history, habitat shift, functional development

The Japanese whiting, Sillago japonica, distrib-
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uted in the coasts of Japan from the southern
part of Hokkaido to Kyushu, Korea, China and
Taiwan (HAyvAsHI and HAGIWARA, 2013), is known
as an important commercial fish (SANO and
MocHizUKL, 1984). In Tokyo Bay, which is located
in the southeast coast of central Japan and the
inner bay of which is surrounded by the Tokyo
metropolitan area, the Japanese whiting is also a
target fish for fisheries and angling. Therefore,



26 La mer 57, 2019

many studies have been conducted for knowing
the biological aspects of the species as follows:
the spawning patterns (SULISTIONO et al., 1999a),
age and growth (SULISTIONO ef al, 1999c), feed-
ing habits (SULISTIONO ef al., 1999b; ARAYAMA and
Konno, 2004), and concentrations of radioactive
cesium (YANAGITA et al, 2016; TEISHIMA et al.,
2017). Furthermore, their occurrence patterns
have been studied in offshore-surface waters by
ring nets (e.g. KANOU et al., 2002a; NAGAIWA et al.,
2005), tidal flats/surf zones by seine nets (e.g.
NASU et al., 1996; Kanou et al., 2000; ARAYAMA et
al., 2002; AOKI et al, 2016; UMEDA and KOHNO,
2017), and offshore-bottom waters by beam
trawl nets (YONEYAMA et al, 2009; BUREAU OF
ENVIRONMENT, TOKYO METROPOLITAN GOVERNMENT,
2018).

McKay (1992) compiled the information about
habitat, biology and fisheries of the species. How-
ever, no studies are available on the develop-
ment of swimming- and feeding-related charac-
ters, the functional development, nor the ontoge-
netic intervals; although O0zEKI et al. (1992)
divided laboratory-reared larvae and early juve-
niles into 10 stages and 3 phases on the basis of
morphological and histological characters, no de-
tailed descriptions were given and their phases
corresponded to yolk-sac, from pre- to post-
flexion and transformation larvae of KENDALL et
al. (1984).

This study aims to establish the ontogenetic
intervals during the early life history of the Japa-
nese whiting based on the development of swim-
ming- and feeding-related characters. The occur-
rence patterns of larvae/juveniles are also inves-
tigated in offshore waters and on tidal flats in
the inner Tokyo Bay, and the relationships be-
tween the ontogenetic intervals and occurrence
patterns are clarified to elucidate how each area
of the inner Tokyo Bay provide habitats for the
species.

2. Material and methods

Specimens used in this study were sampled
from four sampling sites in the inner Tokyo Bay
(Fig. 1). Two types of sampling gear were used
as follows: a 0.8 mm mesh size small seine net (cf,,
KANOU et al, 2002b) was monthly or bimonthly
towed for about 100 m? at about 1m depth tidal
flat during day time from May 2006 to Septem-
ber 2009 in three stations around the river
mouth of Tama-gawa River, the northwestern in-
nermost Tokyo Bay; and a 1.3 m diameter ring
net with 0.5 mm mesh size was towed for 15 mi-
nutes by one to two knots through surface wa-
ters during day time from January 2006 to May
2008 (not sampled in March and July 2006, and
January, March, July and September 2007) in
one station off the mouth of Tama-gawa River by
a 19 ton T/S Hiyodor: of Tokyo University of
Marine Science and Technology. Water tempera-
ture and salinities were measured after the sam-
plings from January (offshore) or May (tidal flats)
2006 to May 2008, and the sediment was collect-
ed from the bottom of tidal flats for the measure-
ments of particle-size distribution and mud-
content percentage (cf., KOHNO ef al, 2014) from
March 2008 to September 2009.

Collected specimens were fixed in 5% seawa-
ter formalin and later preserved in 70% ethanol.
Species identification follows Oxiyama (2014).
The body length (BL: sense LEIS and TRNSKI
1989) of each specimen was measured to the
nearest 0.1 mm using a micrometer attached to a
binocular dissecting microscope or a digital cali-
per.

Out of the specimens collected, 111 individuals
(2.0-21.1 mm BL) were randomly selected for
the morphological study to establish the ontoge-
netic intervals. These specimens were cleared
and stained by the method of PorTHOFF (1984),
and the following characters were observed: as
the swimming-related characters, fin supports
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and rays, the angle of notochord flexion (mea-
sured until the urostyle appeared and the noto-
chord tip disappeared), vertebral centra, hemal
and neural arches and spines, and the greatest
body depth and its position measured from the
snout tip to the vertical line at the greatest body
depth; and as feeding-related characters, the
structure of upper jaw (maxilla and premaxilla),
the structure of lower jaw (Meckel's cartilage,
dentary, angular and retroarticular), mouth
width, ratio of premaxilla to gape, numbers of
jaw teeth, pharyngeal teeth, and prevomer teeth,
suspensorium, opercular bones, hyoid arch, and
number of branchiostegal rays. The histogram

method of developmental events by 1 mm BL
fish size intervals employed by Sakar (1990) and
the key character method of KoHNO and SOTA
(1998) and Komno et al. (2000) were both ap-
plied to determine the ontogenetic intervals (cf,
SHINAGAWA et al., 2002). In this study, the descrip-
tion was based on the body length in the state of
ethanol preservation and on the smallest speci-
men when the developmental phenomena and
events were first observed.

3. Results
3.1 Physical conditions of water and sediment
The water temperature in the offshore and
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tidal-flat stations showed such the same tenden-
cy as increasing during the summer season and
decreasing during the winter season, and no
remarkable differences were detected between
the stations (Fig. 2). The highest temperature,
29.1 C, was recorded at the river tidal flat sta-
tion, Ebitori, in June 2007 and the lowest, 8.5 C,
at the offshore station in February 2008.

The salinity was the highest in the offshore
station, ranging from 25.1 to 32.3 with the mean
+ SD = 29.9 = 2.1, followed by the forehead
tidal-flat station, Haneda, ranging from 12.3 to
299 with 22.8 = 41 (Fig. 2). In the river-mouth

and river tidal-flat stations, Keihin and Ebitori,
the salinities were relatively low and varied from
3.0 to 22.2 with 14.4 = 3.9 and from 0.1 to 22.2
with 114 + 5.2, respectively.

