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Theoretical elucidation of generation of a soliton
on the interface of two-layer fluid system with
equal depth with slightly different densities*

Masahide TOMINAGA**

Abstract: Analytical treatment is conducted to seek the soliton solution along an interface
of two fluid system with equal depth and slightly different densities in the sea. There results
a solitary wave of very small amplitude and with very long horizontal scale. If the density
difference is somewhat large, the amplitude increases. In any case, the upper limit of ampli-
tude exists. The case when the depth of upper layer is slightly larger than that of lower

layer is also considered.

1. Introduction

Interfacial solitary wave which gives rise
to on an interface of two-layer fluid system of
equal depth of which densities are p+4dp in
the lower and p in the upper layer has not been
solved theoretically yet (ROBERTS, 1975). Vari-
ous experiments conducted by MIYATA (personal
contact) pertaining to this phenomenon revealed
generation of soliton when the upper layer is
thicker than the lower, and revealed no con-
spicuous soliton when the thickness of both
layer is equal.

MivATA (1985) also studied the interfacial
soliton theoretically by solving the nonlinear
differential equation numerically, using the el-
liptic integral and obtained elevated soliton of
large amplitude when the upper layer is deeper
than lower layer and the density difference is
small. The author tried here to seek the exact
solutions of interfacial soliton in the case of equal
depth, using the mathematical method applied
by MIYATA by means of improved and com-
pletely analytical procedure.

In section 2, the fundamental dynamical equa-
tion is derived by considering horizontal con-
stancy of a flow force in moving fluid using the
complex potential method (LamB, 1932). The
resulting non-dimensional equation is the so-called
nonlinear ordinary differential equation of poly-
nomial class which is analytically integrable in
special case (INCE, 1956).
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In section 3, the solution of the above equation
is expressed in terms of integral of irrational
function when depth ratio of two layers r is
equal to 1, and 6=4dp/p is arbitrary. In this case,
elevation of the interface is assumed to be smaller
than 1. We introduce the square of internal
Froude number Fi?=c?/gho, where h is the depth
of each layer, ¢ acceleration of gravity and o=
do/p. F;? is a function of wave height A, hence
if F;? increases with A (0<A<1), steady soliton
solution exists, but if it decreases with increasing
A, physically such a soliton is unrealistic. We
can prove mathematically that there exists always
narrow domain of Fy?2 or A with dF?/dA>0.
In other words, this means that there is a limit of
amplitude of a soliton for prescribed value of o.
Soliton profile is slightly elevated and very long
horizontally.

When A is small, neglecting the fourth power
of A and so on, the solution is given by elliptic
functions. Numerical example is given for o=
0.02, being relevant value for research of two
layers system in the sea.
amplitude tends to increase.

If the ratio of depth of the upper layer to the
lower layer is slightly larger than 1, an elevated
soliton with small amplitude also exists.

For larger o, the

As an
example, we give this ratio to be 1/ Vi—o
which simplifies the fundamental equation and
the solution can be easily expressed by elemen-
tary integral.

2. Construction of the fundamental equations
So far, we consider the two layers system
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Fig. 1. Cartesian coordinate system, z-axis taking
along the interface and y-axis taking vertically
upwards from the origin which locates on the
interface.

with densities 01 and ps (01> 02) and the constant
depth of A; and Ae (he/hi=7) for lower and upper
layer, respectively (Fig. 1).
fluid extends horizontally to infinity, and the
upper and bottom boundaries are bounded by rigid
plane surface. Cartesian coordinates are taken,
zx-axis being horizontal and y-axis vertical and the
origin locating on the interface.

Now let introduce total flow force S to which
the vertical surface with unit width in the fluid
is subject,

S=S” (1 + 0u?)dy
—h1

We assume the

h
4 S “(pot o)y, 2.1

where 7 is the elevation of the interface, px
(n=1,2) densities of fluid, p, and u, are dyna-
mical pressure and horizontal fluid velocity due
to solitary wave motion, respectively. The
Bernoulli’s equations are

Prt 00gy+ I (w4 vd) =Ko, (n=1,2), (2.2)

2
where wv.’s are vertical velocity and K,'s are
constant. Upon substituting p» of (2.2) into (2.1),
we obtain

S=Ki(p+h1)—Ka(n—hs)

o
___52 (2 —hi?)— p;g (h?—7?)
o1 (7 , .
-+ ’2*—5 A (ul — V1 )dy
—it1
o2 ("2
+ B 8 (w2 —vP)dy , 2.3)
7

which is also given by MIYATA (1985). Since
the flow force S is conserved horizontally then,
the fundamental conception to-derive the equation
of motion is S=Sw, where S is the flow force
at x=Foo.

