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Amplification of long waves on a continental slope’

Motoyasu MIYATA "

Abstract:: A theoretical model is presented for investigating the effects of continental slope
on tsunami run-up height. The model consists of three regions: I. Deep ocean of constant
depth. II. Continental slope of varying topography. III. Beach and continental shelf of
uniform slope. Using hydrostatic approximation, standing wave solutions over these re-
gions are obtained and relative run-up heights are calculated. The results show that the to-
pography of continental slope is an important factor to determine the run-up.

I. Introduction

Since the first systematic work by KAPLAN
(1955), tsunami run-up has been extensively
studied especially in a laboratory (e.g. IWASAKI
et al., 1970; TocasHI and NAKAMURA, 1978).
Most of these experiments, however, were per-
formed on a uniformly sloping beach connected
to an open ocean of constant depth. This is not
only because the topography is relatively simple
but also because this is the only case for which
an explicit theoretical solution is available
(KELLER and KELLER, 1964; SHUTO, 1972).

It is certainly true that a uniformly sloping
topography approximates almost any beach in
nature and continental shelf within reasonable
accuracy. However, beyond continental shelf
break there usually exists a continental slope
where the bottom slope increases. In the present
paper, a theoretical analysis is made of a simple
model which contains continental shelf topogra-
phy, to provide information about the role of
varying bottom on the tsunami run-up. Appli-
cation of the theory to the real ocean will be
considered in a separate paper using a numerical
model.

Modelling and formulation will be explained
in the following section. The solutions are given
in Section III. Non-linear effect near shore will
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be discussed in Section IV.

II. Formulation

The two dimensional linear unforced equa-
tions under the hydrostatic assumption in a ho-
mogeneous inviscid non-rotating ocean are given
by:
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Where the x axis is taken perpendicular to the
straight coast line, u is the velocity in the off-
shore direction, {’ is the surface displacement,
h’ is the depth of the undisturbed ocean, and g is
the acceleration of gravity. We introduce the
non-dimensional variables as follows: x’= £x,

—Hh(x), t’Z% t, where £ is the width of
the continental shelf plus slope and H is the con-
stant depth of the open ocean (see Fig. 1). As-
suming perfect reflection at the coast, we seek
the standing wave solutions:

(W, &) =G gHu, iH{)el (2.3)

where u and ¢ are functions of x only and o is
the non-dimensional angular frequency. Then
the equations (2.1) and (2.2) become:
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Combmmg these two equations yields:
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Fig. 1. Definition sketch.
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Fig. 2. Examples of bottom topography for x,=0.5, ¢=0.5,1, 1.5, 2, 2.5 and 3.

The following non-dimensional bottom topog-
raphy is assumed.

1 1<x (Region 1)

h= {x“ xo < x< £ (Region 1)
bx(b=x°"" 0= x<xo (Region 1)

2.7

where & is an arbitrary constant and xo is the
non-dimensional width of the continental shelf.
(The width of the continental slope is 1—xo).
Some example profiles are given in Fig. 2.

Now the problem into solve Eq. (2.6) in the

three regions and match them at the boundaries.

III. Solution
In Region I, Eq. (2.6) is simply
d*¢

o To =0 @D
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The solution is

Ci=Arcos(kx+ ¢) 3.2

where k is the non-dimensional wave number and
@ is the phase factor. Substituting (3.2) into
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(3.1) gives the well-known relationship for
shallow-water standing waves.

o=k 3.3
In Region II, Eq. (2.6) can be rewritten as:
2
e, Br0 @
dx*  x dx

where 0 has been replaced by k.
For 6 =2, the solution of this equation is

X_I/Z(AHXP+BHX p) 1*41{220
Cu= 1% V2{Aycos(q log x) +Bysin(q log x)}
1—4k><0
(8.5a)

where p=1/2+/1—-4k*, q=1/2+/ 4k*—1
For & =2, the solution can be expresses as fol-
lows:

Cu:XKS{AnJu(BXV)+BHNV(BX7)} (35b)

where J, and N, are Bessel functions of the first
and second kind with order v.a, 8 and 7 are
related to 0 by:
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In Region I, the equation becomes:

da*¢ | 1 d¢& _
o TX dx +b (=0 (3.6)

The solution in this case is simply:

Ca=A (21{\/;) 3.7

Once the surface displacements are given by
(8.2), (3.5) and (38.7), the velocity fields are
known from Eq. (2.4).