Regarding the bottom sediment, the median
particle size was the largest and the mud-
content percentage was the lowest in Haneda,
varying from 326.8 to 1,358.3 um (mean = SD =
6214 + 307.2 um) and from 06 to 80 % (1.2 =
0.4 %), respectively (Fig. 3). No remarkable dif-
ferences were observed in the bottom sediment
between Keihin and Ebitori; the median particle
size and mud-content percentages fluctuated
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from 154.3 to 331.1 um (209.7 = 34.2 um) and
from 0.7 to 8.0 % (2.8 + 1.8 %) in the former and
from 78.1 to 182.7 um (146.9 = 31.2 um) and
from 3.9 to 41.3 % (188 = 10.8 %) in the latter.

3.2 Occurrence patterns

The total number of Japanese whiting collect-
ed from the offshore station was 30 with the size
of 46 = 1.6 mm BL (mean * SD), ranging from
2.0 to 8.5 mm BL, with a mode of 3.0-3.9 mm BL
(Fig. 4). The months of occurrence were limited
to August (34 += 1.0 mm BL, #» =38), September
(5.9 = 2.0 mm BL, 7) and October (4.7 * 1.3
mm BL, 15) (Fig. 5). In the three tidal-flat sta-
tions, no specimens were collected from the river
tidal flat station, Ebitori. The total number of

specimens collected from the other two tidal-flat
stations, Keihin and Haneda, was 232 with the
size of 15.7 = 5.6 mm BL, ranging from 6.1 to
493 mm BL and a mode of 14.0-14.9 mm BL
(Fig. 4). The BL of specimens collected from the
offshore and tidal-flat stations were overlapped
in 6.0-8.9 mm size classes (Fig. 4).

The specimens collected from the river mouth
tidal flat station, Keihin, numbered 95, ranging
from 6.1 to 49.3 mm BL (17.2 = 6.3 mm BL) with
a mode of 14.0-14.9 mm BL (Fig. 6). The months
of occurrence were limited to the period from Ju-
ly to September, and the number and size of
specimens by the months were » = 4 and 14.8 =
3.9 mm BL ranging from 10.0 to 18.5 mm BL in
July, 57 and 19.3 = 7.2 mm BL from 6.1 to 49.3
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mm BL in August, and 34 and 140 = 1.8 mm BL
from 10.3 to 17.5 mm BL in September (Fig. 7).

In the forehead tidal flat station, Haneda, the
number of specimens collected was 137 ranging
from 6.4 to 43.2 mm BL (14.7 = 4.7 mm BL) with
a mode of 14.0-14.9 mm BL (Fig. 6). These
specimens were collected from July to October,
and the monthly changes of their individual
number and size were as follows (Fig. 7):n =7
and 12.9 = 4.8 mm BL (mean * SD) with a
range from 8.9 to 21.3 mm BL in July; 46 and 16.1
+ 4.8 mm BL from 8.8 to 28.0 mm BL in August;
9 and 126 £ 41 mm BL from 8.7 to 22.2 mm BL
in September; and 75 and 14.2 = 4.7 mm BL
from 6.4 to 43.2 mm BL in October.

3.3 Functional development
3.3.1 Swimming-related characters

Flexton of the notochord end: Flexion of the no-
tochord end was first evident at 34 mm BL with
the angle of 6°, although the largest specimen
with a straight notochord end was 4.2 mm BL

(Fig. 8A). Notochord flexion was complete at
about 5 mm BL with the angle of about 40 to 50°.

Caudal fin supports and fin rays: No elements
of the caudal skeleton were detected until 2.8
mm BL, when three cartilaginous buds of parhy-
pural and hypurals 1 + 2 and 3 + 4 were ob-
served. The cartilaginous buds of neural and he-
mal arches and spines of the future preural
centrum 4 appeared at 5.3 mm BL and those of
the preural centra 2 and 3 and three epurals at
6.2 mm BL. The cartilaginous bud of hypural 5
appeared at 6.5 mm BL, when all the cartilagi-
nous elements were observed; in addition, the
hypurals 1 + 2 and 3 + 4 started ossifying. The
parhypural, hemal and neural arches and spines
of the preural centrum 4, those of the preural
centra 2 and 3, and hypual 5 started ossifying at
6.8 mm BL, 7.3 mm BL, 7.6 mm BL, and 7.8 mm
BL, respectively. Ossification was perceived in
the epurals 1-3 at 11.1 mm BL, and thus all carti-
laginous elements started ossifying. The bony
urostyle and uroneurals 1 and 2 were first ob-
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japonica, collected from the offshore sampling station in the inner Tokyo Bay.

served at 5.9 mm BL, 8.3 mm BL and 10.6 mm
BL, respectively.

Principal caudal fin rays were first discerned
at 2.8 mm BL, when four rays were counted (Fig.
8B). The adult complement of 9 + & principal
caudal fin rays was attained at 4.9 mm BL.

Dorsal fin supports and fin rays: The smallest
specimen with dorsal fin supports was 4.8 mm

BL, in which 23 cartilaginous pterygiophores
were observed. All the pterygiophores appeared
by 5.9 mm BL. Ossification of five pterygiophores
was first observed at 7.9 mm BL, and all ele-
ments started ossifying at 13.2 mm BL.

Dorsal fin rays were first discerned at 4.6 mm
BL, when 14 soft fin rays were observed
(Fig. 8C). The adult complement of 32-35 rays
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was attained at 59 mm BL.

Anal fin supports and fin rays: Nineteen carti-
laginous pterygiophores were first observed at
48 mm BL, and all the pterygiophores appeared
by 5.9 mm BL. Ossification was first discerned at
7.9 mm BL, and all elements started ossifying at
14.0 mm BL.

Anal fin rays were first discerned at 4.6 mm
BL, when 15 soft fin rays were observed
(Fig. 8D). The adult complement of 23-26 rays
was attained at 5.9 mm BL.

Pectoral fin supports and fin rays: A rod-
shaped bony cleithrum, a coraco-scapular carti-
lage and a cartilaginous plate, which later grew
into actinosts, were observed in the smallest
specimen examined of 2.0 mm BL. The bladelike

cartilage was divided into four actinosts at 5.9
mm BL. Ossification of the coraco-scapular carti-
lage and actinosts was first perceived at 7.9 mm
BL and 8.5 mm BL, respectively. The bony su-
pracleithrum and posttemporal were observed
at 3.6 mm BL and the postcleithrum at 9.4 mm
BL.

The pectoral fin rays were first discerned at
5.3 mm BL, when six were noted (Fig. 8E). The
adult complement of 15-17 rays was attained at
6.1 mm BL.