Assuming a stationary inviscid fluid motion,
we introduce the complex velocity potential
In=0¢n+iYr,(n=1,2) and complex coordinate
z=x+1y, hence we obtain

axn
dz

=up—1ivn, (m=1,2). (2.4)

Near the bottom we expand u.(z,y) in Taylor
series of y—h; and h:—y for n=1 and n=2,
respectively, and using

(49272 din
un(x 2/) ;i: =Re dz s

we obtain (LAMB, 1932)

wi(z,y)=uslz, —hi)

d?
—ZL(ZHIM)‘“’ sui(z, —hy)
l
4 (y+h> d U u(z, —h)+...,
_ L (2.9)
us(az, y) = us(2, hs) |
Z?
_2%012—@)2—;*5 us(x, hs)
d4
Dt CY PR

Since we consider a solitary wave motion «
priori, vertical motion is very small compared
the fourth order terms in the
above equations can be neglected. Now we
can express ui(x, —hy) and wus(x, he) in terms of
horizontal flow rates

(y+h1)? a2

= ! dy= !
@ j—-mui v S_hl 2! dax?

h
+o( L ) Jm(x, —ho)dy

with horizontal,

1—

L being the characteristic horizontal length,
integrating this with respect to ¥ we obtain

h)? d?
Q1:<n+hl>[1— (’7; 1) S ]

+u1(x, —}L1) 5 (26)

and similarly,
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ho— a2
Qz—S [1 ( 22'2/ s +.. ,]ug(x,h2>d?/

(ha—7)2 &2
= ()| 1- dx2+..1u2<x,hg>.
2.7)

Solving #; and us from (2.6) and (2.7) and con-
sidering @; and @ are conserved horizontally,
we obtain

ui(zx, —hi)
—[1+ (7]+h1)2 @z ] th
+hy
N hﬁ?? [H§< dﬁ)
—(hi+7 ]
sz, ha) = [1+ (dx>2 =
~(ha— )dxzj
. Qs dn\?
SCEY) <—
v (hzc—g—gv)i’ (ﬂy ;

At infinity x=Z4oco, we assume wi=us=c,
p1=p2=0, vi=v:=0 and »=0, then we have

Ki=psghs+ 1‘;2_162’
0
1<2:[02th‘1'-‘23 c?,

Qn=chu, (n=1,2). 2.9

Substituting K; into (2.2) for n=1, we have
020h2+ %CQ:[J1+PQU+%(H1Q+W12)

which reduces to pi1=psghs—p1gy for x— too.
Hence, the flow force Siw is given by

0
Slm:j h(?1+PICZ>dy:p1€2]11
il
1 2
+Pzgh1hz+3plgh1 5
and similarly Y (2.10)
Ry R
Seo= [ lpwtmeay=| louct+ ph
0

— 21 dy = pahac?+ ! “’h :

Upon substituting (2.8) into (2.3) and using
S=80=_S100+S200, we obtain the dynamical
equation in non-dimensional form as

N+ (=0 T M(1~Bc>(%§)2

=0—-D0-CC, (2.11)
where x=hm&, {=h and
N=4F*(1—r2+oar?), N
 1—724or?
T r(l4r—or)’
D=r—1+0dF;2, (2.12)

n 2
M= —%—r(l +r—or), 5

C=r—F&1+r—a),

MiIvATA (1985) also obtained the equation like
(2.11), however the term d%(/dE&% is in defect.
This term is not small compared to (d{/d£)? and
so cannot be ignored.

