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Comment on Boussinesq’s long wave equation®

Motoyasu MIYATA**

Abstract: Two-dimensional non-linear motion in shallow water on a flat bottom is discussed.
It is found that the non-linear equations, with the wave amplitude being not necessarily
small, yield a steady solution of solitary type whose wave form is nearly equal to that obtained

from the Boussinesq equations.

1. Introduction

Consider two-dimensional motion in a perfect
fluid on a flat bottom. Let (z, 2) be a system
of Cartesian co-ordinates, and let = be measur-
ed vertically upwards from the undisturbed sur-
face. The linear shallow water equation is (see,
e.g., STOKER 1957)
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where u is the horizontal velocity in z-direction,
€ the displacement of the water surface, % the
undisturbed water depth, ¢ the gravitational
acceleration. In deriving Eq.’s (1) and (2), the
following two length ratios were assumed to be
negligible compared with unity.
A h
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where L is the horizontal scale of the motion
and A is the amplitude. The two parameters
€ and 0 are independent of each other and when
the theory extends to include non-linear terms,
the ratio of € to % is believed to play a central
role in deciding the type of the approximate
solution of the full original equations. The de-
pendence of the non-linear shallow water wave
equation on the fundamental ratio was system-
atically analysed by URSELL (1953) so that it is
often called Ursell’s parameter, although STOKES
(1849) was the first to call attention to it in ex-
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plaining what Ursell later referred to as ‘‘long
wave paradox’’. Ursell concluded that Bous-
SINESQ’s theory (1877) or the KdV equation
(KORTEVEG and DE VRIES, 1895) is based on
the approximation

e~0°K1, (4

and steady non-linear wave solution is possible

in this case. He discussed that if

eDK, (5)

then non-linear effect would overcome and wave
would break. Since then, in the literature deal-
ing with the non-linear long waves, it has
been commonly the custom to use this ratio to
distinguish non-breaking wave from breaking
wave. The present author has found it difficult
to reconcile himself to these discussions, and in
this paper he is going to show that Boussinesq’s
approximation is not necessarily the only case
that produces a steady wave solution.

2. Derivation of approximate equations

The formalism of MEI (1983, Chap. 11) will
be used. The variables are normalized by the
following replacement.
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Now the non-dimensional Laplace equation,
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must be solved for the velocity potential ¢,
subject to the boundary conditions at the free
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surface z=¢{

of %€ %ﬁ_ﬁ):f{ﬁ
6<5t+ 5 b5) o= (0
o 00 \? (6‘95 )2
o2 - 2f _L =
<“z+*>+28{5<ax>+ Py 0,
(8)
and at the bottom z=—1,
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In terms of complex variables,
. . aQ .
g=x+iz, Q=0+, v =u—iw,
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where Y is the stream function. Since Q

should be an analytic function which satisfies
the boundary conditions (7), (8 and (9), we
can formally write
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where D is an operator
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Substituting (10) and (11) into (7) and (8),

and ignoring the terms of order ¢* or higher,
we obtain, after some manipulation,
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where 7 is the total depth
p=1+¢l. (14)

It should be noted that in deriving the ap-
proximate equations (12) and (13), 6 is assum-
ed to be small but & is left arbitrary. If the

depth-averaged horizontal velocity U is defined
by
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which is inverted to yield
0
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then Eq.’s (12) and (13) can be rewritten as
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It is interesting to note that Eq. (17), which
represents the depth-averaged conservation of
mass, is exact to all orders of 4.

For convenience, Eq. (18) is further changed
to another form by using (17). Since
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Eq. (18) is equivalent to:
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3. Steady wave solution
A steady wave solution of Eq.’s (17) and (20)
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will be sought. If the new variable £ defined

by
E=z—ct @D

is introduced, then Eq. (17) becomes
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Upon integration with respect to &,
B
eU=—+C, (23)
7
is obtained, where B is a constant.
Equation (20) is simplified to
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the last three terms cancelling out one another.
Substitution of (23) in (24) leads to:
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Integration of this equation twice yields
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where both D and E are constant.
Assume that Eq. (26) has a solution of
solitary type:
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Then, from (23) and (25),
2
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Using (14) and (28), Eq. (25) can be rearrang-
ed to:

F\2
5%2(%) 30 —1—c0),  (29)

which is integrated to yield
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In dimensional form, the wave profile is

T 9 A
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with

czzgh<l+i>.
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Besides the solitary wave just obtained, peri-
odic permanent waves of cnoidal type are possible,
but they are not discussed here.

4. Discussions and concluding remarks

If the condition (4) is assumed, Eq.’s (17)
and (18) are simplified to:

GC 8

5; {\ +e{)U} =0, (33)
oU vaU i e eU
5 T U YT S ear =0 3H

Equations (83) and (34) are called the Bous-
sinesq equations. The well-known KdV equa-
tion is essentially the same as these equations.
They are known to have a steady wave solu-
tion of solitary type which is, in physical vari-
ables,

(= Asechzz—]}l- 34 2 (x—ct) . (35)

It is rather remarkable that although Eq. (18)
significantly differs from (34), the solitary wave
solution (32) is in form almost the same as the
Boussinesq or the KdV solution (35). This
implies that as far as the steady solution is
concerned, the pair of the Boussinesq equations
or the KdV equation happens to be a good ap-
proximation to the equations (17) and (18).
However, unsteady motion is governed by dif-
ferent equations and the highly non-linear equ-
ation (18) [can be considered to be a large-
amplitude generalization of Eq. (34).
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In water of a single layer under consideration,
the greatest height of solitary wave is determin-
ed by dynamical requirements. Both MCCOWAN
(1894) and LENAW (1966) predicted the maxi-
mum of & to be 0.83: STRELKOFF (1971)
and FENTON (1972) obtained the value 0.85.
In any case € is usually small compared with
unity.
lent € may be larger than unity and the equa-
tions corresponding to (17) and (18) should
yield a steady solution whose wave form is quite
different from that obtained from the Boussinesq
or the KdV equation. MIYATA’s internal soli-
tary wave of large amplitude (1985) in a two-
The time-dependent
equations for non-linear internal waves in shal-

However, for internal waves the equiva-

fluid system is an example.

low water can be derived in a similar though
more complicated way (MIYATA, under prepara-
tion).

It is concluded that the non-linear equations
in shallow water of constant depth with € being
left arbitrary have a steady wave solution of
solitary type whose wave form is almost the
same as that obtained by the Boussinesq equ-
ations.

The author would like to thank Dr. H.
TAKEDA for helpful discussions. Typing was
done by Ms. T. OSADA.
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