Pelvic fin supports and fin rays: The pelvic fin
support, the basipterygium, was first observed
at 5.9 mm BL, and the ossification started at 9.3
mm BL.

The pelvic fin rays were first discerned at 7.2
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two tidal-flat sampling stations, Keihin and Haneda, in the inner Tokyo Bay.

mm BL, when four rays were observed (Fig. 8F).
The adult complement of six rays was attained
at 94 mm BL.

Vertebra: The smallest specimen possessing
vertebral elements was 2.8 mm BL, in which 21
centra, 16 cartilaginous neural arches and spines,
and seven cartilaginous hemal arches and spines
were observed. The adult complement of 35 cen-
tra was attained at 5.9 mm BL. Both the hemal
and neural arches and spines started ossifying at
6.2 mm BL and became complete in number at
7.7 mm BL. All arches and spines started ossify-
ing at 7.9 mm BL.

Maximum body depth and its position: The ra-
tio of the maximum body depth to BL was 23.5 %
in the smallest specimen examined of 2.0 mm BL,
although the ratio varied from 11.5-28% until
about 8 mm BL (Fig. 8G). The ratios converged

and decreased gradually to 15-20% at about 10
mm BL and became stable thereafter.

The position of maximum body depth varied
from 10% at 2.0 mm BL to 35% at 4.0 mm BL
(Fig. 8H). The ratios became stable at about
10-25% in specimens of about 9-14 mm BL, but
increased to 30-35% thereafter.

3.3.2 Feeding-related characters

Mouth width: The mouth opened in all speci-
mens examined. The mouth width was 0.13 mm
in the smallest specimen of 2.0 mm BL and in-
creased rapidly to about 5 mm BL (Fig. 9A).
The growth rate became then more or less slow
until about 13 mm BL and rapid again, with the
largest specimen examined of 21.1 mm BL pos-
sessing a 1.88-mm-wide mouth.

Jaw structure: The smallest specimen of 2.0
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mm BL possessed the maxilla and Meckel's carti- Premaxtlla length/gape: The ratio of premaxil-

lage. Premaxilla and dentary appeared at 2.8 mm la to gape was 52% at 2.8 mm BL, when the pre-
BL, the angular at 3.6 mm BL and retroarticular maxilla appeared first (Fig. 9B). The ratio in-
at 41 mm BL. creased rapidly to about 85% at about 4 mm BL
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Sillago japonica.

and became stable at 70-85% thereafter.

Jaw teeth: The first upper jaw teeth observed
were six in number at 3.2 mm BL (Fig. 9C). The
number of upper jaw teeth increased rapidly to
about 6 mm BL and exponentially thereafter
with a maximum number of 84 at 17.7 mm BL.

Although the first lower jaw tooth was ob-
served at 2.8 mm BL, the increase of number
was slow up to 7 mm BL with a maximum num-
ber of six (Fig. 9D). The number of lower jaw
teeth increased exponentially up to about 13 mm
BL with a maximum number of 50, and the in-
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crease ratio became slow thereafter and varied
from 40 to 70 in number.

Suspensorium: The smallest specimen of 2.0
mm BL possessed the palato-quadrate and hyo-
mandibular-sympletic cartilages. The cartilagi-
nous palatine was first observed at 2.6 mm BL.
The quadrate, metapterygoid, sympletic and hy-
omandibular started ossifying at 59 mm BL, and
the palatine at 6.5 mm BL. The bony ectoptery-
goid and endopterygoid were first observed at
4.1 mm BL and 8.0 mm BL, respectively.

Hvyoid arch and branchiostegal rays: The hypo-
hyal, cerato-epihyal, and interhyal cartilages
were first observed at the smallest specimen of
2.0 mm BL. The interhyal, ceratohyal and epihy-
al started ossifying at 6.5 mm BL, and the hypo-
hyal at 6.8 mm BL.

Three branchiostegal rays were first observed
at 2.8 mm BL, and the adult complement of six
rays was attained at 4.3 mm BL (Fig. 9E).

Opercular bomes: A bony opercle appeared
first at 2.0 mm BL, followed by the preopercle at
3.4 mm BL, subopercle at 3.8 mm BL and intero-
percle at 4.1 mm BL.

Pharyngeal teeth: One upper pharyngeal tooth
was first discerned at 20 mm BL (Fig. 9F). The
number of upper pharyngeal teeth increased
and reached a maximum number of 137 at
177 mm BL. On the other hand, one lower phar-
yngeal tooth was first observed at 2.3 mm BL
(Fig. 9G). The number increased and reached a
maximum number of 70 at 14.8 mm BL.

Prevomer teeth. One prevomer tooth was ob-
served in specimens from 8.0 to 12.9 mm BL
(Fig. 9H). The second prevomer tooth appeared
at 10.8 mm BL, and the number increased slowly
with a maximum number of 12 at 21.1 mm BL.

4. Discussion

4.1 Developmental phases

4.1.1 Developmental phases of swimming func-
tion

Based on the development of swimming-
related characters shown in Figure 10, the Japa-
nese whiting larvae and juveniles were divided
into the following five developmental phases.

The phase of less active swimming (from 2
mm BL to 3 mm BL): No swimming-related
characters appeared, other than the pectoral fin
elements such as the cleithrum, coraco-scapular
cartilage and cartilaginous plate, which devel-
oped later into actinosts. No fin rays appeared,
and all the fins were composed of fin-fold. There-
fore, the larvae in this phase are considered to
drift passively rather than to swim actively.

The phase of caudal fin propulsion (from 3
mm BL to 6 mm BL): This phase is divided into
two sub-phases, pre-caudal and caudal fin propul-
sion sub-phases, at about 5 mm BL. In the former
sub-phase, notochord end flexion started and
was completed. Caudal fin supports started ap-
pearing, and the caudal fin rays started appear-
ing and were completed in number. The hemal
and neural arches and spines and the vertebral
centra started appearing. The flexion of noto-
chord end as well as the completion of caudal fin
rays in number indicate that the beating of cau-
dal fin produces weak propulsion (KOHNO et al.,
1983). In the latter sub-phase, on the other hand,
the dorsal, anal and pectoral fin supports and
rays started appearing and reached the adult
complement, indicating that the body balance be-
came stable (GosLINE, 1971) and thus the beat-
ing ability of caudal fin would increase (KoHNO
and Sota, 1998).