3. Integration of fundamental equation (2.11)
To solve (2.11),
method, that is to say the so-called variation of
integral constant. First we integrate the homo-
geneous equation of (2.11), namely the equation
without the righthand side. The integral con-
stant K including in this solution is then con-
sidered to be the function of {, that is to say

we use the conventional

dK
- (1+C)(7” s)d—c

= =D -CL) exp[%f{i)], 3.1

where we get the following

1
Ao =log S,
and so
M, TA4+Dn % A+«
exp[ﬁf(g)]—\: (r_C)az] T =)

Integrating (3.1), we obtain
(L+Om = DP—CL?
(r—=0 (1+0(-0)

where K({) must be positive (see below).
The solution to the above-mentioned homo-

Q= S a, (32
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geneous equation is easily obtained as follows,

(ZE) K<C>6XP[——AJ§f<c>], 3.3)

where

( 1-B . d+0m
ﬂo“g (000 =le g

Finally, inserting (3.2) into (3.3) and taking
square root, we have

=+ S s

(A +8xdl
r—0)e2n/ J(€)

where

(1+m1

J(‘:):S GTW(G—D@—C?)&ZC. (3.5)

Powers @, and ap included in f({) are

_1+B d ane 1—»B
a= - and az= e
respectively, then we obtain
= czlﬂ/[ . l
TN T 120110
paeM (-0 1 (3.6)
TN T 1202 ar) |
=r(l—0)a;.

In general a; and «; are not integer, hence the
integrands of (3.4) and (3.5) are irrational and we
cannot integrate rigorously by elementary func-
tions.

‘When =1, the formulae (2.12) reduce to

N=4oFs, M="""pg, )

|
___0'__ —1_(9_ 9 ) (37)
B=5"—, C=1-@-a)Fy, ‘
D=0F3, )

and ay1=1/12¢, a;=(1—0)/126. Now let consider
the evaluation of (3.5). Assuming (<1, ex-
panding the integrand of (3.5) in power series
of £ we get

C(C+DL=E)(1+8:L
+ 8oL+ Bl +) 3.8

where
. 2—0
PL= 126 °
8, — 44—40-%-27702
' 2880?
By (2—0)(4—40+11170%) (3.9)

1036803

Replacing the integrand of (3.5) by (3.8) and
integrating term by term, we obtain

JEO=0(),
Y(C) _(d0+d1é+d2§2+dsca+“'>a} (3.10)
where
C
dO:_S“:dm—doze H d01~%
2—
dop=—7", (3.11)
8:C+D 9_
di= Bi’“li”"—‘dn_dlzl’z 5 din= ‘il = 48;’
1 4—40—110?
dup="{Q=0)p—0}=——p—, (3.12)
ds= M{.)l__D_:_l_:dﬂ_anig; )
|
|
1 4—40—110? i
doi=g B D="qge |
1 ) (3.13)
dzz—-{ﬂz@ a)—pio}
_ (2—0)(4—40+2030%) N
14400% )
dBZ%(ﬁ3C+t82D—.81):dalﬂdstiQ: 1
1
d31:’6_(183_‘81>
_ _ 2
_ (@2—o)4 40 +-253a2) ’ C (3.14)
6220803 )

dm:%{@—wﬁrﬁw}

=[(2—0)2(4—40+11170%) — 3602
X (4— 40 +2776%)]+622080°

According to (3.4), since N is positive J(&)
must be also positive so as € to be real, for this
do must be negative or C<0, that is to say it is
necessary that Fy2>1/(2—0a). This fact implies
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that an elevated soliton (1> A>0) exists physi-
cally. Moreover, we must cheque whether
F2=c¢%/gho increases with A or not, in other
words, it is necessary dF;/dA>0 in order to real
soliton exist, because the higher is the soliton,
the larger the phase velocity ¢ must be.

At the top of profile {(£) of a soliton, the
tangent must be horizontal or d{/dé=0. To
satisfy this condition it is clear d&/d{=oo for
{=A or JIA)=A¢(A)=0 or ¢(A)=0. We can
solve F;? from this equation as a function of A4,
and obtain the dispersion relation as

_ dot+dit A+ do A+ dg A3 -+
doz+die A+ das A2+ d3s AB -+

F (3.15)

Differentiating F:% with respect to A, we have

. dF
flffé_df =dydoe—die2doy .

