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Stocking effects on asymmetrical population
growth under delayed regulation®

Seiichi WATANABE**

Abstract: The constant rate stocking effects are considered on the population with delayed
asymmetrical growth. The stocking increases the equilibrium level of the population. If the
asymmetrical parameter is large, the stocking produces instability of the equilibrium. Contrarily,

if it is small, the stocking produces stability.

The constant rate harvesting has contrary

effects to that of the stocking. The proportional harvesting has a stabilizing effect on the
system. The stocking is an effective way for controlling natural populations.

1. Introduction

The asymmetrical population growth is known
to occur in the case that the density dependence
is not linear to the population density. Recent
evidence reveals that it is an important factor to
describe the population dynamics (PELLA and
TOMLINSON, 1969; GILPIN and AYALA 1973;
FLETCHER, 1978; THOMAS et al., 1980; MUEL-
LER and AvYALA, 1981). Such a growth is
formulated as,

d];it) :r[l_{_%@}jp(z), (1

where 7, K and 6 denote intrinsic growth rate,
saturation level, and the parameter of asymmetry,
respectively. The P(#) denotes the population
size at time #. Still more, the growth of a given
population is often regulated by the past popu-
lation size (NICHOLSON, 1954; MORAN, 1959;
MAYNARD SMITH, 1968). The dynamics of the
population with time lag regulation is studied
for fishing effects (WALTER, 1973), and stability
of the equilibrium (JONES, 1962a, b; KAPLAN
and YORKE, 1975; HADELAR, 1976; STECH,
1978). The simple delayed logistic model pro-
posed by HUTCHINSON (1948) is,

aP@) (. Pi—7)
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where 7 is time lag and P(¢—7) is the population
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size at time ¢—7. This equation is analyzed by
MaAy (1973, 1976) and MAYNARD SMITH (1974).

Another factor for which more theoretical
studies are needed is that of population dynamics
with stocking. In actual cases of sea farming,
it has been common to stock natural population
with juveniles reared from eggs. This paper
introduces an analysis made of the asymmetrical
population growth under delayed regulation with
special reference to the case in which the stock-
ing takes place.

2. Model and its analysis

The asymmetrical logistic population growth
under delayed regulation together with harvesting
and stocking treatments is described as,

i :r[l—{P(;T)}B:IP(t)JrR—f, (3)

where R is the stocking rate and f the harvest-
ing function. Assuming the harvesting rate to
be constant (f=H=constant), when dP/dt=0,
the equilibrium level P* is the value which
satisfies the following equation;
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When neither harvesting nor stocking occur
or R—H=0, the equilibrium level is K. If f=
hP(#), where h=constant, the equilibrium level
P* is the value which satisfies the following
equation;
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Stability of the equilibrium

The local stability of the equilibrium is de-
termined by the neighborhood stability analysis.
Denoting a small perturbation from the equilib-
rium by z, the population density is represented
by as P(t)=P*+x(): Differentiating both sides
by ¢, we get dP(t)/dt=dx(t)/dt. Substituting
this into equation (2), we get

dfzit) :r[l_{ P*+aIc<(t—r) }0]

x{P*+zO)}+R—F. (6)

Taylor expanding the { }? term, and neglect-
ing 2nd and higher order terms of z, we get
the following equation for f=H=constant:
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When R—H=0 or R=H=0 (in these cases,
P*=K),

dx(2)
dt

=—rliz(t—7). (8)

If time is measured in units of 7, then

d;;r) _ _rr[{( g)”_l}x@)
N

Putting a=r7{(P*/K)’—1} and b=r0c(P*/K)’,
the equation becomes
dx(t)
dt

When R—H=0, a=0 and b=rfr. The equi-
librium is stable if

rlr<z/2, D
and unstable if
rot>n/2. a2z
When f=hAP(z), the local stability is determined
by
= {(%)
Pk r < + " 13x(#)
8
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Measuring time by 7, we get
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Putting a=rr{(P*/K)"+h/r—1} and b=r0r(P*/
K)?, this equation is expressed in the same
manner as equation (10). When R=0, the equi-
librium is stable if

™ h
1—%<7<1. (15)

and unstable if
LSNPS (16)
r 20t ot &

When r—h<0, the population becomes extinct.

3. Stocking effects

The case of f=H=constant
Assuming rr=constant, the stocking effects
are given as follows. If R increases, the param-

eters @ and & increase as

b3_ 6,
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Fig. 1. Stocking effects on the system described
by equation (3) (see text) under the condition
of constant-rate harvesting (f=H). Increase of
stocking carries the point rightward along the
b=0 (rr+a) line. Arrow shows the direction
to which the initial point moves by stocking.
The constant-rate harvesting carries the point
to the contrary direction to that in the stocking.
Stability domains are calculated by MAYNARD
SMITH (1974). S, stable region. U, unstable
region. See text for symbols a, b, 6; and 6.
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b=0(rt+a), b>0. an

The gradient of the straight line (17) depends
on the parameter 0, as indicated in Fig. 1. If
0:>6,>0, the gradient 6, is steeper than that
of ;. If 0 is large, the stocking affects strongly
the stability of the equilibrium, and produces
instability. Contrarily, if 4 is small, the stocking
ensures the equilibrium to be stable (Fig. 1).
The harvesting has a contrary effect to that of
stocking.

The case of f=hP(t)
In this case, the relation between @ and b is,

b=0{(r—h)t+a}, b>0. a8

If (r—A)r=constant, the stocking effects on
the stability of the equilibrium are similar to
the above-mentioned case (f=H=constant).
The harvesting decreases the height of the line
(18). It means that the sufficient harvesting
produces stability (here assumed r>4) (Fig. 2).

When 6+#1, the
growth occurs.
on the system.

asymmetrical population
It provides the various effects
In the practical operation of

controlling natural populations, these effects must

b

a

Fig. 2. Stocking effects on the system described
by equation (3) (see text) under the condition
of proportional harvesting (f=hP). Increase
of stocking carries the point rightward along
the =6 {(r—h)r+a} line. Arrow shows the
direction to which the initial point moves by
stocking. Dotted line shows the harvesting
effect on the system. Harvesting downs the
line parallel to the initial one. @ changes the
gradient of the line. Cf. Fig. 1 for symbols.

be taken into consideration. In some cases, the
stocking produces serious effects on the popu-
lation dynamics (WATANABE, 1983, 1986, 1987,
1988). In the present study, it is clarified that
the stocking plays a very important role in
the time-delayed asymmetrical population growth.
It seems to be reasonable that the stocking is
effective for controlling natural populations.
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