The phase of whole body propulsion (from 6
mm BL to 9-10 mm BL): This phase is also div-
ided into two sub-phases, pre-whole and whole
body propulsion sub-phases, at about 8 mm BL.
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The vertebral centra were completed in number;
therefore, the strong body axis and completed
dorsal and anal fins allow larvae to swim power-
fully by propagating the beat of the whole of the
body posterior to generate propulsion (OMORI et
al., 1996). In addition, at about 8 mm BL, the neu-
ral and hemal arches and spines were completed
in number and started ossifying, and all the dor-
sal and anal fin supports started ossifying. The
completed dorsal and anal fin supports and rays
prevent the larvae from rolling caused by whole-
body beating (GOSLINE, 1971). The pectoral fin
supports were also completed, and the pelvic fin
support and rays appeared and were completed,

indicating that the specimens became a juvenile
stage with possessing the completed, adult num-
ber of fin rays at 94 mm BL. The development of
paired fins indicates the improvement of maneu-
verability (LAGLER et al, 1977; MATSUOKA, 1987;
NARISAWA et al., 1997).

The phase of pre-juvenile swimming (from
9-10 mm BL to 13-14 mm BL): All bony ele-
ments appeared and all cartilaginous elements
started ossifying in the caudal fin support. Flex-
ion points occurred in the greatest body depth
and its position; changes of the body depth and
position are considered to be the improvement of
swimming in fish (ALEEV, 1963).
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The phase of functional, juvenile swimming
(over 13-14 mm BL): All characters concerning
swimming function became complete in number
and started ossifying, and the position of great-
est body depth became stable. Therefore, juve-
niles larger than 13-14 mm BL were considered
to have acquired the functional, juvenile swim-
ming mode.

4.1.2 Developmental phases of feeding func-
tion

Based on the development of feeding-related

characters shown in Figure 11, the Japanese

whiting larvae and juveniles were divided into
the following four developmental phases.

The phase of primordial sucking (from 2 mm
BL to 3-4 mm BL): The oral cavity was en-
closed by the maxilla, Meckel's cartilage, a part
of suspensorium and hyoid arch, indicating that
the feeding mode is sucking. However, these ele-
ments, other than the small bony maxilla, are
cartilaginous, and thus negative pressure for
sucking is considered to be low (e.g. KOHNO et al.,
1997).

The phase of increasing sucking ability and bit-
ing preparation (from 3-4 mm BL to 6-7 mm
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BL): The gape elements of the premaxilla, den-
tary and angular started appearing, indicating
that gape opening and closing ability increase
(SHINAGAWA et al., 2002). In addition, the ossifica-
tion of suspensorium and appearance of bran-
chiostegal rays, opercular bones and retroarticu-
lar would increase the sucking ability (TAMURA
et al, 2013). Although the number is low, the up-
per and lower jaw and pharyngeal teeth started
appearing in this phase. The functions of the jaw
and pharyngeal teeth are to bite/capture and to
propel acquired food organisms to the digestive
tract, respectively (GosLINE, 1971). Therefore,
this phase is also recognized as a phase of biting
preparation.

The phase of sucking/biting abilities improved
(from 6-7 mm BL to 13 mm BL): All characters
concerning feeding function, except for the num-
ber of jaw, pharyngeal and vomer teeth, became
complete not only in number but ossification.
The larvae/juveniles of this stage are considered
to improve their feeding abilities.

The phase of functional, juvenile feeding (over
13 mm BL): The number of lower jaw teeth be-
came stable, and the flexion point of mouth
width, which determines the size of food organ-
isms (HUNTER, 1981), was noticed. Therefore, the
functional, juvenile feeding mode was considered
to be acquired in juveniles over 13 mm BL.

4.2. Habitat shifts corroborated by functional
development

The smallest Japanese whiting larva collected
in this study was 2.0 mm BL, in which the yolk
was completely absorbed. Q0zEkI et al. (1992)
reported that a newly hatched larva was 1.2 mm
BL and the yolk was completely absorbed at 2.5
mm BL of five days after hatching. Considering
the lack of yolk and the shrinkage of body size as
pointed out by O0zEKI ef al. (1992), the smallest
larva of 2.0 mm BL collected in this study would

be older than five days after hatching. Although
the size of larvae collected from the offshore wa-
ter in this study ranged from 2.0 to 8.5 mm BL,
the dominant size class was 3.0-3.9 and 4.0-4.9
mm BL (Fig. 4), which occupied 33.3 and 30.0 %
of the total number of offshore specimens. Swim-
ming and feeding modes of the dominant larvae
were the pre-caudal propulsion and sucking abili-
ty increasing/biting preparation, and thus the
larvae occurred in the offshore water in this
study do not swim actively but drift passively or
swim weakly nor feed actively. The dominant
size of the offshore specimens would be attained
by one to two weeks after hatching, according to
the results of O0ZEKI et al. (1992).

The larvae > 6 mm BL started appearing on
tidal flats, and the number increased after 8 mm
BL and reached to a peak of occurrence at the
14.0-14.9 mm BL size class (Fig. 4). During the
size from 6 to 14 mm BL, the swimming mode
progressed from pre-whole body propulsion to
pre-juvenile phases, which were divided at about
10 mm BL (Fig 10). In the former phase, which
would correspond to two to three weeks after
hatching (OQ0ZzEKI et al., 1992), the larvae are con-
sidered to migrate shoreward by not strong but
spontaneous swimming as well as by utilizing
water currents, and they became juveniles mor-
phologically at 9.4 mm BL by the completion in
number of all fin rays. In the latter, pre-juvenile
phase, the increase of individual number on tidal
flats was accounted by the active shoreward mi-
gration supported by the improvement of swim-
ming ability. On the other hand, the feeding abili-
ties of both the sucking and biting were
improved during the size from 6 to 14 mm BL
(Fig. 11). ARAYAMA et al. (2003) reported that
the main food of the species between 7.0 and 13.9
mm BL was calanoid copepods, and after 14 mm
BL polychaet larvae were added; this change of
feeding pattern is in accord with the change of
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swimming and feeding modes revealed in this
study.