In order to make dF;?/dA positive we must have

diidoe—diade1 >0. (3.16)

Making use of (3.11) and (3.12), lefthand side of
the above expression becomes

— )2 A —1202
2—0a) 4—40—12¢ =i>0’

14de 1440 12

hence, (3.16) is always satisfied. This fact pro-
vides the existence of a real soliton in the neigh-
borhood of A=0. F;? has a maximum value for
A=An and for A larger than A, no soliton
exists physically. ROBERTS (1975) has described
in her book that no theory has been discovered
pertaining to the present problem. However,
we believe that the present discussion resolves
the pending problem.

4. Integration of (3.4) when ¢=0.02

0=0.02 is relevant value for dynamical problem
in the sea. Now the dispersion relation (3.15)
is illustrated in Fig. 2. For A>0.02, the curve
is invalid, since F? decreases with increasing A,
hence solitons occur in the very narrow interval
of F;?, that is to say 0.50505<F;2<0.505096.
Since A is very small J({) of (3.10) is approxi-
mately written by

JO)=C0Q)=L3(|do| ~dil — dol2—dal®). (4.1)

2

Fi

0.50510

1 | L { 1 |
0.5050 007 002 503"

Fig. 2. Dispersion curve when r=1, ¢=0.02.
The maximum value of A is about 0.02, and
of F;%is 0.505096, the part of thickline of the
curve being available.

Computing for F;2=0.50508 the numerical values
of dn’s by (3.11)~(3.14) and solving ¢({)=0,
we obtain ;=0.00901, £;=0.03162 and (3= —
0.05196, among those roots, the amplitude of
soliton corresponds to ;.

Now we expand the following factor in the
integrand (3.4) as

1+Q)e
(—j—s) 1:1+71C+T2C2+7”3C3+O(c4>> <42)
(1=8)e
where
_2-¢ _ 4—4o—110? \
T s 0 PT T 288802 L
4.3)
_ (2—0)(4—40—2530%)
7= 103680° ' /

Thus from (3.4) we obtain

E=A/20F?
X I_i+rido+ralitrsle+--+), (4.4)

where

I S s
I"”SA Vo) Lo o=@ (45

The integral variable is now transformed to w by

v lddl
c T dw+di/3’ 4.6
hence we obtain
o 16ldof
BO=00= 1y a5
X 4(w—er)(w—ex)(w—es), 4.7

where

er=|dol/4C,—dy/12, r=1,2,3,
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then, numerical value of e,’s are ¢;=3.4065 x 10~4, (u, a)= "7 snacna dna sn’udu
e2=—4.625x10* and e;= —2.9429 x 10~*. “a 1—° sn%a snu
By differentiating {*a/¢({) with respect to { ®  sin (nra/K) sin (nxu/K)

and integrating, we obtain the following recur- ==

n=1 nsinh @z K’/ K)
rence formula for I,

zu & sin (nra/K)

- _sntmmarR) g
Er/o@)= 2”“ |do| Lo~ (n+ 1)diTn s R E b (K K)
913 (WHITTAKER and WATSON, 1927; ABRAMO-
_ent dolnio— 2n+4)dslnvs.  (4.8) WITZ and STEGUN 1965), where « is determined
by
Putting n=—1 we obtain o 12es+4dy
- sn a———%—~k2(1261+d1) . (4.15)
d d. £
2dsI;= [ZOII-l_ 72114 qu)c( )- (4.9) a is real and positive, since
l—sn?ae 12(k2e; —es) —k'2d,;
Upon substituting (4.9) into (4.4), it follows T k2(12ei+d)
roldo| and we can show the numerator is positive,
§<u)=i¢2aﬁ*;é[<1+ Z d° )1_,+r110 thus sn?e<1; actually, a=1.7845 for ¢=0.02.
s K, K’, and E are complete elliptic integrals of
—}-(r _ rads )I the first (K and K’) and second (E) kind. Then
U ad, T 2d3 E(u) is represented by
y { (ido{—dlcEdZChdac_a)}“?} @.10) £ . e sin 2
=gt g L omrr ~ 19
sinh