At the boundaries x=1 and x=x,, both dis-
placement and velocity must be continuous, so
that,

_ d¢: _d¢&n _
&=, dx  dx at x=1 (3.8)

_ dfs _d&a -
Co={n, dx  dx at x=x, (3.9)

At the coast, the tsunami run-up height can be
approximated by

R=Max {{x(0)} (3.10)

This approximation is consistent with the linear
theory, and its validity will be further discussed
in the next section.

From Eq. (3.8), (3.9) and (3.10) we can deter-
mine the phase factor ¢ and the tsunami run-up

factor a defined by:
R

Al

For 6 =2, and 4k*=1,

a= (8.1D)

k(xPo+sx07%)
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where m:%Ap, n —%—p, and x:=2k %
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For 8§ =2 and 4k*<1,

k{cos(q log xo) +s sin (q log xo)}
Vxo{k*+(sq—1/2)7%

¢ =—k-+tan™
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where
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For 6 =2

_ | x%sin(k+ @) J.(Bxs) +sN.(Bxy)
JO(XI) JU(B)+SNV(8)!
¢ =—k+tan!
k{J.(B)+sN.,(8)}
(a+yy){J.(B)+sNL(B)}Y—Br{d..(B)
+SN14*(B)}
where x;=2k x,=x} and

b!
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IV. Discussions

The obtained results become particularly sim-
ple when & is equal to unity. In this case since
v =0, N, is no longer independent of J. so that
we can put s=0: Then, by using b=1, o =0,
B=2k, and v =1/2

_ Jo(2k)
2J:(2k)

a= sin tan

1
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_ 1
ERVAC VR




8 La mer 32, 1994

10
8-
6+
a 3
4r 2.5
2~
15
L 1
2 05
] '
107
k

T

1 10

Fig. 3 Tsunami amplification factor for profiles in Fig. 2. The number indicates the value of & in
Eq. [2.7). The curve for 6 =1 correspond to KeLLER and KELLER (1964) result.

This result is in exact agreement with that of
KELLER and KELLER (1964), as expected.

In Fig. 3, values of the run-up factor a are
plotted as a function of k for xo=0.5,8 =0.5, 1,
1.5, 2, 2.5 and 3. It is seen that for small k, the
factor a is near unity for any &, indicating that
very long waves are not amplified at the coast.
As k becomes larger, a tends to increase steadily
but with minor oscillations. The oscillation is
especially conspicuous for larger 6. It is to be
noted that although the overall slope between
x=0 and x=1 is the same for every case (see
Fig. 2), the run-up factors for larger & are much
higher than for lower &. This implies that the
run-up height is determined more by the sea
floor depth itself than its gradient: the shal-
lower the continental shelf and slope, the
greater the run-up. Approximating the
bathymetry between the coast and the foot of
the continental slope by a straight line may
cause erroneous estimation of tsunami amplifi-
cation.

The theory so far discussed is realistic for the
region I and II where amplitudes of tsunami are
usually small, but may not be valid near the
coast where the non-linear effect becomes sub-
stantial. Fortunately, we have CARRIER and
GREENSPANS’ (1958) results of non-linear shal-
low water waves on a uniformly sloping beach
and can examine the validity of the linear the-
ory. It turns out that far from the coast, their
solution approaches the linear solution given by
(3.6). In the vicinity of the shoreline, the

solutions significantly differs from the linear
ones, but the maximum height to which the
water rises on the shore is found to be simply:
R=Ax

So the non-linear theory would give approxi-
mately the same result as the linear one as far
as the run-up factor is concerned. If the uniform
slope extended to infinitely far, the two results
would make no difference, as first pointed out
by KELLER (1964). Therefore, our results are
practically valid unless the shelf break x,is very
near shore. It is not surprising that numerical
experiments including non-linear terms show
fair agreement with the linear theory as shown
by Goro (1970) for the case of § =1.

V. Conclusions

It is found by using a simple theoretical
model that the varying bathymetry of the
continental slope may sometimes produce
much higher tsunami run-up than the conti-
nental shelf uniformly sloping down to the
open ocean. The theory remains to be tested
by laboratory experiments.
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