The number of juveniles > 15 mm BL de-
creased gradually on tidal flats, and those > ca.
30 mm BL were absent besides exceptionally
large individuals of 33, 43 and 49 mm BL (Fig. 4).
KRUCK et al. (2009) suggested a possibility that a
niche shift would occur in sillaginid fishes > 20
mm BL in Moreton Bay, Australia, which more
or less agrees with our results of the disappear-
ance pattern from tidal flats. Although a habitat
shift occurred from intertidal pools to adjacent
subtidal waters in Moreton Bay (KRUCK et al,
2009), no habitats after the tidal flats which cor-
responding to the subtidal waters in Moreton
Bay could be detected for the Japanese whiting
in the innermost Tokyo Bay. ARAYAMA et al.
(2003) indicated that, in Tateyama Bay of the
outer Tokyo Bay, an offshore area within 100 m
from the shoreline at the depth <1 m is an im-
portant nursery area for the Japanese whiting
and that the occurrence of larvae/juveniles in
the shoreline area corresponding to the tidal
flats in this study would be accidental. However
in the innermost Tokyo Bay, we could not find
nursery areas corresponding to the offshore area
of ARAYAMA et al. (2003); those > ca. 30 mm BL
in the innermost Tokyo Bay are most likely to
move into deeper waters.
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Taxonomical review of Auxis (Scombridae, Pisces) larvae using

collections around Tosa Bay, Japan

Donna M. GUARTE, Liezel C. PARABOLES and Izumi KINOSHITA

Abstract: Larvae of Auxis collected around Tosa Bay from May 2002 to May 2018 could be dis-
tinguished into two types primarily by the pigmentation patterns on the caudal peduncle. Type-

A Auxis larvae possess a row of pigmentation along the midlateral line in all larval stages, while

type-B does not. Little morphometric differentiation was found until the flexion stage in both
types, but at the postflexion type-A showed significantly larger head [36.8% BL (mean) ], larger
mouth (24.1%), shorter vent to anal-fin length (17.7%) and deeper body (27.8%) than type-B
(34.8, 21.5, 19.0, 25.9%, respectively). These observed differences indicate the validity of the pig-
mentation row in distinguishing Auxis larvae. Between the two types, type-B larvae (n = 795)

were more abundant than type-A (n = 21) in Tosa Bay. Based on this distribution pattern and

shallower body depth, type-B larvae could be considered as A. rochei and type-A with a deeper

body as A. thazard.

Keywords : Auxis larvae, pigmentation and morphometry, Tosa Bay

1. Introduction

Auxis is a commercially important fish with
widespread distribution in tropical to temperate
waters (COLLETE and NAUEN, 1983). It is repre-
sented by four species, A. brachydorax, A. eudor-
ax, A. rochei and A. thazard (FRICKE et al., 2018).
The latter two species are cosmopolitan in distri-
bution, while the former two species have been
recorded only in the eastern Pacific and are pre-
viously considered as subspecies of A. thazard
and A. 7rochei, respectively (COLLETTE and
AADLAND, 1996). Around Japanese waters, both
A. rochei and A. thazard are widely distributed,
with the former dominating fisheries catches

Usa Institute of Marine Biology, Kochi University
194 Inoshiri, Usa, Tosa, Kochi 781-1164, Japan

throughout the year (Horta, 1955; OkAcCHI, 1958;
MOHRI et al., 2016), half of which are landed from
Tosa Bay (Ocmiar and TANAKA, 1998; Niva, 2001).
This demonstrates the importance of Tosa Bay
in the reproduction of pelagic fishes in south-
western Japan (KINosHrta, 2006).

Global capture production of Auxis from 2010-
2015 showed a general increasing trend, with an
annual average of ca. 457 kt (FAO, 2018a).
However, in Japan Auxis capture production con-
tinue to decline from ca. 29 kt in 2010 to ca. 16
kt in 2015 (FAO, 2018b). To manage fisheries
resources

precise identification

(FISCHER, 2013) and information on the early life

sustainably,

histories that has considerable influence on pop-
ulation dynamics (SPONAUGLE and CoOWEN, 1997)
should be acquired. Currently, identification of
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the larvae of the two cosmopolitan Auxis species
is still problematic. MaTsumoro (1959) classified
Auwxis larvae into two types using pigmentation
patterns of the caudal peduncle region, and JONES
(1963) speculated that these types I and II may
be A. thazard and A. rochei, respectively. How-
ever, because of the lack of detailed morphomet-
ric examinations, both works are inconclusive.

There is little available information on the ear-
ly life history of Auxis in Japan. Most of the infor-
mation are limited to collection records based on
ichthyoplankton studies (YOkoTA et al, 1961;
YABE and UEYANAGL 1962; HATTORL 1964;
MATsUDA, 1969; Fukupa, 1984; FunakosHi, 1993;
ZHONG, 2002). Artificially reared larvae and juve-
niles of both Awxis species were reported in
HARADA et al. (1973a, b), but their papers never
describe their ontogeny. To date, only NISHIKAWA
(2014) described an uncertain species of Awuxis,
which may probably be any of the two types ob-
served by MATSUMOTO (1959). This study aims
to differentiate the early developmental stages of
Auxis larvae collected around Tosa Bay, Japan
based on pigmentation patterns and morphomet-
ric trends. Detailed descriptions of pigmentation
and morphometric patterns are also provided to
determine which characters are most useful in
separating Awuxis even at early developmental
stages.

2. Materials and methods

Fish larvae were collected in waters of Tosa
Bay (32°427-33°25” N, 132°527-133°38” E) from
May 2002 to May 2018, primarily by towing obli-
quely from near the bottom to the surface with a
larva net (1.3 m mouth diameter with 0.5 mm
mesh aperture) and a modified IKMT (1.5 m?
mouth opening with 2 mm and 0.5 mm mesh
apertures in the anterior part and cod end, re-
spectively). All samples collected were pre-
served in 10% formalin solution. Fishes were

immediately sorted and transferred to 80%
ethanol. Auxis larvae were identified following
MATsumMoTO (1959), NISHIKAWA and RIMMER (1987)
and NisuikAwA (2014). Larvae of Auxis can be
distinguished from other scombrids containing
the same number of myomeres (39) such as
Thunnus, Euthynnus and Gymnosarda based on
the pigmentation patterns on the caudal pedun-
cle, chleithral symphysis, front of the anus and
tip of the lower jaw.

After identification, the body lengths (BL: no-
tochord length in preflexion and flexion larvae,
and standard length in postflexion larvae) and
other various measurements such as eye diame-
ter, body depth, snout, upper jaw, pre-anal, head
and vent to analfin (VAFL) lengths were made
following LEis and CARSON-EwarT (2000) by de-
velopmental stages (KENDALL et al, 1984). A to-
tal of 642 preflexion (2.3-4.6 mm BL), 140 flex-
ion (4.7-7.1 mm) and 34 postflexion (5.5-7.9 mm)
larvae of Auxis were collected and representa-
tive samples were used to describe the different
developmental stages.