We introduce the second transformation
Making use of (4.6) and (4.11), the elevation of

w=e,+ (el—creli);nzu (mod. k) (4.11) the interface { is given by
. 3|do|cn?u
Lw)= . 417
modulus of snu being defined by 12(e1—e2) +(12e2 -+ dr)en’u
(4.10) and (4.17) give profile of elevated soliton
- ﬂ’ k=1—je (4.12) €(&) in terms of parameter #, which is illustrated
€1 e in Fig. 3 for ¢=0.02 and F;2=0.50508. For

u=0, £0)=0 and £(0)=3|ds|/(12e:+di)= A, and
for u=K, &(K)=oc0 and {(K)=0. By computing
the coefficients of three formulae of (4.13), we
L= —u/"ei—es, can see I1 I s, since |dy] (say |do]=1.95%x10"3

After some analytic manipulations we can reduce
the following:

for ¢=0.02 and F;2=0.50508) is generally very
I_lz—ﬂi_df:u small, and the last term of (4.10) is also small
Sldolv/er—es compared with terms Iy and I_i, hence taking
. 4+/e1—e;3 { snu dnu £ the negative sign of (4.10), &(u) is expressed by
|do| cnw (u)}’ ) (4.13) approximate formula as follows:
L= Sl §ws—~2FFHi+nl),  (418)
ei—e; (12¢1+dy) . )
d or numerical form as
na
x {”“‘F snaona I, a>}- ) £(u) =62.30u+734.55
snu dnu
where II (u,a) is defined by X{ enu _E(u>}’ (4.19)
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Fig. 3. Right half of the soliton profile when ¢=0.02 and F;*=0.50508.

Maximum height is 0.00901.

for F1?=0.50508. &(u) is very large compared
with (), hence the soliton profile is very flat,
so it may not be easy to make field observation
or realize a tank experiment. In the case of
larger o, the maximum amplitude increases, for
example when 6=1/3 Ay is about 0.1 for F;?
=0.601.

5. The case of r=1/41—0¢

Inserting r=1/4/1—0 into (2.12), the funda-
mental equation (2.11) reduces to

MAdIN_ pes e 5
. (75) —C-DI—C), C<0, (5.1)
or
M (¢ 1718
= - — e ————————
==y | e g ©9
where
.2 _
M:%(«/lfﬁ-l—o),
_ 1 1 , L (5.3)
_ 1
D_Mli 1+0F;

L+ VIC[=~C—DT+IC[
X<1°gC—vW—vc2—Dc+ C

o AT ICI
e 3TVl o4
where

A*—DA+|C|=0. (5.5)

From (5.4), when {=0, £=o and when {=A,

£=0, then a soliton exists for certain interval of
F;?. Using expressions C and D given by (5.3),
(5.5) becomes

A2—<ﬁ—l+0Fi2>A
ol N, 1
+<1“"T¢11'a) SRV vt

or solving I';* we obtain the dispersion relation as

oo 14+ 1—VI-0)A—1-0A®
1+(1—0)2—0o/1—6A

(5.6)

2

C is negative, so we have F:2>1/{1+(1—0)%2}

=0.50757(c=0.02). In order to seek maximum
value of dF*/dA=0 for A, that is to say, such
A is a root of

1= 1l-A1=0)A2—2/1—0(2—0—/I—a)A
+@2—0)1-+1—a)=0 (5.7)

Now assuming ¢=0.02 one root of (5.7) is
An=0.01015, and from (5.6) max F;2=0.50763.
As the result elevated soliton with amplitudes
less than 0.01015 occur for F,;® lying between
the narrow interval 0.50757<F;2<0.50763.

6. Conclusion

(1) An elevated soliton solution exists on the
interface of two layers of equal thickness. When
the density difference ratio c=4p/p is 0.02, the
height of soliton is less than 0.02 of the depth
of single layer, and F;?, the square of internal
Froud number for which the soliton exists, lies
in very narrow interval 0.50505<F;2<0.50510,
F:2=0.5 being the value of infinitesimal inter-
facial waves generating on the same interface.

(2) If the depth of upper layer is 1/5/1—¢
times deeper than the lower layer, the exact
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solution can be obtained by simple elementary
analysis. In this case the elevated maximum
height is 0.01015, less than the case of exactly
equal depth, however F;? is somewhat larger.
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