Morphometric data were evaluated for hetero-
geneity of variances using ANCOVA. A repre-
sentative series of specimens used in this study
were deposited in the Usa Institute of Marine Bi-
ology, Kochi University (UKU-449000-449005).

3. Results
Types of larvae

Specimens were classified into two types pri-
marily using pigmentation patterns. Type-A
specimens possessed a distinct row of melano-
phores along the midlateral line of the caudal pe-
duncle, while type-B did not. Both types occur-
red almost simultaneously in spring to autumn,
with type-B larvae outnumbering type-A on all
occasions (Fig. 1). A total of three preflexion
(4.1-4.3 mm BL), three flexion (4.8-5.5 mm) and
15 postflexion larvae (5.5-7.9 mm) of type-A,
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Fig. 1 Seasonal abundance of types -A and -B Awuxis
larvae collected in Tosa Bay from May 2002 to
May 2018.

while 639 preflexion (2.3-4.6 mm), 137 flexion
(47-7.1 mm) and 19 postflexion larvae (5.6-7.6
mm) of type-B were collected (Fig. 2).

General morphology

Both types containing 39 myomeres are later-
ally compressed with an elongate body tapering
gradually towards the caudal end. The abdomi-
nal sac is triangular and protrudes ventrally be-

low the body outline. In both types, the pre-anal
(ca. 40-48% BL), head (ca. 26-37%), upper jaw
(ca. 16-24%) and snout (ca. 7-14%) lengths and
body depth (ca. 24-28%) increase with body
length (Fig. 3a, b, d). Eye diameter hardly
changes with BL (ca. 11-12%) (Fig. 3e), while
the VAFL becomes shorter (ca. 22-17%) (Fig.
3c¢) from preflexion to postflexion. However, at
the postflexion stage, significant differences be-
tween the two types were observed, with type-
A having a larger head [36.8% BL vs 34.8%
(means) in type-B, p < 0.05], longer upper jaw
(24.1% vs 21.5%, p < 0.05), shorter VAFL (17.7%
vs 19.0%, p < 0.01) and deeper body (27.8% vs
25.9%, p < 0.01) than type-B (Fig. 3f, g, h). Cor-
respondingly, the snout and pre-anal body length
in type-A (14% and 48%) are also longer than
type-B (13% and 47%, respectively), but these
were not significant.

Fin formation
Notochord flexion begins at 4.8 mm BL in

Fig. 2 Developmental stages of types -A (a-c) and -B (d-f) Auxis larvae from Tosa Bay. (a) 4.3 mm BL
preflexion larva (UKU-449000); (b) 54 mm BL flexion larva (UKU-449001); (¢) 6.8 mm BL postflexion
larva (UKU-449002); (d) 5.0 mm BL preflexion larva (UKU-449003); e 6.9 mm BL flexion larva (UKU-
449004); (f) 7.5 mm BL postflexion larva (UKU-449005). Note: Fig. 2a was derived from the right side
body of the larva due to damage on the left side.
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type-A and at 4.7-5.2 mm in type-B, and is com-
pleted at 5.5 and 6.9 mm, respectively (Fig. 2e).
The hypurals start to appear in late preflexion
larvae measuring 4.3 mm in type-A (Fig. 2a) and
in 4.6-5.2 mm in type-B, with incipient rays
formed subsequently. The pelvic bud occurs in
48 mm flexion larva in type-A and in 5.1 mm
flexion larvae in type-B, with rays starting to de-
velop at 6.5 and 7 mm postflexion larvae, respec-
tively. The second dorsal- and anal-fin anlagen
first appear in 4.8 mm flexion larvae of type-A
and in 5.2 mm flexion larvae of type-B, and their
incipient fin rays begin to differentiate in 5.5 and
6 mm flexion larvae, respectively. The first
dorsal-fin anlagen are found in late flexion larvae
measuring 5.5 mm in type-A and 7 mm in type-
B, with incipient spines starting to form in 6.6
and 7.3 mm postflexion larvae, respectively. The
7.9 mm postflexion larva of type-A was the larg-
est in both types, and showed full complements
of first dorsal (XI), second dorsal (11 + 7 finlets),
anal (11 + 7 finlets), pelvic (I + 5) and caudal (9
+ 8) fins (pectoral fin, unkown due to damage).

Head spination and dentition

In both types, two and three spines are initial-
ly present on the inner and outer preopercle,
with the outer spine at the angle being the lon-
gest (Fig 2a, d). The number of inner and outer
spines increase gradually to three and seven, re-
spectively, by postflexion stage in both types
(Fig. 2¢, f). One small spine starts to form on the
posttemporal in 5.4 mm BL flexion larvae (Fig.
2b), increasing to two in ca. 6 mm flexion larvae
in both types (Fig. 2c, 2e). The small and coni-
cal teeth are already present in both jaws in the
smallest larvae at 4.1 mm in type-A and 2.3 mm
in type-B, gradually increasing their number
with development thereafter (Fig. 2).

Pigmentation

Three distinct rows of melanophores (middor-
sal, midlateral and midventral) are present on
the caudal peduncle in type-A (Fig. 2a-c), while
one or two rows only in type-B, along the mid-
ventral and or middorsal (Fig. 2d-f), which is
sometimes absent in preflexion and flexion lar-
vae. The rows on the caudal peduncle become
denser with growth in both types, and the three
rows of type-A form a transverse band (Fig. 2a-
c¢). The internal melanophores arranged along
the anal-fin anlagen are more numerous in pre-
flexion type-B larvae (6-13) than in type-A (5-8)
(Fig. 2a, c), and their number decreased, al-
though variable, to 1-5 in type-A (Fig. 2c) and
3-6 in type-B at postflexion (Fig. 2f). Small mel-
anophores at the tip of the lower jaw and large
branched melanophores over the head are pres-
ent in all stages in both types, becoming more
obvious with growth (Fig. 2). Melanophores on
the triangular abdominal sac are internally de-
veloped, being heavier along the anterior and
dorsal surfaces from flexion larvae (Fig. 2). A
conspicuous melanophore at the cleithral symph-
ysis (Fig. 2b-f) is present in most specimens, but
sometimes absent in type-A preflexion larvae
(Fig. 2a) and in any stage of type-B larvae. A
single melanophore just in front the tip of the
anus and/or the anterior finfold (Fig. 2a, b, d, e,
f) irregularly appears in any stage in both types.

4. Discussion

The midlateral row of melanophores on the
caudal peduncle is the most consistent feature
distinguishing all larval stages of type-A from
type-B. Both types closely resemble MATSUMOTO'S
(1959) types I and II larvae, respectively from
unspecified waters of the Pacific, Atlantic and In-
dian Oceans, based on pigmentation patterns. Al-
though MaATsumoro (1959) mentioned the ex-
treme inconsistency of the midlateral pigments
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in type I larvae (a row of 1-5 melonophores on
one side of the body but absent on the other side
on the same larvae), our type-A specimens have
the pigments on both sides, except for the 4.3
mm BL preflexion larva (Fig. 2a). This speci-
men had a damaged caudal peduncle on the oth-
er side, hence, the presence or absence of the
pigment row is uncertain. Nevertheless, we are
convinced that this specimen possessed the pig-
ment because the other two preflexion type-A
larvae (4.1 and 4.3 mm BL, with deformed bod-
ies) have the pigment row on both sides.

The morphological features of both types -A
and -B are very similar in the early larval stages.
Differences are recognizable only at the postflex-
ion stage, with type-A larvae showing a larger
head, larger mouth, shorter VAFL and deeper
body than type-B (Fig. 3). These results indi-
cate the validity of the pigmentation row on the
midlateral line in typing the entire larval stages
of Auxis, probably until the juvenile stage.

The body depths of juvenile and adult A. ro-
chei are shallower than in A. thazard (COLLETTE
and AADLAND, 1996; NAkABO and Doruchi, 2013).
In Tosa Bay, A. rochei are captured more abun-
dantly than A. thazard (Ocmial and TANAKA, 1998;
Nuya, 2011). In this study, the shallower-bodied
type-B larvae predominated the deeper-bodied
type-A larvae. Based on these facts, type-B lar-
vae can be considered as A. rocher and type-A
larvae as A. thazard. Our opinion corroborates
with JoNES (1963) speculations based on a limit-
ed morphometric examination (eight specimens)
that the stouter type of Auxis larvae from Indian
waters may be a A. thazard [= type I of
MATsuMoTO (1959)] and the less stout or elon-
gate type may be A. rochei [= type II of
Matsumoro (1959)]. Furthermore, the photo-
graphs, although wunclear, of the artificially
reared preflexion larvae of A. thazard and A. ro-
chei have three and two rows of pigmentation on

the caudal peduncle, respectively (HARADA et al.,
1973b, a). Accordingly, based on the results of
this study, the three postflexion Awuxis larvae ob-
served in NISHIKAWA (2014) can be identified as
A. thazard, but the smallest preflexion larva is
not Auxis because of the absence of pigmenta-
tion rows on the midventral, middorsal and/or
midlateral lines of the caudal peduncle which are
distinguishing characteristics of Awuxis even in
early preflexion larvae. This preflexion specimen
is probably Euthynnus (NISHIKAWA, 2014), which
has 1-3 pigment spots on the ventral edge of the
tail and shares the same characters with Auwuwxis;
such as 39 myomeres, strong preopercular
spines and pigmentations at the tip of the lower
jaw, cleithral symphysis and tip of anus. In the
near future, molecular studies examining the
two types of Auxis larvae should be conducted to
clarify their identifications.
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Measuring burst movements of smallmouth bass
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micro-acceleration data loggers
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Abstract: This study used micro-acceleration data loggers to measure burst movements, such as

feeding behavior, of smallmouth bass (Micropterus dolomieu). Data loggers were attached to the
dorsal side of seven bass released into Lake Kizaki, Japan, during summer 2007-2008. From 220.7
total hours of data, the burst movement rate was 0.7 £ 0.3 events/hour (mean * s.d.) (range:

0.4-1.1 events/hour). All bass showed burst movements during both daytime and nighttime, but

four fish had higher event rates during the day. For two individuals, the mean event depth was

significantly deeper during the daytime than the nighttime.

Keywords : invasions, fish behavior, bio-logging, micro-acceleration data logger

Introduction

Smallmouth bass (Micropterus dolomieu) are
freshwater fish native to North America that
were introduced to Japanese lakes in the mid-
1990s and have been successfully reproducing
since then (IcucH et al, 2001). The introduction
of this competitive species likely has serious con-
sequences for native species (IGUCHI et al., 2004).

Bio-logging tools have proven useful for behav-
ioral ecology research, specifically to assess be-
havior in marine mammals, seabirds, and other
free-living species that are difficult to study
(KATO et al., 1996; SUzZUKI et al., 2009; NAITO et al.,
2010). Micro-accelerometer tags are efficient
tools to remotely quantify rates of behaviors

such as resting, swimming, or migrating, and can
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Table 1. Logger data of burst movements of smallmouth bass in Lake Kizaki. Data were collected from 130.3

nighttime and 90.4 daytime hours.

- Capture  TL BW  Water temp. Daytime Nighttime Total
date (cm) (@ (©) N RT (h)  Rate N RT (h)  Rate N RT (h) Rate

F 2007/5/20 341 640 143 =01 14 137 10 5 97 05 19 234 08

I 2007/8/10 421 - 263+03 18 275 07 12 202 06 30 477 06

Q  2008/6/12 404 - 188%02 12 145 08 5 92 05 17 236 07

R 2008/6/12 403 1080 190 =01 5 143 04 4 92 04 9 235 04

S 2008/6/16 382 - 202%05 6 146 04 5 92 06 11 237 05

U 2008/8/13 383 - 2%5+02 15 265 06 13 205 06 28 470 06

X 2008/8/24 401 - 250%03 23 192 12 13 124 11 36 316 11
Mean + sd. 391 %26 -  214=02 133 =64 186 =60 0703 81 =43 129=52 06=02 214 =102 315 112 07 = 03

TL: total length, BW: body weight, N: number of burst movements, RT: record time, Rate: burst movement rate per hour, - no data

be used to estimate activity and energy budgets
(FORE et al., 2011; ALABSI ef al., 2011; BROELL et al.,
2013). These devices allow the measurement of
swimming intensity and active events (AOKI et
al, 2012), which can be used to estimate the
quantity of food eaten (TANOUE et al, 2012) and
indicate the ecology of fish species.

This study explored the activity of small-
mouth bass and investigated the potential of bio-
logging devices for acquiring data on their burst
movements such as feeding behavior. We also
collected data on spatiotemporal swimming be-
havior of smallmouth bass to extrapolate their
potential threats to native fish populations in
Lake Kizaki.

Materials and methods
Smallmouth bass were caught by lure fishing
Kizaki (36°32-34'N, 137°49-50°E,

shoreline length: 7 km, surface area: 1.4 km? vol-

from Lake

ume: 0.02 km?, height: 764 m, maximum water
depth: 29.5 m, transparency: 4 m,) in Nagano
Prefecture, Japan, during the summers of 2007-
2008. In May, nests of smallmouth bass were vis-
ually located. Individuals with IDs A-I were
caught in in 2007, and IDs J-X were caught in
2008.

They were housed in a fish cage (3 X 3 X 1 m)
in the lake to identify burst movements includ-

ing feeding events via direct visual observation
and video camera put from the cage side. Indi-
viduals (n=7) were tagged with a micro-accel-
eration data logger M190-D2GT (Little Leonar-
do Co., Tokyo, Japan) to measure burst move-
ments and other variables. Less than 24 h after
the logger was tagged, three or five live loach
(Misgurnus spp.), goldfish (Carassius auratus),
and Japanese smelt (Hypomesus nipponensis)
were introduced to the cage to allow the tagged
fish to feed ad [ibitum. After the caged experi-
ments, the tagged fish (n =2 in 2007, n =5 in
2008) were released into Lake Kizaki (Table 1).

The data loggers (53 mm X 15 mm, 6 g in
water) measured depth and temperature in 1 s
intervals, and both static and dynamic accelera-
tion along the lateral ‘sway and longitudinal
‘surge’ axes at 32 Hz. A soft nylon mesh (6 x 4
cm) was sewed onto the dorsal side of each fish
using biodegradable thread made of polyglycolic
acid (Matsuda Medical Technology Co. Tokyo,
Japan). The data logger was wrapped in copoly-
mer foam to keep it slight positive buoyancy in
the water (KOMATSU et al, 2011), and was at-
tached to the nylon mesh with plastic bands. Da-
ta loggers had an automatic scheduled release
system included VHF radio transmitter to de-
tach from the nylon mesh and float to the sur-
face (WATANABE et al., 2008), where they were
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Table 2. Activity patterns obtained by the data logger of smallmouth bass in a fish cage

Types of  Criteria

behavior
High-pass filtering the swaying Beat frequency (Hz) Change in body angles (degrees)
acceleration (m/s%)

Feeding =20 = 30 = 20

Escaping =10 =25

Swimming = 0.3 =15

Resting <03 <15

retrieved by the signal. One of the loggers tag-
ged to nesting individuals (F) was detached in
the same nest where the fish was caught.

Data were downloaded from the data loggers
and analyzed using Igor Pro (v.6.0 J, WaveMe-
tricks, Lake Oswego, OR, USA) and Igor Filter-
ing Design Laboratory (IFDL: v.4, WaveMet-
rics). Ethographer v.1.2 was used to detect
specific waveforms among the large dataset of
acceleration records (SAKAMOTO et al, 2009).
Power spectral densities (PSD) were calculated
from swaying acceleration records from loggers
to determine the dominant stroke cycle frequen-
cy using fast Fourier transformation. Tail beats
were derived by high-pass filtering the swaying
acceleration (TANAKA et al., 2001). The body an-
gle was extracted by low-pass filtering the surge
acceleration. To remove higher frequency accel-
eration caused by tail beats, a low-pass filter was
applied, with the threshold being the predomi-
nant frequency of tail beats to surging accelera-
tion.

Results
Caged experiments

There were no observed differences in behav-
lor between tagged and untagged fish in the
cage 1 h after tagging. During the daytime, fish
alternated between slow and rapid (burst)
swimming events that characterize chase and
predation behaviors. During feeding events, 95

% of high-pass filtering the swaying accelera-
tions were more than 2 m/s% beat frequencies
were more than 3 Hz, and changes in body an-
gles were more than 20 degrees based on the ac-
celeration waveforms measured using the logger
(Table 2). As such, burst movements were de-
fined as high-pass filtering the swaying accelera-
tion = 2 m/s? beat frequency = 3 Hz, and
changes in body angle = 20 degrees in this
study.

Field experiments

All loggers fitted to free-swimming fish were
retrieved, and 220.7 data hours were collected
(Table 1). The bass were more active in August
(0.8 = 0.3 burst movements per hour (mean =
s.d.)) than in June (0.5 * 0.2). On average, burst
movements occurred 0.7 = 0.3 times per hour
(range: 0.4-1.1; Table 1). All fish appeared to ex-
hibit burst movements during both daytime and
nighttime. The fish often swam before and after
burst movements during the day but were inac-
tive at night (Fig. 1). Four individuals (F, I, Q
and X) showed a significantly higher rate of
burst movements during the day than at night
(Table 1). Two individuals (F and X) showed
burst movements at a mean depth that was sig-
nificantly deeper during the day than at night (#
test, p < 0.01). There were no significant differ-
ences among other individuals (Fig. 2).
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Fig. 1 Comparison of one fish’'s (ID: U) burst movements associated with swimming and resting be-

haviors between (a) daytime and (b) nighttime in Lake Kizaki.

Discussion

Micro-acceleration data loggers enabled us to
monitor the swimming behavior and activity pat-
terns of introduced smallmouth bass in Lake Ki-
zaki. Smallmouth bass are generally diurnal, of-
ten inactive at night except during spawning
season (EMERY et al., 1973). The fish in our study
were also more active during the day while in
cages and free swimming (Fig. 1).

Smallmouth bass begin spawning once water
temperatures exceed 14° C (RIDGWAY et al., 1991).
According to AzuMA and MoToMURA (1998) a
spawning fish is greater than 20 cm in length,
which may be reached 1-2 years after hatching.
In May, we caught nesting individual (F) that
was more than 20 cm in length. After being tag-
ged and released, the individual returned to the
nest and displayed burst movements at 14.3 *
0.1°C. These bursts may be indicative of defense

behavior, as smallmouth bass defend their eggs
both during the day and at night (Scort and
NicHOLAS, 1991).

Introduced smallmouth bass can alter the hab-
itat and reduce the abundance of many small-
bodied species in freshwater environments
(MACRAE et al, 2001; JACKSON., 2002). Our study
reveals the significant role that data-logging de-
vices can play in researching fish behavior.
Based on the behavior recorded in this study, we
hypothesize that smallmouth bass display oppor-
tunistic and aggressive behaviors, and may act
as competitors to other predators and stressors
to small fish populations in Lake Kizaki. Future
research should utilize micro-acceleration data
loggers to study prey items and their capture,
coupled with examinations of stomach contents.
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tween day and night (#test results, p < 0.01).
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